Chapter 6: The Laplace Transform §6.2 Solutions of Initial Value Problems

Satya Mandal, KU

1 April 2018

Goals

- The Goal of this section is to use Laplace Transform to solve Initial value problems, in second order linear ODE (as in Chapter 3).
- This way, the methods may become more algebraic.
- Two theorem that follows would be instrumental for this method.

Theorem 6.2.1

Theorem 6.2.1: Suppose f is a continuous function on an interval $0 \leq t \leq \alpha$.

- Assume f^{\prime} is and is piecewise continuous on the interval $0 \leq t \leq \alpha$.
- Assume there are constants κ, λ, β, with $\kappa>0, \beta>0$, such that

$$
|f(t)| \leq \kappa e^{\lambda t} \quad \text { for all } \quad t \geq \beta
$$

(In words, f has (at most) exponential growth.)
Then, $\quad \mathcal{L}\left\{f^{\prime}(t)\right\}=s \mathcal{L}\{f(t)\}-f(0)$

Corollary 6.2.2

Corollary 6.2.2: Suppose f is a continuous function on an interval $0 \leq t \leq \alpha$. Assume $f^{\prime}, f^{(2)}, \ldots, f^{(n-1)}$ are continuous, and $f^{(n)}$ is piecewise continuous on the interval $0 \leq t \leq \alpha$. Assume there are constants κ, λ, β, with $\kappa>0, \beta>0$,

$$
\ni \quad\left|f^{(i)}(t)\right| \leq \kappa e^{\lambda t} \quad \text { for all } \quad i=0,1, \ldots, n \text { and } t \geq \beta
$$

Then, $\mathcal{L}\left\{f^{(n)}(t)\right\}=$

$$
\begin{equation*}
s^{n} \mathcal{L}\{f(t)\}-s^{n-1} f(0)-\cdots-s f^{(n-2)}(0)-f^{(n-1)}(0) \tag{2}
\end{equation*}
$$

- The cases $n=1$ (1) and $n=2$ will be used more frequently:
- $n=1$ case:

$$
\begin{equation*}
\text { Then, } \quad \mathcal{L}\left\{f^{\prime}(t)\right\}=s \mathcal{L}\{f(t)\}-f(0) \tag{3}
\end{equation*}
$$

- $n=2$ case:

$$
\begin{equation*}
\mathcal{L}\left\{f^{(2)}(t)\right\}=s^{2} \mathcal{L}\{f(t)\}-s f(0)-f^{\prime}(0) \tag{4}
\end{equation*}
$$

1-1 Correspondence

Laplace Transformation can be to solve IVP, due to the following:

- Suppose f, g are two continuous functions on an interval.

$$
\begin{equation*}
\text { Then, } \quad \mathcal{L}\{f(t)\}=\mathcal{L}\{g(t)\} \quad \Longrightarrow \quad f=g \tag{5}
\end{equation*}
$$

- If $\mathcal{L}\{f(t)\}=F(s)$, we write $\mathcal{L}^{-1}\{F(s)\}=f$, to be called the inverse Laplace transform of g. Further, inverse Laplace transform is linear, in the sense, for $\alpha, \beta \in \mathbb{R}$,

$$
\mathcal{L}^{-1}\{\alpha F(s)+\beta G(s)\}=\alpha \mathcal{L}^{-1}\{F(s)\}+\beta \mathcal{L}^{-1}\{G(s)\}
$$

- Solving: Charts of Laplace Transform and Inverse Laplace Transforms are available, in the internet and any standard Textbook. Download one and use for this section.
- To solve initial value problems, when $y(0)=y_{0}$, $y^{\prime}(0)=y_{0}^{\prime}$ are given, we compute the Laplace transform $\mathcal{L}(\{\varphi(t)\}$ of the solution $y=\varphi(t)$ and use the chart to compare.

Example 1

Compute the Inverse Laplace Transform of $F(s)=\frac{3 s-6}{s^{2}-4 s+13}$.

