§7.3 System of Linear (algebraic) Equations Eigen Values, Eigen Vectors

Satya Mandal, KU

Systems of Linear Equations

Consider a system of m linear equations, in n (unknown) varibales:

where a_{ij} , b_i are real or complex numbers.

Write

$$\mathbf{A} = \begin{pmatrix} a_{11} & a_{12} & \cdots & a_{1n} \\ a_{21} & a_{22} & \cdots & a_{2n} \\ a_{31} & a_{32} & \cdots & a_{3n} \\ \vdots & \vdots & \ddots & \vdots \\ a_{m1} & a_{m2} & \cdots & a_{mn} \end{pmatrix} \mathbf{b} = \begin{pmatrix} b_1 \\ b_2 \\ \vdots \\ b_m \end{pmatrix} \mathbf{x} = \begin{pmatrix} x_1 \\ x_2 \\ \vdots \\ x_n \end{pmatrix}$$

Then, **A** is called the coefficient matrix of the system (1). We also write $\mathbf{A} = (a_{ij})$.

▶ In matrix form, the system (1) is written as

$$\mathbf{A}\mathbf{x} = \mathbf{b} \tag{2}$$

The Homogeneous Equation

If b = 0, then the system (2) would be called a homogeneous system. So,

$$\mathbf{A}\mathbf{x} = \mathbf{0} \tag{3}$$

is a homogeneous system of linear equation.

▶ Then, x = 0 is a solution of the homogeneous system (3), to be called the trivial solution.

A system and the homogeneous system

- ▶ Suppose $\mathbf{x}^{(0)}$ is a solution of the system (2): $\mathbf{A}\mathbf{x} = \mathbf{b}$.
- ▶ Then, any solution of (2): Ax = b is of the form

$$\mathbf{x} = \mathbf{x}^{(0)} + \xi \tag{4}$$

where ξ is a solution of the corresponding homogeneous system $\mathbf{A}\mathbf{x}=\mathbf{0}$.

Augmented Matrix

 Corresponding to system (1), define the augmented matrix

$$\mathbf{A}|\mathbf{b} = \begin{pmatrix} a_{11} & a_{12} & \cdots & a_{1n} & b_1 \\ a_{21} & a_{22} & \cdots & a_{2n} & b_2 \\ a_{31} & a_{32} & \cdots & a_{3n} & b_3 \\ \cdots & \cdots & \cdots & \cdots & \cdots \\ a_{m1} & a_{m2} & \cdots & a_{mn} & b_m \end{pmatrix}$$
(5)

▶ In deed, the system (1) and the augmented matrix (5) has the same information/data. The Up-shot: the row operations performed on system (1), can be performed on the augmented matrix (5), in stead.

Solving the system (1)

- There are three possibilities:
 - ▶ The system (1), may not have any solution.
 - ► The system (1), may have infinitely many solution.
 - ► The system (1), may have a unique solution. For this possibility, we need at least *n* equations.
- ➤ To solve system (1), we can use TI-84 (ref, rref). Cosult any TI-84 site for instructions.

n = m: System of n equations and n unknown

The textbook focuses on the case when m=n: the number of equations is same as number of unknown x_1, \ldots, x_n . In this section we assume n=m

- ▶ When n = m, then the coefficient matrix **A** of (1) is a square matrix of size $n \times n$.
- ▶ Recall, a square matrix **A** is invertible \iff $|A| \neq 0$.
- ▶ If $|A| \neq 0$, then the unique solution of system (2)

$$\mathbf{A}\mathbf{x} = \mathbf{b} \quad \text{is} \quad \mathbf{x} = \mathbf{A}^{-1}\mathbf{b} \tag{6}$$

Linear Indpendence

- A set $x_1, x_2, ..., x_k$ of vectors (in \mathbb{R}^n) is said to be linearly dependent over \mathbb{R} if there are scalars $c_1, ..., c_k$ in \mathbb{R} , not all zero such that $c_1x_1 + c_2x_2 + \cdots + c_kx_k = \mathbf{0}$.
- Likewise, a set x_1, x_2, \ldots, x_k of vectors (in \mathbb{C}^n) is said to be linearly dependent over \mathbb{C} if there are scalars c_1, \ldots, c_k in \mathbb{C} , not all zero such that $c_1x_1 + c_2x_2 + \cdots + c_kx_k = \mathbf{0}$.
- A set $x_1, x_2, ..., x_k$ of vectors is said to be linearly independent over \mathbb{R} or \mathbb{C} , if they are not linearly dependent. That means, if

$$c_1\mathbf{x}_1+c_2\mathbf{x}_2+\cdots+c_k\mathbf{x}_k=\mathbf{0} \implies c_1=c_2=\cdots=c_k=\mathbf{0}.$$

