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1 §4.1 Higher Order ODE

General Overview

I want you to read this section (§ 4.1) from the Lecture notes.
We give usual definitions of Higher Orders ODEs.
Other than that we make a point that the theory of higher order (linear)
ODEs are remarkably similar to that of second order linear ODEs.
For this reason, many Instructors and Textbooks skip this chapter.
I decided to provide a flavor.

2 4.2 Linear Homogeneous ODE with constant

coefficients

As in the last Chapter 3, after discussion theory of Linear ODEs, we solve
Linear ODEs with constant coefficients.

1. Definition A Homogeneous Linear ODE with constant coefficient, is
defined as follws:

L(y) = an
dny

dtn
+ an−1

dn−1y

dtn−1
+ · · ·+ a1

dy

dt
+ a0y = 0 (1)

with a0, a1, · · · , an ∈ R and an 6= 0.
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2. As in we did for 2nd-order ODEs, by substituting y = ert in (1) we get

L(ert) = ert
(
anr

n + an−1r
n−1 + · · ·+ a1r + a0

)
= 0

3. It follows, y = ert is a solution of (1) if and only if

anr
n + an−1r

n−1 + · · ·+ a1r + a0 = 0 (2)

4. So, solving the ODE (1) reduces to solving the polynomial equation
(2). This Equation (2) is called the characteristic equation (CE) of (1).

The polynomial ρ(r) := anr
n + an−1r

n−1 + · · ·+ a1r + a0 (3)
is called the characteristic polynomial of (1). So, the characteristic
equation can be written as

ρ(r) = 0

5. From Fundamental Theorem of Algebra (which I mentioned in class),
we can write

ρ(r) = (r − r1)k1(r − r2)k2 · · · (r − rm)km with ki ≥ 1,

k1+ · · ·+km = n, where r1, . . . , rm ∈ C are distinct (with some ri ∈ R).

6. If r1 is real, then r1 spits out the following k1 solutions of (1):
y = er1t

y = ter1t

y = t2er1t

· · ·
y = tk1−1er1t

This can be checked by substitution in (1).

Likewise, for any real root ri.

7. If r1 is complex (i.e. r1 /∈ R), then its conjugate r1 is also a root of ρ(r).

Without loss of generality r2 = r1. The pair
{
r1 = λ1 + µ1i
r1 = r2 = λ1 − µ2i

spits out 2k1 solutions of (1):
y = eλ1t cosµ1t y = eλ1t sinµ1t
y = teλ1t cosµ1t y = teλ1t sinµ1t
y = t2eλ1t cosµ1t y = t2eλ1t sinµ1t
· · · · · ·
y = tk1−1eλ1t cosµ1t y = tk1−1eλ1t sinµ1t
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Likewise, for each pair of complex roots ri, ri of ρ(r).

8. The process explained in the above, give total of n real solutions (1):

y = y1(t), y = y2, . . . , y = yn

9. The list of n solutions above form a Fundamental Set of Solutions of
(1), which can be checked by checking that the Wronskian (see (11)

W (y1, . . . , yn) 6= 0

So, the general solution of (1) is:

y = c1y1 + c2y2 + · · ·+ cnyn where ci ∈ R (4)

10. Solving Examples: Unlike quadratic formula, there no formula to
compute the roots of polynomials ρ(r) with deg(ρ(r)) ≥ 3.
Main trick to solve polynomial equation ρ(r) = 0 is, first guess a root
α and factor ρ(r) = (r − α)p(r).

11. We solve a few simple problems, in this section, only to provide a flavor.
It seems I am only copying and pasting from the lecture notes, which
makes no further sense. So, read all four examples from the lecture
notes.
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3 §4.3 Nonhomogeneous Linear ODE

I am just thinking what would I have done, if I were lecturing in Snow 301.
When I have extra comments I do that. Otherwise, I mostly read from my
lecture notes.