- We have

$$
F(s)=3 \frac{s-2}{(s-2)^{2}+3^{2}}
$$

- By Formula chart:

$$
F(s)=3 \frac{s-2}{(s-2)^{2}+3^{2}}=3 \mathcal{L}\left\{e^{2 t} \cos 3 t\right\}=\mathcal{L}\left\{3 e^{2 t} \cos 3 t\right\}
$$

- So,

$$
\mathcal{L}^{-1}\{F(s)\}=3 e^{2 t} \cos 3 t
$$

Example 2

Compute the Inverse Laplace Transform of $F(s)=\frac{-1-2 s}{s^{2}+4 s+13}$.

- We have

$$
\begin{aligned}
& F(s)=\frac{-1-2 s}{s^{2}+4 s+13}=\frac{-1-2 s}{(s+2)^{2}+3^{2}} \\
& \quad=\frac{3}{(s+2)^{2}+3^{2}}-2 \frac{s+2}{(s+2)^{2}+3^{2}}
\end{aligned}
$$

- By Formula Chart:

$$
\begin{aligned}
F(s) & =\mathcal{L}\left\{e^{-2 t} \sin 3 t\right\}-2 \mathcal{L}\left\{e^{-2 t} \cos 3 t\right\} \\
& =\mathcal{L}\left\{e^{-2 t} \sin 3 t-2 e^{-2 t} \cos 3 t\right\}
\end{aligned}
$$

- So,

$$
\mathcal{L}^{-1}\{F(s)\}=e^{-2 t} \sin 3 t-2 e^{-2 t} \cos 3 t
$$

Example 3

Compute the Inverse Laplace Transform of

$$
F(s)=\frac{5 s^{3}-7 s^{2}-4 s}{\left(s^{2}+2 s+5\right)\left(s^{2}-2 s+2\right)} .
$$

- The method of partial fractions is used frequently, in this section. Review all these examples.

Solution

Use method of partial fractions:

$$
\begin{gathered}
F(s)=\frac{5 s^{3}-7 s^{2}-4 s}{\left(s^{2}+2 s+5\right)\left(s^{2}-2 s+2\right)} . \\
=\frac{a s+b}{s^{2}+2 s+5}+\frac{c s+d}{s^{2}-2 s+2} \\
=\frac{(a s+b)\left(s^{2}-2 s+2\right)+(c s+d)\left(s^{2}+2 s+5\right)}{\left(s^{2}+2 s+5\right)\left(s^{2}-2 s+2\right)}= \\
\frac{s^{3}(a+c)+s^{2}(-2 a+b+2 c+d)+s(2 a-2 b+5 c+2 d)+(2 b+}{\left(s^{2}+2 s+5\right)\left(s^{2}-2 s+2\right)}
\end{gathered}
$$

$$
\left\{\begin{array}{l}
a+c=5 \\
-2 a+b+2 c+d=-7 \\
2 a-2 b+5 c+2 d=-4 \\
2 b+5 d=0
\end{array}\right.
$$

- In matrix form:

$$
\left(\begin{array}{cccc}
1 & 0 & 1 & 0 \\
-2 & 1 & 2 & 1 \\
2 & -2 & 5 & 2 \\
0 & 2 & 0 & 5
\end{array}\right)\left(\begin{array}{l}
a \\
b \\
c \\
d
\end{array}\right)=\left(\begin{array}{c}
5 \\
-7 \\
-4 \\
0
\end{array}\right)
$$

- Use TI84 (rref):

$$
\left(\begin{array}{llll}
1 & 0 & 0 & 0 \\
0 & 1 & 0 & 0 \\
0 & 0 & 1 & 0 \\
0 & 0 & 0 & 1
\end{array}\right)\left(\begin{array}{l}
a \\
b \\
c \\
d
\end{array}\right)=\left(\begin{array}{c}
5 \\
5 \\
0 \\
-2
\end{array}\right)
$$

