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Preview

» We will define determinant of SQUARE matrices,
inductively, using the definition of Minors and cofactors.

» We will see that determinant of triangular matrices is the
product of its diagonal elements.

» Determinants are useful to compute the inverse of a

matrix and solve linear systems of equations (Cramer's
rule).
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Overview of the definition

» Given a square matrix A, the determinant of A will be
defined as a scalar, to be denoted by det(A) or |A.

» We define determinant inductively. That means, we first
define determinant of 1 x 1 and 2 x 2 matrices. Use this
to define determinant of 3 x 3 matrices. Then, use this to
define determinant of 4 x 4 matrices and so.
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Determinant of 1 X 1 and 2 X 2 matrices

» For a 1 x 1 matrix A= [a] define det(A) = |A| = a.
> Let

A= i Z define det(A) = |A| = ad — bc.
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Example 1

Let

A= (2 1) then det(A) = |A| = 2¢(-2) 1743 = 53
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Example 2

then det(A) = |A|=3%x9—1%27=0.
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Minors of 3 X 3 matrices

Let
d11 d12 a3
A= a1 dx axs
d31 d32 ds3
Then, the Minor Mj; of aj is defined to be the determinant of
the 2 x 2 matrix obtained by deleting the i*" row and j*
column.
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For example

di d13
M., — | 911 a13
2 N d31 das3
asi as33
Like wise
dyo a3 di1 a1 di1  di13
My = , Mz = , Msy =
d32 d33 d31 a3 dp1 a3
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Cofactors of 3 X 3 matrices

Let A the 3 x 3 matrix as in the above frame. Then, the
Cofactor Cj of aj; is defined, by some sign adjustment of the
minors, as follows:

Cj = (-1)"M;
For example, using the above frame
G = (—1)1+1M11 = M1 = axpaszs — axass

Gz = (—1)2+3M23 =My = —(311332 - 312331)
Cyo = (—1)*M3 = —(ar1a23 — aizan).
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Determinant of 3 X 3 matrices

Let A be the 3 x 3 matrix as above. Then the determinant
of A is defined by

det(A) = [A| = a11 Ci1 + 212Gz + a13Cus

This definition may be called " definition by expansion by
cofactors, along the first row”. It is possible to define the
same by expansion by second of third row, which we will be
discussed later.
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Example 3

Let

A=| 3 -2 0
-2 1 1

Compute the minor M117 M12, M13, the cofactors C11, C12, C13
and the determinant of A.
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Solution:

Then minors

—2 0 3 0 3 =2

Mll = 1 1 M12 =

Or
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Continued

So, the cofactors
G = (_1)1+1M11 =2, (Cp= (—1)1+2M12 = -3,

Cis = (—1)' My = —1
So,

|A| = a1 C11+312C12+813C13 = 2*(—2)+1*(—3)+1*(—1) = -8
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Inductive process of definition

» We defined determinant of size 3 x 3, using the
determinant of 2 x 2 matrices.

» Now we can do the same for 4 x 4 matrices. This means
first define minors, which would be determinant of 3 x 3
matrices. Then, define Cofactors by adjusting the sign of
the Minors. Then, use the cofactors fo define the
determiant of the 4 x 4 matrix.

» Then, we can define minors, cofactors and determinant of
5 x 5 matrices. The process continues.
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Minors of n x n Matrices

We assume that we know how to define determiant of
(n—1) x (n— 1) matrices. Let

di1 di12 d13 -+ dip
dp1 dx2 413 - A
A= d31 d32 d33 - d3p

dpl dp2 dp3 " dnn

be a square matrix of size n x n. The minor M;; of aj is
defined to be the determinant of the (n — 1) x (n — 1) matrix
obtained by deleting the i*" row and j* column.
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Cofactors and Detarminant of n X n Matrices

Let A be a n X n matrix.
» Define

Cj = (=1)""'M; which iscalled the cofactor of a;.

» Define

det(A) = |A| = Z a1;;Gj = anCGutanCot+- - +anGn

j=1

This would be called a definiton by expasion by cofactors,
along first row.
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Alternative Method for 3 x 3 matrices:

an
A = ani
asy

di2 413
dy 43
d32 433

Form a new 3 X 5 matrix by adding first and second column to

A:

di1 a1
dy1  a»
dz1 d32
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Continued

Then |A| can be computed as follows:

» add the product of all three entries in the three left to
right diagonals.

» add the product of all three entries in the three right to
left diagonals.

» Then, |A| is the difference.
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Definition.

Definitions. Let A be a n X n matrix.

» We say A is Upper Triangular matrix, all entries of A
below the main diagonal (left to right) are zero. In
notations, if a; = 0 for all / > j.

» We say A is Lower Triangular matrix, all entries of A
above he main diagonal (left to right) are zero. In
notations, if a; = 0 for all / < j.
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Theorem

Theorem Let A be a triangular matrix of order n. Then |A] is
product of the main-diagonal entries. Notationally,

|A| = d11d22 * * " dpp-

Proof. The proof is easy when n =1,2. We prove it when
n = 3. Let use assume A is lower triangular. So,

a1 0 0
A= dp>1  dano 0
d31 d32 ds3
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Continued

We expand by the first row:
Al = a11Ci1 +0Co +0G3 = a1 Gy

_ 141 a2 0 |
= 311(—1) = d11d224d33
d3z ds3
For upper triangular matrices, we can prove similarly, by
column expansion. For higher order matrices, we can use

mathematical induction. n
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More Probelms

Example

Compute the determiant, by expansion by cofactors, of

Solution.

» The cofactors

Cll — (_1)1+1 ;" ‘ _ 87 C12 — (_1)1+2

—_ =

4
0
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More Probelms

Ciz = (—1)'3 ‘ =4

1 4
10
» So, |A| = a11Gi + a12Gip + a13Ci3 =

2484+ (—1)*x2+3x(—4)=2
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More Probelms

Example

3 7 -3 13
0o -7 2 17

Let A= 00 4 3 Compute det(A).
0 0 0 5

Solution. This is an upper triangular matrix. So, |A| is the
product of the diagonal entries. So

Al =3 % (=7) x4 x5 = —420.
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More Probelms

Example

x+3 1

Solve 4 x_1

‘:0
Solution. So,
(x+3)(x—1)—1%(—4)=0 or x*+2x+1=0

(x+1)*=0 or x=-1
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