§7.3 System of Linear (algebraic) Equations
 Eigen Values, Eigen Vectors

Satya Mandal, KU

Systems of Linear Equations

Consider a system of m linear equations, in n (unknown) varibales:

$$
\begin{array}{llllll}
a_{11} x_{1}+ & a_{12} x_{2}+ & a_{13} x_{3}+ & \cdots+ & a_{1 n} x_{n} & =b_{1} \\
a_{21} x_{1}+ & a_{22} x_{2}+ & a_{13} x_{3}+ & \cdots+ & a_{2 n} x_{n}=b_{2} \\
a_{31} x_{1}+ & a_{32} x_{2}+ & a_{33} x_{3}+ & \cdots+ & a_{3 n} x_{n}=b_{3} \tag{1}\\
\cdots & \cdots & \cdots & \cdots & \cdots & \cdots \\
a_{m 1} x_{1}+ & a_{m 2} x_{2}+ & a_{m 3} x_{3}+\cdots+ & a_{m n} x_{n}=b_{m}
\end{array}
$$

where $a_{i j}, b_{j}$ are real or complex numbers.

Continued

- Write

$$
\mathbf{A}=\left(\begin{array}{cccc}
a_{11} & a_{12} & \cdots & a_{1 n} \\
a_{21} & a_{22} & \cdots & a_{2 n} \\
a_{31} & a_{32} & \cdots & a_{3 n} \\
\cdots & \cdots & \cdots & \cdots \\
a_{m 1} & a_{m 2} & \cdots & a_{m n}
\end{array}\right) \mathbf{b}=\left(\begin{array}{c}
b_{1} \\
b_{2} \\
\cdots \\
b_{m}
\end{array}\right) \mathbf{x}=\left(\begin{array}{c}
x_{1} \\
x_{2} \\
\cdots \\
x_{n}
\end{array}\right)
$$

Then, \mathbf{A} is called the coefficient matrix of the system (1). We also write $\mathbf{A}=\left(a_{i j}\right)$.

- In matrix form, the system (1) is written as

$$
\begin{equation*}
\mathrm{Ax}=\mathrm{b} \tag{2}
\end{equation*}
$$

The Homogeneous Equation

- If $\mathbf{b}=\mathbf{0}$, then the system (2) would be called a homogeneous system. So,

$$
\begin{equation*}
A x=0 \tag{3}
\end{equation*}
$$

is a homogeneous system of linear equation.

- Then, $\mathbf{x}=\mathbf{0}$ is a solution of the homogeneous system (3), to be called the trivial solution.

A system and the homogeneous system

- Suppose $\mathbf{x}^{(0)}$ is a solution of the system (2): $\mathbf{A} \mathbf{x}=\mathbf{b}$.
- Then, any solution of (2): $\mathbf{A} \mathbf{x}=\mathbf{b}$ is of the form

$$
\begin{equation*}
\mathbf{x}=\mathbf{x}^{(0)}+\xi \tag{4}
\end{equation*}
$$

where ξ is a solution of the corresponding homogeneous system $\mathbf{A x}=\mathbf{0}$.

Augmented Matrix

- Corresponding to system (1), define the augmented matrix

$$
\mathbf{A} \left\lvert\, \mathbf{b}=\left(\begin{array}{cccc|c}
a_{11} & a_{12} & \cdots & a_{1 n} & b_{1} \tag{5}\\
a_{21} & a_{22} & \cdots & a_{2 n} & b_{2} \\
a_{31} & a_{32} & \cdots & a_{3 n} & b_{3} \\
\cdots & \cdots & \cdots & \cdots & \cdots \\
a_{m 1} & a_{m 2} & \cdots & a_{m n} & b_{m}
\end{array}\right)\right.
$$

- In deed, the system (1) and the augmented matrix (5) has the same information/data. The Up-shot: the row operations performed on system (1), can be performed on the augmented matrix (5), in stead.

