Integration Formulas |
- ∫ x n dx = xn+1 /(n+1)
if n+1 ≠ 0
- ∫1 / x dx = ln |x|
- ∫ e nx dx = e nx/n if n ≠ 0
|
Derivative Formulas |
- d/dx (xn) = nxn-1
- d/dx (ln x) = 1/ x
- d/dx (e mx) = me mx
|
Product and Quotient Rules
|
- The Product Rule: d/dx (f(x)g(x)) = f '(x)g(x) + f(x)g '(x)
- The Quotient Rule: d/dx (f(x)/g(x)) = (f '(x)g(x) - f(x)g '(x))/(g(x)2)
|
Chain Rules |
- d/dx (f(u(x))) = d/dx (f(u)) d/dx (u(x))
= f'(u)u'(x)
- d/dx (u(x)n) = n u(x)n-1 u'(x)
- d/dx (ln (u(x)) = u'(x)/ u(x)
- d/dx (e u(x) ) = e u(x) u'(x)
|
Change of Variables |
- du =d/dx (u) dx = u'(x)dx
|
Integration by Parts |
- ∫u dv = uv - ∫v du
|
Numerical Integration |
- ∆x = (b-a)/n
- x0 = a, x1 = x1 + ∆ x , x3
= x2 + ∆x, ... , xn= b.
- Trapizoidal Approximation for ∫ ab f(x)
dx: Tn = 0.5∆x [f(x0) + 2f(x1)
+ 2f(x2) + ... + 2f(xn-1) + f(xn)]
- Simpson's Rule (Parabolic Approximation) for ∫ ab
f(x) dx: Pn = ∆x [f(x0) + 4f(x1)
+ 2f(x2) + 4f(x3) + 2f(x4) + ... +
4f(xn-1) + f(xn)]/3
|
Limit |
- For n positive : lim x -- > ∞ 1/xn = 0.
- For n positive : lim x -- > ∞ xn = ∞.
- For n positive : lim x -- > ∞ 1/enx = 0.
- For n positive : lim x -- > ∞ enx = ∞.
- For n positive : lim x -- > - ∞ 1/xn = 0.
- For n positive : limx -- > - ∞ xn = ±∞.
|
Maximum and Minimum : 2 Variables |
Given a function f(x,y) :
- The discriminant : D = fxx fyy -
fxy2
- Decision : For a critical point P= (a,b)
- If D(a,b) > 0 and fxx(a,b) < 0 then f has a rel-Maximum at P.
- If D(a,b) > 0 and fxx(a,b) > 0 then f has a rel-Minimum at
P.
- If D(a,b) < 0 then f has a saddle point at P.
- If D(a,b) = 0 then the test is inconclusive.
|
Volume and Averager Value (2 variables case.) |
- Suppose f(x,y) is a function and R is a region on the xy-plane.
- Assume that f(x,y) is a nonnegative on R. Then the volume under the
graph of z = f(x,y) above R is given by
- Suppose f(x,y) is a function and R is a region on the xy-plane. Then the AVERAGE VALUE of z = f(x,y) over the region R is given by
Average Value = ( ∫ ∫
R f(x,y) dA) / (Area
of A). |
|
Taylor Polynomial |
Given a function f(x) the Taylor Polynomial
P n (x) of f(x) around x = a is given by
P n (x) = f(a) + f '(a)(x -a) +
f ''(a)(x-a)2/2! +
f (3)(a)(x-a)3/3! +
f (4)(a)(x-a)4/4! +
... +
f (n)(a)(x-a)n/n!
|
|
Infinite Series |
The sum of the Geometric Series
a + ar + ar 2 + ... + ar n
+ ... =
|
a/(1 - r) if -1 < r < 1 |
Does Not Converge Otherwise |
|
|
Derivative Formulas : Trigonometric Functions |
- d/dx (sin u) = cos u u'(x)
- d/dx (cos u) = - sin u u'(x)
- d/dx (tan u) = sec 2 u u'(x)
- d/dx (csc u) =- csc (u)cot u u'(x)
- d/dx (sec u) = sec (u) tan u u'(x)
- d/dx (cot u) = - csc 2 u u'(x)
|
Integration Formulas : Trigonometric Functions |
- ∫ sin x dx = -cos x
- ∫ cos x dx = sin x
- ∫ tan x dx = - ln |cos x|
- ∫ sec x dx = ln |sec x + tan x|
- ∫ csc x dx = ln |csc x -cot x|
- ∫ cot x = ln |sin x|
|