Online Homework Package Created by : Elsit and Satya Mandal		
Course Id :Math 105	Topics in Mathematics	Semester : Summer2017
Instructor :Satya Mandal Line No : 84895		
Homework No: 16	Total Points :50	$\begin{gathered} \hline \text { Due Date:(YYYY-MM-DD) } \\ 2017-07-27 \end{gathered}$

Question-	The length X of the life of some light bulbs produced in a factory is normally distributed with mean $\mu=8000$ hours and standard deviation $\sigma=750$ hours. What is the probability that a bulb will last between 6000 hours and 9000 hours.

Answer Question-1	This is a Numerical-Answer Type Question
$\mathrm{P}(6000<\mathrm{X}<9000)=$	
Points	5.00

Question-2 Refer to Question 1. What proportion (probability) of lamps will last less than 7500 hours?

Answer Question-2	This is a Numerical-Answer Type Question
P(X $<7500)=$	
Points	5.00

| Question- |
| :--- | :--- |
| $\mathbf{3}$ | | The annual production X of milk by a cow is normally distributed with mean $\mu=6000$ liters and |
| :--- |
| standard deviation $\sigma=450$ liters. What proportion (probability) of cows produce less than 6500 |
| liters annually? |

| Answer
 Question-3 | This is a Numerical-Answer Type Question |
| :--- | :--- | :--- |
| Points | 5.00 |

Question- The amount of vegetable oil X produced by a machine in a day is normally distributed with $\mu=330$ liters and standard deviation $\sigma=45$ liters. What is the probability that a machine will produce between 300 liters and 400 liters on a day?

	$\mathrm{P}(300<\mathrm{X}<400)=$
Points	5.00

Question- The gas milage X per gallon of a model of (new and used) car is normally distributed with mean μ $=29$ miles and a standard deviation $\sigma=3.1$ miles. What is the probability that the car you buy will give more than 25 miles per gallon?

| Answer
 Question-5 | This is a Numerical-Answer Type Question |
| :--- | :--- | :--- |
| P(25 $<\mathrm{X})=$ | |
| Points | 5.00 |

Question- The half-life X of a drug is is normally distributed with mean $\mu=11$ hours and a standard deviation 6 $\sigma=2.9$ hours. A patient takes the drug at 11 PM in the night. What is the probability that 7 AM in the morning the half-life would have expired?

Answer Question-6	This is a Numerical-Answer Type Question
$\mathrm{P}(\mathrm{X}<8)=$	
Points	5.00

Question- Refer to Question 6. What is the probability that half-life will extend beyond 8 AM when the 7 patient starts working?

| Answer
 Question-7 | This is a Numerical-Answer Type Question |
| :--- | :--- | :--- |
| P(9 < X $)=$ | |
| Points | 5.00 |

Question- Refer to Question 6. For what proportion (probability) of patients the half-life would last between $8 \quad 10$ hours and 15 hours?

Answer Question-8	This is a Numerical-Answer Type Question
$\mathrm{P}(10<\mathrm{X}<15)=$	
Points	5.00

| Answer
 Question-9 | This is a Numerical-Answer Type Question |
| :--- | :--- | :--- |
| $\mathrm{P}(\mathrm{X}<14000)=$ | |
| Points | 5.00 |

Question- $\mathbf{1 0}$	Refer to Question 9. For what proportion (probability) of students spend more than 15000 dollars?

Answer Question-10	This is a Numerical-Answer Type Question
$\mathrm{P}(15000<\mathrm{X})=$	
Points	5.00

Logout