- ▶ Given a set $\mathbf{x}_1, \mathbf{x}_2, \dots, \mathbf{x}_k$ (in \mathbb{R}^n or \mathbb{C}^n) of vectors, we can form an $n \times k$ matrix $\mathbf{X} := (\mathbf{x}_1 \ \mathbf{x}_2 \ \cdots \ \mathbf{x}_k)$.
- Then, x₁, x₂,...,x_k is linearly independent, if Xc = 0 ⇒ c = 0. In other words, Xc = 0 has no non-trivial solution.
- For *n* such vectors, $\mathbf{x}_1, \mathbf{x}_2, \dots, \mathbf{x}_n$ (in \mathbb{R}^n or \mathbb{C}^n), they are linearly independent, if the determinant $|\mathbf{X}| \neq 0$.

Eigenvalues and Eigenvectors

Suppose **A** is a square matrix of size $n \times n$.

- ▶ A scalar $\lambda \in \mathbb{C}$ is said to be an Eigenvalue of **A**, if $|\mathbf{A} \lambda \mathbf{I}| = 0$.
- ► The following are equivalent:
 - ▶ $\lambda \in \mathbb{C}$ is an Eigenvalue of **A**
 - $|\mathbf{A} \lambda \mathbf{I}| = 0$
 - ▶ The system $(\mathbf{A} \lambda \mathbf{I})\mathbf{x} = \mathbf{0}$ has nontrivial solutions.
 - ▶ There are non-zero vectors **x** such that $\mathbf{A}\mathbf{x} = \lambda \mathbf{x}$.
- Accordingly, a vector $\mathbf{x} \neq \mathbf{0}$ is said to be an eigenvector, for an eigenvalue λ of \mathbf{A} , if $\mathbf{A}\mathbf{x} = \lambda \mathbf{x}$.

- ► Eigenvalues are also called characteristic roots of **A**. (*The german word "eigen" means "particular" or "peculier"*.)
- ▶ The equation $|\mathbf{A} \lambda \mathbf{I}| = 0$, is a polynomial equation in λ , of degree n, to be called the characteristic equation of \mathbf{A} .
- Counting multiplicity of roots, the characteristic equation $|\mathbf{A} \lambda \mathbf{I}| = 0$, has *n* complex roots.
- Matlab can be used to compute eigenvalues and eigenvectors. Consult instructions in my site. The commands eig(A), [V,D]=eig(A) will be useful. However, Matlab does not work too well in this case. Eventually, we will use TI-84 to handle all these. Although, TI-84 does not have any direct command to do all these.

- Sometimes, there is no choice but to use analytic methods. This will be the case, when we have to deal with complex eigenvalues.
- Main thrust of this section is to compute eigenvalues and eigenvectors.

Sample I: Ex 17

Find the eigenvalues and the corresponding eigenvector of

$$\mathbf{A} = \begin{pmatrix} 3 & -2 \\ 4 & -1 \end{pmatrix} \qquad \text{Use Matlab } \mathbf{eig}[V, D]$$

Analytically: The characteristic equation:

$$|\mathbf{A} - \lambda \mathbf{I}| = \begin{vmatrix} 3 - \lambda & -2 \\ 4 & -1 - \lambda \end{vmatrix} = 0$$

$$(3 - \lambda)(-1 - \lambda) + 8 = 0 \iff \lambda^2 - 2\lambda + 5 = 0$$
Eigenvalues are $\lambda = 1 \pm 2i$