- So,

$$
a=5, \quad b=5 \quad c=0 \quad d=-2
$$

- So,

$$
\begin{aligned}
& F(s)=\frac{5 s+5}{s^{2}+2 s+5}-\frac{2}{s^{2}-2 s+2} \\
& =5 \frac{(s+1)}{(s+1)^{2}+4}-2 \frac{1}{(s-1)^{2}+1}
\end{aligned}
$$

- By Formula 10, 9 :

$$
\begin{gathered}
F(s)=5 \mathcal{L}\left\{e^{-t} \cos 2 t\right\}-2 \mathcal{L}\left\{e^{t} \sin t\right\} \\
F(s)=\mathcal{L}\left\{5 e^{-t} \cos 2 t-2 e^{t} \sin t\right\}
\end{gathered}
$$

- So,

$$
\mathcal{L}^{-1}\{F(s)\}=5 e^{-t} \cos 2 t-2 e^{t} \sin t
$$

Example 4

Solve the IVP

$$
y^{\prime \prime}-y^{\prime}-6 y=0 ; \quad y(0)=1, y^{\prime}(0)=0
$$

- Let $y=\varphi(t)$ be the solution, and write

$$
Y(s)=\mathcal{L}\{y\}=\mathcal{L}\{\varphi\}
$$

- Apply Laplace transform to the equation:

$$
\mathcal{L}\left\{y^{\prime \prime}-y^{\prime}-6 y\right\}=\mathcal{L}\{0\} \Longrightarrow \mathcal{L}\left\{y^{\prime \prime}\right\}-\mathcal{L}\left\{y^{\prime}\right\}-6 \mathcal{L}\{y\}=0
$$

By (3), (4):

$$
\begin{gathered}
{\left[s^{2} Y(s)-s y(0)-y^{\prime}(0)\right]-[s Y(s)-y(0)]-6 Y(s)=0} \\
{\left[s^{2} Y(s)-s\right]-[s Y(s)-1]-6 Y(s)=0} \\
Y(s)=\frac{s-1}{s^{2}-s-6}=\frac{s-1}{(s+2)(s-3)}=\frac{a}{s+2}+\frac{b}{s-3} \Longrightarrow \\
Y(s)=\frac{3}{5(s+2)}+\frac{2}{5(s-3)}
\end{gathered}
$$

Use the Chart $Y(s)=\frac{3}{5} \mathcal{L}\left(e^{-2 t}\right)(s)+\frac{2}{5} \mathcal{L}\left(e^{3 t}\right)(s) \quad s>3$

$$
y=\mathcal{L}^{-1}\{Y(s)\}=\frac{3}{5} e^{-2 t}+\frac{2}{5} e^{3 t}
$$

Example 5

Solve the IVP

$$
y^{\prime \prime}-6 y^{\prime}+9 y=0 ; \quad y(0)=1, y^{\prime}(0)=1
$$

- Let $y=\varphi(t)$ be the solution. Write $Y(s)=\mathcal{L}\{y\}$.
- Apply Laplace transform to the equation:

$$
\mathcal{L}\left\{y^{\prime \prime}-6 y^{\prime}+9 y\right\}=\mathcal{L}\{0\} \Longrightarrow \mathcal{L}\left\{y^{\prime \prime}\right\}-6 \mathcal{L}\left\{y^{\prime}\right\}+9 \mathcal{L}\{y\}=0
$$

By (3), (4):

$$
\begin{gathered}
{\left[s^{2} Y(s)-s y(0)-y^{\prime}(0)\right]-6[s Y(s)-y(0)]+9 Y(s)=0} \\
{\left[s^{2} Y(s)-s-1\right]-6[s Y(s)-1]+9 Y(s)=0} \\
Y(s)=\frac{s-5}{s^{2}-6 s+9}=\frac{s-5}{(s-3)^{2}}=\frac{1}{s-3}-2 \frac{1}{(s-3)^{2}}
\end{gathered}
$$