Solving the system (1)

- There are three possibilities:
- The system (1), may not have any solution.
- The system (1), may have infinitely many solution.
- The system (1), may have a unique solution. For this possibility, we need at least n equations.
- To solve system (1), we can use Tl-84 (ref, rref). Cosult any Tl-84 site for instructions.

$n=m$: System of n equations and n unknown

The textbook focuses on the case when $m=n$: the number of equations is same as number of unknown x_{1}, \ldots, x_{n}. In this section we assume $n=m$

- When $n=m$, then the coefficient matrix \mathbf{A} of (1) is a square matrix of size $n \times n$.
- Recall, a square matrix \mathbf{A} is invertible $\Longleftrightarrow|A| \neq 0$.
- If $|A| \neq 0$, then the unique solution of system (2)

$$
\begin{equation*}
\mathbf{A} \mathbf{x}=\mathbf{b} \quad \text { is } \quad \mathbf{x}=\mathbf{A}^{-1} \mathbf{b} \tag{6}
\end{equation*}
$$

Linear Indpendence

- A set $\mathrm{x}_{1}, \mathrm{x}_{2}, \ldots, \mathrm{x}_{k}$ of vectors (in \mathbb{R}^{n}) is said to be linearly dependent over \mathbb{R} if there are scalars c_{1}, \ldots, c_{k} in \mathbb{R}, not all zero such that $c_{1} \mathrm{x}_{1}+c_{2} \mathrm{x}_{2}+\cdots+c_{k} \mathrm{x}_{k}=0$.
- Likewise, a set $\mathbf{x}_{1}, \mathbf{x}_{2}, \ldots, \mathbf{x}_{k}$ of vectors (in \mathbb{C}^{n}) is said to be linearly dependent over \mathbb{C} if there are scalars c_{1}, \ldots, c_{k} in \mathbb{C}, not all zero such that $c_{1} \mathbf{x}_{1}+c_{2} \mathbf{x}_{2}+\cdots+c_{k} \mathbf{x}_{k}=0$.
- A set $x_{1}, x_{2}, \ldots, x_{k}$ of vectors is said to be linearly independent over \mathbb{R} or \mathbb{C}, if they are not linearly dependent. That means, if

$$
c_{1} \mathbf{x}_{1}+c_{2} \mathbf{x}_{2}+\cdots+c_{k} \mathbf{x}_{k}=\mathbf{0} \Longrightarrow c_{1}=c_{2}=\cdots=c_{k}=0
$$

Continued

- Given a set $x_{1}, x_{2}, \ldots, x_{k}\left(\right.$ in \mathbb{R}^{n} or $\left.\mathbb{C}^{n}\right)$ of vectors, we can form an $n \times k$ matrix $\mathrm{X}:=\left(\begin{array}{llll}\mathrm{x}_{1} & \mathrm{x}_{2} & \cdots & \mathrm{x}_{k}\end{array}\right)$.
- Then, $x_{1}, x_{2}, \ldots, x_{k}$ is linearly independent, if $\mathbf{X c}=\mathbf{0} \Longrightarrow \mathbf{c}=\mathbf{0}$. In other words, $\mathbf{X c}=\mathbf{0}$ has no non-trivial solution.
- For n such vectors, $\mathbf{x}_{1}, \mathbf{x}_{2}, \ldots, \mathbf{x}_{n}$ (in \mathbb{R}^{n} or \mathbb{C}^{n}), they are linearly independent, if the determinant $|\mathbf{X}| \neq 0$.

Eigenvalues and Eigenvectors

Suppose \mathbf{A} is a square matrix of size $n \times n$.

- A scalar $\lambda \in \mathbb{C}$ is said to be an Eigenvalue of \mathbf{A}, if $|\mathbf{A}-\lambda \mathbf{I}|=0$.
- The following are equivalent:
- $\lambda \in \mathbb{C}$ is an Eigenvalue of \mathbf{A}
- $|\mathbf{A}-\lambda \mathbf{I}|=0$
- The system $(\mathbf{A}-\lambda \mathbf{I}) \mathbf{x}=\mathbf{0}$ has nontrivial solutions.
- There are non-zero vectors x such that $\mathrm{Ax}=\lambda \mathrm{x}$.
- Accordingly, a vector $\mathbf{x} \neq \mathbf{0}$ is said to be an eigenvector, for an eigenvalue λ of \mathbf{A}, if $\mathbf{A x}=\lambda \mathbf{x}$.