Eigenvectors for $\lambda = 1 + 2i$

To compute an eigenvector $\lambda = 1 + 2i$, we solve $(\mathbf{A} - \lambda I)\mathbf{x} = \mathbf{0}$, which is

$$\begin{pmatrix} 3 - (1+2i) & -2 \\ 4 & -1 - (1+2i) \end{pmatrix} \begin{pmatrix} x_1 \\ x_2 \end{pmatrix} = \begin{pmatrix} 0 \\ 0 \end{pmatrix}$$
$$\begin{pmatrix} 2-2i & -2 \\ 4 & -2-2i \end{pmatrix} \begin{pmatrix} x_1 \\ x_2 \end{pmatrix} = \begin{pmatrix} 0 \\ 0 \end{pmatrix}$$
$$\begin{cases} (2-2i)x_1 - 2x_2 = 0 \\ 4x_1 - (2+2i)x_2 = 0 \end{cases} \Longrightarrow \begin{cases} (1-i)x_1 - x_2 = 0 \\ 2x_1 - (1+i)x_2 = 0 \end{cases}$$

Subtracting 1+i-times the first equation from the second, we get

$$\begin{cases} (1-i)x_1 - x_2 = 0 \\ 0 = 0 \end{cases} \implies \begin{cases} (1-i)x_1 - x_2 = 0 \\ x_2 = (1-i)x_1 \end{cases}$$

Taking $x_1 = 1$, an eigenvector for $\lambda = 1 + 2i$, is

$$\mathbf{x} = \begin{pmatrix} x_1 \\ x_2 \end{pmatrix} = \begin{pmatrix} 1 \\ 1 - i \end{pmatrix} \tag{7}$$

Eigenvectors for $\lambda = 1 - 2i$

- An eigenvectors for $\lambda = 1 2i$ can be computed, as in the case of its conjugate 1 + 2i.
- ▶ Alternately, An eigenvectors for $\lambda = 1 2i$ is the conjugate of (7):

$$\mathbf{x} = \left(\begin{array}{c} x_1 \\ x_2 \end{array}\right) = \left(\begin{array}{c} 1 \\ 1+i \end{array}\right)$$

Sample II: Ex 20

Find the eigenvalues and the corresponding eigenvector of

$$\mathbf{A} = \begin{pmatrix} 1 & \sqrt{3} \\ \sqrt{3} & -1 \end{pmatrix}$$
. Use Matlab $eig[V, D]$

The characteristic equation:

$$|\mathbf{A} - \lambda \mathbf{I}| = \begin{vmatrix} 1 - \lambda & \sqrt{3} \\ \sqrt{3} & -1 - \lambda \end{vmatrix} = 0$$
 $(1 - \lambda)(-1 - \lambda) - 3 = 0 \iff \lambda^2 - 4 = 0$
Eigenvalues are $\lambda = 2, -2$

Eigenvectors for $\lambda = 2$

For $\lambda = 2$, solve $(\mathbf{A} - \lambda I)\mathbf{x} = \mathbf{0}$, which is

$$\begin{pmatrix} 1-2 & \sqrt{3} \\ \sqrt{3} & -1-2 \end{pmatrix} \begin{pmatrix} x_1 \\ x_2 \end{pmatrix} = \begin{pmatrix} 0 \\ 0 \end{pmatrix}$$
$$\begin{pmatrix} -1 & \sqrt{3} \\ \sqrt{3} & -3 \end{pmatrix} \begin{pmatrix} x_1 \\ x_2 \end{pmatrix} = \begin{pmatrix} 0 \\ 0 \end{pmatrix}$$
$$\begin{cases} -x_1 + \sqrt{3}x_2 = 0 \\ \sqrt{3}x_1 - 3x_2 = 0 \end{cases} \Longrightarrow \begin{cases} x_1 = \sqrt{3}x_2 \\ 0 = 0 \end{cases}$$

The 2^{nd} -line is obtained by adding $\sqrt{3}$ -times the first equation to the second.

Taking $x_2 = 1$, an eigenvector for $\lambda = 2$, is

$$\mathbf{x} = \begin{pmatrix} x_1 \\ x_2 \end{pmatrix} = \begin{pmatrix} \sqrt{3} \\ 1 \end{pmatrix} \tag{8}$$

Since $\lambda = 2$ has multiplicity one, we expect only one linearly independent eigenvector for $\lambda = 2$.