1. No homework was assigned on this section. We only gave general
overview of how to solve Higher Order Linear equations, and this is
remarkably similar to 2nd-order linear ODEs.

2. A Nonhomogeneous Linear ODE of order n can be written as:

L(y) = g(t) with g(t) 6= 0, where (5)
L := dn

dtn
+ pn−1(t)

dn−1

dtn−1 + · · ·+ p1(t)
d
dt
+ p0(t)

OR

L := Pn(t)
dn

dtn
+ Pn−1(t)

dn−1

dtn−1 + · · ·+ P1(t)
d
dt
+ P0(t)

(6)

We usually assume that pi(t), Pi(t), g(t) are continuous on an open
interval I.

3. The Homogeneous Linear Equation corresponding to (5) or (8) is

L(y) = 0 (7)

4. Theorem 4.3.2 A Let Yp be a solution of (5) L(y) = g(t), to be called a
"particular solution". As was for the 2nd-order ODEs, any solution of
Y of (5) can be written as

Y = Yp + yh where yh is a solutions of (7)

3.1 With Constant Coefficients

In Chapter 3, after introducing general theory of 2nd-order Linear ODEs, we
solve Linear ODEs with constant coefficients. We do the same here.
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1. Definition A nonHomogeneous Linear ODE (5) is said to have con-
stant coefficient, if pi(t), Pi(t) are constant functions. So, a linear Ho-
mogeneous ODE, of order n, with constant coefficients looks like

L(y) = an
dny

dtn
+ an−1

dn−1y

dtn−1
+ · · ·+ a1

dy

dt
+ a0y = g(t) (8)

with a0, a1, · · · , an ∈ R, an 6= 0 and g(t) 6= 0.

2. Theorem 4.3.2 B Let Yp be a solution of (8) L(y) = g(t), to be called
a "particular solution". So, the general solution of Y of (8) can be
written as

Y = Yp + yh where yh is a solutions of (7)

Now, let y = y1, y = y2, . . . , y = yn be a fundamental set of solutions
(7) L(y) = 0. Then,{

yh =
∑n

i=1 ciyi(t) where c1, c2, . . . , cn are arbitrary constants.
Y = Yp + yh = Yp + (

∑n
i=1 ciyi(t))

3. In § 4.2 we provided a flavor of how to solve homogeneous liner equa-
tions. So, we need to provide a way to compute a particular solution.
As in chapter 3, we comment of two methods:

(a) Method of Variation of Parameters.

(b) Method of Undetermined Coefficients.

We will give formula for the fist method.

3.2 Method of Variation of Parameters

Theorem 4.3.3: Consider former of the two forms of the nonhomogeneous
Linear ODE (5) or (8), of order n. That means,{

L(y) = g(t), with

L := dn

dtn
+ pn−1(t)

dn−1

dtn−1 + · · ·+ p1(t)
d
dt
+ p0(t)

(9)

1. Assume pi(t), g(t) are continuous on an open interval I.
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2. Let y = y1, y = y2, . . . , y = yn be a fundamental set of solutions of the
homogeneous ODE L(y) = 0.

Then: A particular solution of (9) is given by

Y =
n∑
i=1

yi(t)

∫
ωi(t)g(t)dt

W (t)
where (10)

(a) W (t) := W (y1, y2, . . . , yn) is Wronskian of y1, y2, . . . , yn.

(b) And, ωi(t) denotes the cofactor of y
(n−1)
i in the Wronskian matrix.

where

W (t) =

∣∣∣∣∣∣∣∣∣∣

y1(t) y2(t) y3 · · · yn(t)
y′1(t) y′2(t) y3 · · · y′n(t)

y
(2)
1 (t) y

(2)
2 (t) y

(2)
3 · · · y

(2)
n (t)

· · · · · · · · · · · · · · ·
y
(n−1)
1 (t) y

(n−1)
2 (t) y

(n−1)
3 · · · y

(n−1)
n (t)

∣∣∣∣∣∣∣∣∣∣
t ∈ I (11)
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