Continued

- Eigenvalues are also called characteristic roots of A. (The german word "eigen" means "particular" or "peculier".)
- The equation $|\mathbf{A}-\lambda \boldsymbol{I}|=0$, is a polynomial equation in λ, of degree n, to be called the characteristic equation of \mathbf{A}.
- Counting multiplicity of roots, the characteristic equation $|\mathbf{A}-\lambda \mathbf{I}|=0$, has n complex roots.
- Matlab can be used to compute eigenvalues and eigenvectors. Consult instructions in my site. The commands eig(A), $[V, D]=e i g(A)$ will be useful. However, Matlab does not work too well in this case. Eventually, we will use TI-84 to handle all these. Although, TI-84 does not have any direct command to do all these.
- Sometimes, there is no choice but to use analytic methods. This will be the case, when we have to deal with complex eigenvalues.
- Main thrust of this section is to compute eigenvalues and eigenvectors.

Sample I: Ex 17

Find the eigenvalues and the corresponding eigenvector of

$$
\mathbf{A}=\left(\begin{array}{ll}
3 & -2 \\
4 & -1
\end{array}\right) \quad \text { Use Matlab eig }[V, D]
$$

- Analytically: The characteristic equation:

$$
\begin{gathered}
|\mathbf{A}-\lambda \mathbf{I}|=\left|\begin{array}{cc}
3-\lambda & -2 \\
4 & -1-\lambda
\end{array}\right|=0 \\
(3-\lambda)(-1-\lambda)+8=0 \Longleftrightarrow \lambda^{2}-2 \lambda+5=0 \\
\text { Eigenvalues are } \quad \lambda=1 \pm 2 i
\end{gathered}
$$

Eigenvectors for $\lambda=1+2 i$

To compute an eigenvector $\lambda=1+2 i$, we solve ($\mathbf{A}-\lambda /$) $\mathbf{x}=\mathbf{0}$, which is

$$
\begin{gathered}
\left(\begin{array}{cc}
3-(1+2 i) & -2 \\
4 & -1-(1+2 i)
\end{array}\right)\binom{x_{1}}{x_{2}}=\binom{0}{0} \\
\left(\begin{array}{cc}
2-2 i & -2 \\
4 & -2-2 i
\end{array}\right)\binom{x_{1}}{x_{2}}=\binom{0}{0} \\
\left\{\begin{array} { l }
{ (2 - 2 i) x _ { 1 } - 2 x _ { 2 } = 0 } \\
{ 4 x _ { 1 } - (2 + 2 i) x _ { 2 } = 0 }
\end{array} \Longrightarrow \left\{\begin{array}{c}
(1-i) x_{1}-x_{2}=0 \\
2 x_{1}-(1+i) x_{2}=0
\end{array}\right.\right.
\end{gathered}
$$

Continued

Subtracting $1+i$-times the first equation from the second, we get

$$
\left\{\begin{array} { c }
{ (1 - i) x _ { 1 } - x _ { 2 } = 0 } \\
{ 0 = 0 }
\end{array} \Longrightarrow \left\{\begin{array}{c}
(1-i) x_{1}-x_{2}=0 \\
x_{2}=(1-i) x_{1}
\end{array}\right.\right.
$$

Taking $x_{1}=1$, an eigenvector for $\lambda=1+2 i$, is

$$
\begin{equation*}
\mathbf{x}=\binom{x_{1}}{x_{2}}=\binom{1}{1-i} \tag{7}
\end{equation*}
$$