Eigenvectors for $\lambda = -2$

For $\lambda = -2$, solve $(\mathbf{A} - \lambda I)\mathbf{x} = \mathbf{0}$, which is

$$\begin{pmatrix} 1+2 & \sqrt{3} \\ \sqrt{3} & -1+2 \end{pmatrix} \begin{pmatrix} x_1 \\ x_2 \end{pmatrix} = \begin{pmatrix} 0 \\ 0 \end{pmatrix}$$
$$\begin{pmatrix} 3 & \sqrt{3} \\ \sqrt{3} & 1 \end{pmatrix} \begin{pmatrix} x_1 \\ x_2 \end{pmatrix} = \begin{pmatrix} 0 \\ 0 \end{pmatrix}$$
$$\begin{cases} 3x_1 + \sqrt{3}x_2 = 0 \\ \sqrt{3}x_1 + x_2 = 0 \end{cases} \Longrightarrow \begin{cases} 0 = 0 \\ x_2 = -\sqrt{3}x_1 \end{cases}$$

The 1st-line is obtained by subtracting $\sqrt{3}$ -times the scond equation to the first.

Taking $x_1 = 1$, an eigenvector for $\lambda = -2$, is

$$\mathbf{x} = \begin{pmatrix} x_1 \\ x_2 \end{pmatrix} = \begin{pmatrix} 1 \\ -\sqrt{3} \end{pmatrix} \tag{9}$$

Since $\lambda = -2$ has multiplicity one, we expect only one linearly independent eigenvector for $\lambda = -2$.

Sample III: Ex 23

Find the eigenvalues and the corresponding eigenvector of

$$\mathbf{A} = \begin{pmatrix} 3 & 2 & 2 \\ 1 & 4 & 1 \\ -2 & -4 & -1 \end{pmatrix}. \quad \text{Use Matlab } \mathbf{eig}[V, D]$$

Analytically: The characteristic equation:

$$|\mathbf{A} - \lambda \mathbf{I}| = \begin{vmatrix} 3 - \lambda & 2 & 2 \\ 1 & 4 - \lambda & 1 \\ -2 & -4 & -1 - \lambda \end{vmatrix} = 0$$

$$(3-\lambda) \begin{vmatrix} 4-\lambda & 1 \\ -4 & -1-\lambda \end{vmatrix} - 2 \begin{vmatrix} 1 & 1 \\ -2 & -1-\lambda \end{vmatrix} + 2 \begin{vmatrix} 1 & 4-\lambda \\ -2 & -4 \end{vmatrix} = 0$$
$$-\lambda^{3} + 6\lambda^{2} - 11\lambda + 6 = 0 \Longrightarrow$$
$$-\lambda^{2}(\lambda - 1) + 5\lambda(\lambda - 1) - 6(\lambda - 1) = -(\lambda - 1)(\lambda^{2} - 5\lambda + 6) = 0 \Longrightarrow$$
$$-(\lambda - 1)(\lambda - 2)(\lambda - 3) = 0 \Longrightarrow \lambda = 1, 2, 3$$

are the eigenvalues of A.

Eigenvectors for $\lambda = 1$

For $\lambda = 1$, solve $(\mathbf{A} - \lambda I)\mathbf{x} = \mathbf{0}$, which is

$$\begin{pmatrix} 3-1 & 2 & 2 \\ 1 & 4-1 & 1 \\ -2 & -4 & -1-1 \end{pmatrix} \begin{pmatrix} x_1 \\ x_2 \\ x_3 \end{pmatrix} = \begin{pmatrix} 0 \\ 0 \\ 0 \end{pmatrix}$$

$$\begin{pmatrix} 2 & 2 & 2 \\ 1 & 3 & 1 \\ -2 & -4 & -2 \end{pmatrix} \begin{pmatrix} x_1 \\ x_2 \\ x_3 \end{pmatrix} = \begin{pmatrix} 0 \\ 0 \\ 0 \end{pmatrix} \tag{10}$$

$$\begin{cases} 2x_1 + 2x_2 + 2x_3 = 0 \\ x_1 + 3x_2 + x_3 = 0 \\ -2x_1 - 4x_2 - 2x_3 = 0 \end{cases} \implies \begin{cases} x_1 + x_2 + x_3 = 0 \\ x_1 + 3x_2 + x_3 = 0 \\ x_1 + 2x_2 + x_3 = 0 \end{cases}$$

Subtracting first equation from second and third:

$$\begin{cases} x_1 + x_2 + x_3 = 0 \\ 2x_2 = 0 \\ x_2 = 0 \end{cases} \implies \begin{cases} x_1 = -x_3 \\ x_2 = 0 \\ x_2 = 0 \end{cases}$$

Taking $x_3 = 1$, an eigenvector for $\lambda = 1$, is

$$\mathbf{x} = \begin{pmatrix} x_1 \\ x_2 \\ x_3 \end{pmatrix} = \begin{pmatrix} -1 \\ 0 \\ 1 \end{pmatrix} \tag{11}$$

- Since $\lambda = 1$ has multiplicity one, we expect only one linearly independent eigenvector for $\lambda = 1$.
- ▶ It would be much simpler, if we use TI-84 (rref) to solve (10).

