Online Homework Package Created by : Elsit and Satya Mandal		
Course Id :Math 105 Topics in Mathematics		Semester : Summer2017
Instructor :Satya Mandal Line No : 84895		
Homework No: 15	Total Points :50	Due Date:(YYYY-MM-DD) 2017-07-27

Question-1	Let Z be the standard normal random variable.
	Find the probability $P(-1.66 < Z < 1.93)$.

Answer	This is a Numerical-Answer Type Question
Question-1	Probability =
Points	5.00

Question-2	Let Z be the standard normal random variable.
	Find the probability $P(Z < -1.135)$.

Answer	This is a Numerical-Answer Type Question
Question-2	Probability =
Points	5.00

Question-	In a requisition for bolts specifies that the diameter of bolts has to be 1 cm. The diameter X of bolts
3	produced in a factory is normally distributed with mean $\mu = 1$ cm and standard deviation $\sigma = 0.02$
	cm. Specification also demands that only those within .99033 cm 1.0111 cm are acceptable. What
	proportion (probability) of bolts produced will be acceptable?

Answer Question-3	This is a Numerical-Answer Type Question
	P(.99033 < X < 1.0111) =
Points	5.00

Question-
4Refer to Question 3. Another specification demands that only those with diameter above .99289 cm
will be acceptable. What proportion (probability) of bolts produced will be acceptable?

Answer This is a Numerical-Answer Type Question

https://www.math.ku.edu/~mandal/cgi-bin/teacher365edit.cgi?semester=Summer2017&hwNumber=15&teacherId=satya&studentId=guest&dueDate=2017-07-27&reqType=11&linePatrices.com/descuedueDate=2017&reqType=2017&reqType=2017&reqType=201&reqType=2

4/16/2018

Home Work on The Web : Teacher's Page

Question-4	P(.99289< X) =	
Points	5.00	

Question-5 Time X taken to commute between campus to home has a normal distribution with mean $\mu = 30$ minutes and standard deviation $\sigma = 13$ minutes. What is the probability that you will find housing so that your commuting time will be less than 45 minutes?

Answer Question-5	This is a Numerical-Answer Type Question
	P(X < 45)
Points	5.00

Question-	Refer to Question 5. What is the probability that you will find housing so that your commuting time
6	will be more than 25 minutes?

Answer	This is a Numerical-Answer Type Question
Question-6	P(25 < X) =
Points	5.00

	Refer to Question 5. What proportion of the the community has commuting distance between 25
7	minutes and 50 minutes?

Answer Question-7	This is a Numerical-Answer Type Question
Points	P(25 < X < 50) = 5.00

Question-	A group of retailers models that the amount of dollars X that an individual will spend in christmas
8	shopping has a normal distribution with mean $\mu = \$1100$ and standard deviation $\sigma = \$330$. What
	proportion (probability) of shoppers will spend more than \$500?

Answer	This is a Numerical-Answer Type Question
Question-8	P(500 < X) =
Points	5.00

Question-9 Refer to Question 8. What proportion (probability) of shoppers will spend less than \$1500?

https://www.math.ku.edu/~mandal/cgi-bin/teacher365edit.cgi?semester=Summer2017&hwNumber=15&teacherId=satya&studentId=guest&dueDate=2017-07-27&reqType=11&linePatrices.com/setupation/setu

Answer	This is a Numerical-Answer Type Question
Question-9	P(X < 1500) =
Points	5.00

Question-	Refer to Question 8. What proportion (probability) of shoppers will spend between \$700 and \$1500?
10	\$1500?

Answer	This is a Numerical-Answer Type Question
Question-10	P(700 < X < 1500) =
Points	5.00

Logout