Eigenvectors for $\lambda=1-2 i$

- An eigenvectors for $\lambda=1-2 i$ can be computed, as in the case of its conjugate $1+2 i$.
- Alternately, An eigenvectors for $\lambda=1-2 i$ is the conjugate of (7):

$$
\mathbf{x}=\binom{x_{1}}{x_{2}}=\binom{1}{1+i}
$$

Sample II: Ex 20

Find the eigenvalues and the corresponding eigenvector of

$$
\mathbf{A}=\left(\begin{array}{cc}
1 & \sqrt{3} \\
\sqrt{3} & -1
\end{array}\right) . \quad \text { Use Matlab eig }[V, D]
$$

- The characteristic equation:

$$
\begin{gathered}
|\mathbf{A}-\lambda \mathbf{I}|=\left|\begin{array}{cc}
1-\lambda & \sqrt{3} \\
\sqrt{3} & -1-\lambda
\end{array}\right|=0 \\
(1-\lambda)(-1-\lambda)-3=0 \Longleftrightarrow \lambda^{2}-4=0 \\
\text { Eigenvalues are } \quad \lambda=2,-2
\end{gathered}
$$

Eigenvectors for $\lambda=2$

For $\lambda=2$, solve $(\mathbf{A}-\lambda /) \mathbf{x}=0$, which is

$$
\begin{gathered}
\left(\begin{array}{cc}
1-2 & \sqrt{3} \\
\sqrt{3} & -1-2
\end{array}\right)\binom{x_{1}}{x_{2}}=\binom{0}{0} \\
\left(\begin{array}{cc}
-1 & \sqrt{3} \\
\sqrt{3} & -3
\end{array}\right)\binom{x_{1}}{x_{2}}=\binom{0}{0} \\
\left\{\begin{array} { c }
{ - x _ { 1 } + \sqrt { 3 } x _ { 2 } = 0 } \\
{ \sqrt { 3 } x _ { 1 } - 3 x _ { 2 } = 0 }
\end{array} \Longrightarrow \left\{\begin{array}{c}
x_{1}=\sqrt{3} x_{2} \\
0=0
\end{array}\right.\right.
\end{gathered}
$$

The $2^{\text {nd }}$-line is obtained by adding $\sqrt{3}$-times the first equation to the second.

Continued

Taking $x_{2}=1$, an eigenvector for $\lambda=2$, is

$$
\begin{equation*}
\mathbf{x}=\binom{x_{1}}{x_{2}}=\binom{\sqrt{3}}{1} \tag{8}
\end{equation*}
$$

- Since $\lambda=2$ has multiplicity one, we expect only one linearly independent eigenvector for $\lambda=2$.

Eigenvectors for $\lambda=-2$

For $\lambda=-2$, solve $(\mathbf{A}-\lambda /) \mathrm{x}=0$, which is

$$
\begin{gathered}
\left(\begin{array}{cc}
1+2 & \sqrt{3} \\
\sqrt{3} & -1+2
\end{array}\right)\binom{x_{1}}{x_{2}}=\binom{0}{0} \\
\left(\begin{array}{cc}
3 & \sqrt{3} \\
\sqrt{3} & 1
\end{array}\right)\binom{x_{1}}{x_{2}}=\binom{0}{0} \\
\left\{\begin{array} { c }
{ 3 x _ { 1 } + \sqrt { 3 } x _ { 2 } = 0 } \\
{ \sqrt { 3 } x _ { 1 } + x _ { 2 } = 0 }
\end{array} \Longrightarrow \left\{\begin{array}{c}
0=0 \\
x_{2}=-\sqrt{3} x_{1}
\end{array}\right.\right.
\end{gathered}
$$

The $1^{\text {st }}$-line is obtained by subtracting $\sqrt{3}$-times the scond equation to the first.

Continued

Taking $x_{1}=1$, an eigenvector for $\lambda=-2$, is

$$
\begin{equation*}
\mathbf{x}=\binom{x_{1}}{x_{2}}=\binom{1}{-\sqrt{3}} \tag{9}
\end{equation*}
$$

- Since $\lambda=-2$ has multiplicity one, we expect only one linearly independent eigenvector for $\lambda=-2$.