Eigenvectors for $\lambda = 2$

For $\lambda = 2$, solve $(\mathbf{A} - \lambda I)\mathbf{x} = \mathbf{0}$, which is

$$\begin{pmatrix} 3-2 & 2 & 2 \\ 1 & 4-2 & 1 \\ -2 & -4 & -1-2 \end{pmatrix} \begin{pmatrix} x_1 \\ x_2 \\ x_3 \end{pmatrix} = \begin{pmatrix} 0 \\ 0 \\ 0 \end{pmatrix}$$
$$\begin{pmatrix} 1 & 2 & 2 \\ 1 & 2 & 1 \\ -2 & -4 & -3 \end{pmatrix} \begin{pmatrix} x_1 \\ x_2 \\ x_3 \end{pmatrix} = \begin{pmatrix} 0 \\ 0 \\ 0 \end{pmatrix} \tag{12}$$

Use rref in TI-84:

$$\left(\begin{array}{ccc} 1 & 2 & 0 \\ 0 & 0 & 1 \\ 0 & 0 & 0 \end{array}\right) \left(\begin{array}{c} x_1 \\ x_2 \\ x_3 \end{array}\right) = \left(\begin{array}{c} 0 \\ 0 \\ 0 \end{array}\right) \implies$$

$$\begin{cases} x_1 + 2x_2 = 0 \\ x_3 = 0 \\ 0 = 0 \end{cases} \implies \begin{cases} x_1 = -2x_2 \\ x_3 = 0 \\ 0 = 0 \end{cases}$$

Taking $x_1 = 1$, an eigenvector for $\lambda = 2$, is

$$\mathbf{x} = \begin{pmatrix} x_1 \\ x_2 \\ x_3 \end{pmatrix} = \begin{pmatrix} -2 \\ 1 \\ 0 \end{pmatrix}$$

Eigenvectors for $\lambda = 3$

For $\lambda = 3$, solve $(\mathbf{A} - \lambda I)\mathbf{x} = \mathbf{0}$, which is

$$\begin{pmatrix} 3-3 & 2 & 2 \\ 1 & 4-3 & 1 \\ -2 & -4 & -1-3 \end{pmatrix} \begin{pmatrix} x_1 \\ x_2 \\ x_3 \end{pmatrix} = \begin{pmatrix} 0 \\ 0 \\ 0 \end{pmatrix}$$
$$\begin{pmatrix} 0 & 2 & 2 \\ 1 & 1 & 1 \\ -2 & -4 & -4 \end{pmatrix} \begin{pmatrix} x_1 \\ x_2 \\ x_3 \end{pmatrix} = \begin{pmatrix} 0 \\ 0 \\ 0 \end{pmatrix} \tag{13}$$

Use rref in TI-84:

$$\begin{pmatrix} 1 & 0 & 0 \\ 0 & 1 & 1 \\ 0 & 0 & 0 \end{pmatrix} \begin{pmatrix} x_1 \\ x_2 \\ x_3 \end{pmatrix} = \begin{pmatrix} 0 \\ 0 \\ 0 \end{pmatrix} \implies$$

$$\begin{cases} x_1 = 0 \\ x_2 + x_3 = 0 \\ 0 = 0 \end{cases} \implies \begin{cases} x_1 = 0 \\ x_2 = -x_3 \\ 0 = 0 \end{cases}$$

Taking $x_3 = 1$, an eigenvector for $\lambda = 3$, is

$$\mathbf{x} = \begin{pmatrix} x_1 \\ x_2 \\ x_3 \end{pmatrix} = \begin{pmatrix} 0 \\ -1 \\ 1 \end{pmatrix}$$

§7.3 Assignments and Homework

- ► Read Example 4-5 (They are helpful).
- ► Homework: §7.3 Se the Homework Site!