Preview Basis More Problems Homework

Vector Spaces §4.5 Basis and Dimension

Satya Mandal, KU

October 23

Satya Mandal, KU Vector Spaces §4.5 Basis and Dimension

イロト イポト イヨト イヨト

Discuss two related important concepts:

- Define Basis of a Vectors Space V.
- Define Dimension $\dim(V)$ of a Vectors Space V.

イロト イポト イヨト イヨト

Basis

Let V be a vector space (over \mathbb{R}). A set S of vectors in V is called a basis of V if

- 1. V = Span(S) and
- 2. S is linearly independent.
- ► In words, we say that S is a basis of V if S in linealry independent and if S spans V.
- First note, it would need a proof (i.e. it is a theorem) that any vector space has a basis.

- 4 回 ト 4 ヨ ト 4 ヨ ト

- ► The definition of basis does not require that *S* is a finite set.
 - However, we will only deal with situations when $S = {\mathbf{v_1}, \mathbf{v_2}, \dots, \mathbf{v_n}}$ is a finite set.
 - If V has a finite basis S = {v₁, v₂, ..., vₙ}, then we say that V is finite dimensional. Otherwise, we say that V is infinite dimensional.

- 4 回 ト 4 ヨ ト 4 ヨ ト

Examples from the Textbook

- Reading Assignment: §4.5 Example 1-5.
- ► Example 1. The set S = {(1,0,0), (0,1,0), (0,0,1)} is a basis of the 3-space ℝ³. Proof.
 - Given any $(x, y, z) \in \mathbb{R}^3$ we have

(x, y, z) = x(1, 0, 0) + y(0, 1, 0) + z(0, 0, 1).

So, any $x, y, z) \in \mathbb{R}^3$ is a linearl combinations of elements in S. So, $\mathbb{R}^3 = Span(S)$.

► Also, S us linealry independent:

 $x(1,0,0)+y(0,1,0)+z(0,0,1)=(0,0,0) \Longrightarrow x=y=z=0.$

Example 1a.

Similarly, a basis of the *n*-space \mathbb{R}^n is given by the set

$$\mathcal{S} = \{e_1, e_2, \dots, e_n\}$$

where

$${f e_1}=(1,0,\ldots,0), {f e_2}=(0,1,\ldots,0),\ldots, {f e_n}=(0,0,\ldots,1).$$

This one is called the standard basis of \mathbb{R}^n .

- 4 回 5 - 4 三 5 - 4 三 5

Example 2 (edited)

The set $S = \{(1, -1, 0), (1, 1, 0), (1, 1, 1)\}$ is a basis of \mathbb{R}^3 . **Proof.**

First we prove Span(S) = ℝ³. Let (x, y, z) ∈ ℝ³. We need to find a, b, c such that

$$(x, y, z) = a(1, -1, 0) + b(1, 1, 0) + c(1, 1, 1)$$

So,

$$\begin{bmatrix} 1 & 1 & 1 \\ -1 & 1 & 1 \\ 0 & 0 & 1 \end{bmatrix} \begin{bmatrix} a \\ b \\ c \end{bmatrix} = \begin{bmatrix} x \\ y \\ z \end{bmatrix}$$
 notationally $A\mathbf{a} = \mathbf{v}$

Preview Basis More Problems Homework

Continued

Compute inverse of *A*:

$$[A|I_{3}] = \begin{bmatrix} 1 & 1 & 1 & | & 1 & 0 & 0 \\ -1 & 1 & 1 & | & 0 & 1 & 0 \\ 0 & 0 & 1 & | & 0 & 0 & 1 \end{bmatrix}$$

Add first row to second
$$\begin{bmatrix} 1 & 1 & 1 & | & 1 & 0 & 0 \\ 0 & 2 & 2 & | & 1 & 1 & 0 \\ 0 & 0 & 1 & | & 0 & 0 & 1 \end{bmatrix}$$

Subtract third row from first and subtract 2 times third row from second:

回 と く ヨ と く ヨ と

Continued

Multiply second row by .5; then subtract second row from first:

$$A^{-1} = \left[\begin{array}{ccc} .5 & .5 & -1 \\ 0 & 0 & 1 \end{array} \right]$$

・ロト ・回ト ・ヨト ・ヨト

Preview Basis More Problems Homework

Continued

$$\begin{bmatrix} a \\ b \\ c \end{bmatrix} = A^{-1} \begin{bmatrix} x \\ y \\ z \end{bmatrix} = \begin{bmatrix} .5 & -.5 & 0 \\ .5 & .5 & -1 \\ 0 & 0 & 1 \end{bmatrix} \begin{bmatrix} x \\ y \\ z \end{bmatrix}$$

Hence

$$(x, y, z) = a(1, -1, 0) + b(1, 1, 0) + c(1, 1, 1) \in Span(S).$$

Therefore, $Span(S) = \mathbb{R}^3$.

◆□ > ◆□ > ◆臣 > ◆臣 > ○

Э

▶ Now, we prove S is linearly independent. Let

$$a(1,-1,0) + b(1,1,0) + c(1,1,1) = (0,0,0).$$

We need to prove a = b = c = 0. In fact, in the matrix from, this equation is $A \begin{bmatrix} a \\ b \\ c \end{bmatrix} = \begin{bmatrix} 0 \\ 0 \\ 0 \end{bmatrix}$ where Ais as above. Since, A is non-singular, $\begin{bmatrix} a \\ b \\ c \end{bmatrix} = \begin{bmatrix} 0 \\ 0 \\ 0 \end{bmatrix}$ So,

S is linearly independent.