Sample III: Ex 23

Find the eigenvalues and the corresponding eigenvector of

$$
\mathbf{A}=\left(\begin{array}{ccc}
3 & 2 & 2 \\
1 & 4 & 1 \\
-2 & -4 & -1
\end{array}\right) . \quad \text { Use Matlab eig }[V, D]
$$

- Analytically: The characteristic equation:

$$
|\mathbf{A}-\lambda \mathbf{I}|=\left|\begin{array}{ccc}
3-\lambda & 2 & 2 \\
1 & 4-\lambda & 1 \\
-2 & -4 & -1-\lambda
\end{array}\right|=0
$$

Continued

$$
\begin{gathered}
(3-\lambda)\left|\begin{array}{cc}
4-\lambda & 1 \\
-4 & -1-\lambda
\end{array}\right|-2\left|\begin{array}{cc}
1 & 1 \\
-2 & -1-\lambda
\end{array}\right|+2\left|\begin{array}{cc}
1 & 4-\lambda \\
-2 & -4
\end{array}\right|=0 \\
-\lambda^{3}+6 \lambda^{2}-11 \lambda+6=0 \Longrightarrow \\
-\lambda^{2}(\lambda-1)+5 \lambda(\lambda-1)-6(\lambda-1)=-(\lambda-1)\left(\lambda^{2}-5 \lambda+6\right)=0 \Longrightarrow \\
-(\lambda-1)(\lambda-2)(\lambda-3)=0 \Longrightarrow \lambda=1,2,3
\end{gathered}
$$

are the eigenvalues of \mathbf{A}.

Eigenvectors for $\lambda=1$

For $\lambda=1$, solve $(\mathbf{A}-\lambda /) \mathbf{x}=0$, which is

$$
\begin{gather*}
\left(\begin{array}{ccc}
3-1 & 2 & 2 \\
1 & 4-1 & 1 \\
-2 & -4 & -1-1
\end{array}\right)\left(\begin{array}{l}
x_{1} \\
x_{2} \\
x_{3}
\end{array}\right)=\left(\begin{array}{l}
0 \\
0 \\
0
\end{array}\right) \\
\left(\begin{array}{ccc}
2 & 2 & 2 \\
1 & 3 & 1 \\
-2 & -4 & -2
\end{array}\right)\left(\begin{array}{l}
x_{1} \\
x_{2} \\
x_{3}
\end{array}\right)=\left(\begin{array}{l}
0 \\
0 \\
0
\end{array}\right) \tag{10}\\
\left\{\begin{array}{c}
2 x_{1}+2 x_{2}+2 x_{3}=0 \\
x_{1}+3 x_{2}+x_{3}=0 \\
-2 x_{1}-4 x_{2}-2 x_{3}=0
\end{array}\right. \\
\hline
\end{gather*}
$$

Continued

Subtracting first equation from second and third:

$$
\left\{\begin{array} { c }
{ x _ { 1 } + x _ { 2 } + x _ { 3 } = 0 } \\
{ 2 x _ { 2 } = 0 } \\
{ x _ { 2 } = 0 }
\end{array} \Longrightarrow \left\{\begin{array}{c}
x_{1}=-x_{3} \\
x_{2}=0 \\
x_{2}=0
\end{array}\right.\right.
$$

Taking $x_{3}=1$, an eigenvector for $\lambda=1$, is

$$
\mathbf{x}=\left(\begin{array}{l}
x_{1} \tag{11}\\
x_{2} \\
x_{3}
\end{array}\right)=\left(\begin{array}{c}
-1 \\
0 \\
1
\end{array}\right)
$$

- Since $\lambda=1$ has multiplicity one, we expect only one linearly independent eigenvector for $\lambda=1$.
- It would be much simpler, if we use TI-84 (rref) to solve (10).