Use the Chart $Y(s)=\mathcal{L}\left\{e^{3 t}\right\}-\mathcal{L}\left\{t e^{3 t}\right\}=\mathcal{L}\left\{e^{3 t}-t e^{3 t}\right\}$
So,

$$
y=\mathcal{L}^{-1}\{Y(s)\}=e^{3 t}-t e^{3 t}
$$

Example 6

Solve the IVP
$y^{(4)}-9 y=0 ; \quad y(0)=1, y^{\prime}(0)=0, y^{\prime \prime}(0)=3, y^{(3)}(0)=0$

- Let $y=\varphi(t)$ be the solution. Write $Y(s)=\mathcal{L}\{y\}$.
- Apply Laplace transform to the equation:

$$
\mathcal{L}\left\{y^{(4)}-9 y\right\}=\mathcal{L}\{0\} \Longrightarrow \mathcal{L}\left\{y^{(4)}\right\}-9 \mathcal{L}\{y\}=0
$$

- By the theorem

$$
\begin{gathered}
{\left[s^{4} Y(s)-s^{3} y(0)-s^{2} y^{\prime}(0)-s y^{\prime \prime}(0)-y^{(3)}(0)\right]-9 Y(s)=0} \\
{\left[s^{4} Y(s)-s^{3}-3 s\right]-9 Y(s)=0} \\
Y(s)=\frac{s^{3}+3 s}{s^{4}-9}=\frac{s}{s^{2}-3}=\frac{a}{s-\sqrt{3}}+\frac{b}{s+\sqrt{3}}
\end{gathered}
$$

- So,

$$
\begin{aligned}
Y(s)=\frac{1}{2(s-\sqrt{3})} & +\frac{1}{2(s+\sqrt{3})}=\frac{1}{2} \mathcal{L}\left\{e^{\sqrt{3} t}\right\}+\frac{1}{2} \mathcal{L}\left\{e^{-\sqrt{3} t}\right\} \\
& =\mathcal{L}\left\{\frac{e^{\sqrt{3} t}+e^{-\sqrt{3} t}}{2}\right\}
\end{aligned}
$$

- So,

$$
y=\mathcal{L}^{-1}\{Y(s)\}=\frac{e^{\sqrt{3} t}+e^{-\sqrt{3} t}}{2}
$$

Example 7

Solve the IVP

$$
y^{\prime \prime}+9 y=\cos 2 t ; \quad y(0)=1, y^{\prime}(0)=0
$$

- Let $y=\varphi(t)$ be the solution. Write $Y(s)=\mathcal{L}\{y\}$.
- Apply Laplace transform to the equation:

$$
\mathcal{L}\left\{y^{\prime \prime}+9 y\right\}=\mathcal{L}\{\cos 2 t\} \Longrightarrow \mathcal{L}\left\{y^{\prime \prime}\right\}+9 \mathcal{L}\{y\}=\frac{s}{s^{2}+4}
$$

- By the theorem

$$
\begin{gathered}
s^{2} Y(s)-s y(0)-y^{\prime}(0)+9 Y(s)=\frac{s}{s^{2}+4} \Longrightarrow \\
s^{2} Y(s)-s+9 Y(s)=\frac{s}{s^{2}+4} \\
Y(s)=\frac{s^{3}+5 s}{\left(s^{2}+4\right)\left(s^{2}+9\right)}
\end{gathered}
$$

- Use partial fraction: Write

$$
\begin{gathered}
\frac{s^{3}+5 s}{\left(s^{2}+4\right)\left(s^{2}+9\right)}=\frac{a s+b}{s^{2}+4}+\frac{c s+d}{s^{2}+9} \\
\left\{\begin{array}{l}
a+c=1 \\
b+d=0 \\
9 a+4 c=5 \\
9 b+4 d=0
\end{array}\right.
\end{gathered}
$$

