Name	
Student ID	

Information

1. Each problem, in either part, is worth 8 points.
2. During the In Class exam, you are allowed to consult this part.
3. For In Class Exam, you can bring a standard size paper with formulas.
4. Solve the IVP

$$
\frac{d y}{d t}+\frac{4 t^{3}}{1+t^{4}} y=\cos \left(5 t+t^{5}\right) \quad y(0)=\frac{1}{5}
$$

2. Give a general solution of the Homogeneous ODE

$$
\frac{d y}{d x}=\frac{x^{3}-3 x y^{2}}{y^{3}-3 x^{2} y}
$$

3. Give a general solution of the ODE, in the Bernoulli's form:

$$
\frac{d y}{d t}+y \cos t=y^{2} \sin t \cos t
$$

4. A body of mass m is ejected vertically upward, from earth. Reproduce the exposition given in the lecture notes, and compute the escape velocity of the body.
5. Consider the ODE

$$
\left(y \cos x+2 x e^{y}\right)+\left(\sin x+x^{2} e^{y}-1\right) \frac{d y}{d x}=0
$$

Prove that the equation is EXACT and give a general solution of this equation.
6. Consider the ODE

$$
\frac{d y}{d t}=(y+1)(y-1)(-3+\cos t)
$$

(a) Determine the Equilibrium Solutions.
(b) Classify them as Stable or Unstable Equilibrium. (Avoid analytic solution.)
7. Consider the initial value problem $y^{\prime}=\frac{4-t y}{1+y^{2}}, y(0)=-2$. Use Euler method to approximate y ate $t=1$, with $h=.025$. (Submit the table of output from MS Excel or Matlab).
8. State and interpret the second Law of Kepler on planetary motion, to derive a differential equation of angular motion of the equation, and solve. Consult the Wiki site. Use polar coordinates:

(a) First, state Kepler's second Law. Then, interpret it to derive the differential equation.
(b) Consider the equation of the orbit of the planet $\frac{x^{2}}{a^{2}}+\frac{y^{2}}{b^{2}}=1$. Write $r(\theta)$ in terms of a, b, θ. Eliminate r from the second equation and solve (numerically, if analytic solution is not possible).
(c) Write down equatuion of the angular velocity θ, if possible.

Guidance: Look at the Wiki site and derive the differential equation

$$
\frac{d A}{d t}=\frac{r^{2}}{2} \frac{d \theta}{d t}
$$

Write $e=\sqrt{a^{2}-b^{2}}$. Recall, $(0,-e)$ and $(0,-e)$ are the foci.
In our diagram, $(0,-e)$ is the position of the star.
The origin of the new polar coordinate system is at the star $(-e, 0)$.
The polar coordinate of the planet is $\left(r \cos \theta-\sqrt{a^{2}-b^{2}}, r \sin \theta\right)=(r \cos \theta-e, r \sin \theta)$. So,

$$
\begin{gathered}
\frac{(r \cos \theta-e)^{2}}{a^{2}}+\frac{r^{2} \sin ^{2} \theta}{b^{2}}=1 \Longrightarrow \frac{b^{2}\left(r^{2} \cos ^{2} \theta-2 e r \cos \theta+e^{2}\right)+a^{2} r^{2} \sin ^{2} \theta}{a^{2} b^{2}}=1 \Longrightarrow \\
r^{2}\left(b^{2} \cos ^{2} \theta+a^{2} \sin ^{2} \theta\right)-r\left(2 e b^{2} \cos \theta\right)+b^{2} e^{2}-a^{2} b^{2}=0 \Longrightarrow \\
r^{2}\left(a^{2}-e^{2} \cos ^{2} \theta\right)-r\left(2 e b^{2} \cos \theta\right)+b^{4}=0 \Longrightarrow \\
r=\frac{2 e b^{2} \cos \theta \pm \sqrt{4 e^{2} b^{4} \cos ^{2} \theta-4 b^{4}\left(a^{2}-e^{2} \cos ^{2} \theta\right)}}{2\left(a^{2}-e^{2} \cos ^{2} \theta\right)}=\frac{2 e b^{2} \cos \theta \pm 2 a b^{2}}{2\left(a^{2}-e^{2} \cos ^{2} \theta\right)} \\
=\frac{b^{2}}{a \pm e \cos \theta}
\end{gathered}
$$

This is correct, checked!
Note $r(0)=a+e$. This settles that

$$
r=r(\theta)=\frac{b^{2}}{a-e \cos \theta}
$$

So,

$$
\kappa=\frac{d A}{d t}=\frac{r^{2}}{2} \frac{d \theta}{d t}=\frac{b^{4}}{2(a-e \cos \theta)^{2}} \frac{d \theta}{d t}
$$

So,

$$
\frac{2 \kappa t}{b^{4}}=\int \frac{1}{(a-e \cos \theta)^{2}} d \theta
$$