Eigenvectors for $\lambda=2$

For $\lambda=2$, solve $(\mathbf{A}-\lambda /) \mathbf{x}=\mathbf{0}$, which is

$$
\begin{gather*}
\left(\begin{array}{ccc}
3-2 & 2 & 2 \\
1 & 4-2 & 1 \\
-2 & -4 & -1-2
\end{array}\right)\left(\begin{array}{l}
x_{1} \\
x_{2} \\
x_{3}
\end{array}\right)=\left(\begin{array}{l}
0 \\
0 \\
0
\end{array}\right) \\
\left(\begin{array}{ccc}
1 & 2 & 2 \\
1 & 2 & 1 \\
-2 & -4 & -3
\end{array}\right)\left(\begin{array}{l}
x_{1} \\
x_{2} \\
x_{3}
\end{array}\right)=\left(\begin{array}{l}
0 \\
0 \\
0
\end{array}\right) \tag{12}
\end{gather*}
$$

Use rref in TI-84:

$$
\left(\begin{array}{lll}
1 & 2 & 0 \\
0 & 0 & 1 \\
0 & 0 & 0
\end{array}\right)\left(\begin{array}{l}
x_{1} \\
x_{2} \\
x_{3}
\end{array}\right)=\left(\begin{array}{l}
0 \\
0 \\
0
\end{array}\right)
$$

Continued

$$
\left\{\begin{array} { c }
{ x _ { 1 } + 2 x _ { 2 } = 0 } \\
{ x _ { 3 } = 0 } \\
{ 0 = 0 }
\end{array} \Longrightarrow \left\{\begin{array}{c}
x_{1}=-2 x_{2} \\
x_{3}=0 \\
0=0
\end{array}\right.\right.
$$

Taking $x_{1}=1$, an eigenvector for $\lambda=2$, is

$$
\mathbf{x}=\left(\begin{array}{l}
x_{1} \\
x_{2} \\
x_{3}
\end{array}\right)=\left(\begin{array}{c}
-2 \\
1 \\
0
\end{array}\right)
$$

Eigenvectors for $\lambda=3$

For $\lambda=3$, solve $(\mathbf{A}-\lambda /) \mathbf{x}=0$, which is

$$
\begin{gathered}
\left(\begin{array}{ccc}
3-3 & 2 & 2 \\
1 & 4-3 & 1 \\
-2 & -4 & -1-3
\end{array}\right)\left(\begin{array}{l}
x_{1} \\
x_{2} \\
x_{3}
\end{array}\right)=\left(\begin{array}{l}
0 \\
0 \\
0
\end{array}\right) \\
\left(\begin{array}{ccc}
0 & 2 & 2 \\
1 & 1 & 1 \\
-2 & -4 & -4
\end{array}\right)\left(\begin{array}{l}
x_{1} \\
x_{2} \\
x_{3}
\end{array}\right)=\left(\begin{array}{l}
0 \\
0 \\
0
\end{array}\right)
\end{gathered}
$$

Use rref in TI-84:

$$
\left(\begin{array}{lll}
1 & 0 & 0 \\
0 & 1 & 1 \\
0 & 0 & 0
\end{array}\right)\left(\begin{array}{l}
x_{1} \\
x_{2} \\
x_{3}
\end{array}\right)=\left(\begin{array}{l}
0 \\
0 \\
0
\end{array}\right)
$$

Continued

$$
\left\{\begin{array} { c }
{ x _ { 1 } = 0 } \\
{ x _ { 2 } + x _ { 3 } = 0 } \\
{ 0 = 0 }
\end{array} \Longrightarrow \left\{\begin{array}{c}
x_{1}=0 \\
x_{2}=-x_{3} \\
0=0
\end{array}\right.\right.
$$

Taking $x_{3}=1$, an eigenvector for $\lambda=3$, is

$$
\mathbf{x}=\left(\begin{array}{l}
x_{1} \\
x_{2} \\
x_{3}
\end{array}\right)=\left(\begin{array}{c}
0 \\
-1 \\
1
\end{array}\right)
$$

§7.3 Assignments and Homework

- Read Example 4-5 (They are helpful).
- Homework: §7.3 Se the Homework Site!