- In matrix form:

$$
\left(\begin{array}{llll}
1 & 0 & 1 & 0 \\
0 & 1 & 0 & 1 \\
9 & 0 & 4 & 0 \\
0 & 9 & 0 & 4
\end{array}\right)\left(\begin{array}{l}
a \\
b \\
c \\
d
\end{array}\right)=\left(\begin{array}{l}
1 \\
0 \\
5 \\
0
\end{array}\right)
$$

- Use TI84 (rref):

$$
\left(\begin{array}{llll}
1 & 0 & 0 & 0 \\
0 & 1 & 0 & 0 \\
0 & 0 & 1 & 0 \\
0 & 0 & 0 & 1
\end{array}\right)\left(\begin{array}{l}
a \\
b \\
c \\
d
\end{array}\right)=\left(\begin{array}{l}
.2 \\
0 \\
.8 \\
0
\end{array}\right)
$$

- So, $a=.2, b=0, c=.8, d=0$ and

$$
\begin{gathered}
Y(s)=.2 \frac{s}{s^{2}+4}+.8 \frac{s}{s^{2}+9}=.2 \mathcal{L}\{\cos 2 t\}+.8 \mathcal{L}\{\cos 3 t\} \\
Y(s)=\mathcal{L}\{.2 \cos 2 t+.8 \cos 3 t\}
\end{gathered}
$$

- So, the solution

$$
y=\mathcal{L}^{-1}(Y(s))=.2 \cos 2 t+.8 \cos 3 t
$$

Example 8

Consider the IVP:

$$
y^{\prime \prime}+13 y=\left\{\begin{array}{ll}
t & \text { if } 0 \leq t<1 \\
1 & \text { if } 1 \leq t \leq \infty
\end{array} \quad y(0)=0, y^{\prime}(0)=0\right.
$$

Let $y=\varphi(t)$ be the solution. Compute $Y(s)=\mathcal{L}\{y\}$.

- Also, write $g(t)= \begin{cases}t & \text { if } 0 \leq t<1 \\ 1 & \text { if } 1 \leq t \leq \infty\end{cases}$
- Apply Laplace transform to the equation:

$$
\mathcal{L}\left\{y^{\prime \prime}+13 y\right\}=\mathcal{L}\{g(t)\} \Longrightarrow \mathcal{L}\left\{y^{\prime \prime}\right\}+13 \mathcal{L}\{y\}=\mathcal{L}\{g(t)\}
$$

- Compute $\mathcal{L}\{g(t)\}$ by direct computation (We did a similar problem in §6.1):

$$
\begin{aligned}
& \mathcal{L}\{g(t)\}(s)=\int_{0}^{\infty} e^{-s t} g(t) d t=\int_{0}^{1} e^{-s t} t d t+\int_{1}^{\infty} e^{-s t} d t \\
&= \frac{1}{-s} \int_{0}^{1} t d e^{-s t}+\left[\frac{e^{-s t}}{-s}\right]_{t=1}^{\infty} \\
&=\frac{1}{-s}\left[\left[t e^{-s t}\right]_{t=0}^{1}-\int_{0}^{1} e^{-s t} d t\right]+\frac{e^{-s}}{s} \\
&= \frac{1}{-s}\left[e^{-s}+\left[\frac{e^{-s t}}{s}\right]_{t=0}^{1}\right]+\frac{e^{-s}}{s} \\
&=\frac{1}{-s} {\left[e^{-s}+\left[\frac{e^{-s}}{s}-\frac{1}{s}\right]\right]+\frac{e^{-s}}{s}=\frac{1-e^{-s}}{s^{2}} }
\end{aligned}
$$

- We have

$$
\begin{gathered}
\mathcal{L}\left\{y^{\prime \prime}\right\}+13 \mathcal{L}\{y\}=\mathcal{L}\{g(t)\} \Longrightarrow \\
s^{2} Y(s)-s y(0)-y^{\prime}(0)+13 Y(s)=\frac{1-e^{-s}}{s^{2}}
\end{gathered}
$$

- So,

$$
Y(s)=\frac{1-e^{-s}}{s^{2}\left(s^{2}+13\right)}
$$