Since, span(S) = ℝ³ and S is linearly independent, S forms a bais of ℝ³.

Examples 4

Let P₃ be a vector space of all polynomials of degree less of equal to 3. Then S{1, x, x², x³} is a basis of P₃.
 Proof. Clearly span(S) = P₃. Also S is linearly independent, because

$$a1 + bx + cx^2 + dx^3 \implies a = b = c = d = 0$$

イロト イポト イヨト イヨト

Example 5.

 \blacktriangleright Let $\mathbb{M}_{3,2}$ be the vector space of all 3×2 matrices. Let

$$A_{1,1} = \begin{bmatrix} 1 & 0 \\ 0 & 0 \\ 0 & 0 \end{bmatrix}, A_{1,2} = \begin{bmatrix} 0 & 1 \\ 0 & 0 \\ 0 & 0 \end{bmatrix}, A_{2,1} = \begin{bmatrix} 0 & 0 \\ 1 & 0 \\ 0 & 0 \end{bmatrix},$$
$$A_{2,2} = \begin{bmatrix} 0 & 0 \\ 0 & 1 \\ 0 & 0 \end{bmatrix}, A_{3,1} = \begin{bmatrix} 0 & 0 \\ 0 & 0 \\ 1 & 0 \end{bmatrix}, A_{3,2} = \begin{bmatrix} 0 & 0 \\ 0 & 0 \\ 0 & 1 \end{bmatrix},$$

Then,

$$A = \{A_{11}, A_{12}, A_{2,1}, A_{2,2}, A_{3,1}, A_{3,2}\}$$

is a basis of $\mathbb{M}_{3,2}$.

・ロン ・回と ・ヨン・

Theorem 4.9

Theorem 4.9(Uniqueness of basis representation): Let V be a vector space and $S = {v_1, v_2, ..., v_n}$ be a basis of V. Then, any vector $v \in V$ can be written in one and only one way as linear combination of vectors in S. **Proof.** Suppose $v \in V$. Since Span(S) = V

$$\mathbf{v} = a_1 \mathbf{v}_1 + a_2 \mathbf{v}_2 + \dots + a_n \mathbf{v}_n$$
 where $a_i \in \mathbb{R}$.

- 4 回 ト 4 ヨ ト 4 ヨ ト

Now suppose there are two ways:

$$\mathbf{v} = a_1 \mathbf{v_1} + a_2 \mathbf{v_2} + \dots + a_n \mathbf{v_n}$$
 and $\mathbf{v} = b_1 \mathbf{v_1} + b_2 \mathbf{v_2} + \dots + b_n \mathbf{v_n}$

We will prove $a_1 = b_1, a_2 = b_2, ..., a_n = b_n$.

Subtracting
$$\mathbf{0} = (a_1 - b_1)\mathbf{v_1} + (a_2 - b_2)\mathbf{v_2} + \dots + (a_n - b_n)\mathbf{v_n}$$

Since, S is linearly independent, $a_1 - b_1 = 0, a_2 - b_2 = 0, \dots, a_n - b_n = 0$ or $a_1 = b_1, a_2 = b_2, \dots, a_n = b_n$. The proof is complete. **Reading Assignment:** §4.5 Example 6

▲□ → ▲ □ → ▲ □ →

Theorem 4.10

Theorem 4.10 (Bases and cardinalities) Let V be a vector space and $S = {\mathbf{v}_1, \mathbf{v}_2, \dots, \mathbf{v}_n}$ be a basis of V, containing n vectors. Then any set containing more than n vectors in V is linearly dependent.

Proof.Let $T = {\mathbf{u_1}, \mathbf{u_2}, \dots, \mathbf{u_m}}$ be set of *m* vectors in *V* with m > n. For simplicity, assume n = 3 and m = 4. So, $S = {\mathbf{v_1}, \mathbf{v_2}, \mathbf{v_3}}$ and $T = {\mathbf{u_1}, \mathbf{u_2}, \mathbf{u_3}, \mathbf{u_4}}$. To prove that *T* is dependent, we will have to find scalers x_1, x_2, x_3, x_4 , not all zero, such that not all zero,

$$x_1\mathbf{u_1} + x_2\mathbf{u_2} + x_3\mathbf{u_3} + x_4\mathbf{u_4} = \mathbf{0}$$
 Equation - I

Subsequently, we will show that Equation-I has non-trivial solution.

Continued

Since S is a basis we can write

$\mathbf{u_1} =$	$c_{11}\mathbf{v_1}$	$+c_{12}\mathbf{v_2}$	$+c_{13}\mathbf{v_3}$
$u_2 =$	$c_{21}\mathbf{v_1}$	$+c_{22}\mathbf{v_2}$	$+c_{23}\mathbf{v_3}$
$u_3 =$	$c_{31}\mathbf{v_1}$	$+c_{32}\mathbf{v_2}$	$+c_{33}\mathbf{v_3}$
$\mathbf{u_4} =$	<i>C</i> ₄₁ V ₁	+ <i>c</i> ₄₂ v ₂	+ <i>c</i> ₄₃ v ₃

We substitute these in Equation-I and re-group:

Since $S = {\mathbf{v_1}, \mathbf{v_2}, \mathbf{v_3}}$ is linearly independent, the coefficients of $\mathbf{v_1}, \mathbf{v_2}, \mathbf{v_3}$ are zero. So, we have (in the next frame):

Continued

This is a system of three homogeneous linear equations in four variables. (less equations than number of variable. So, the system has non-tirvial (infinitley many) solutions. So, there are x_1, x_2, x_3, x_4 , not all zero, so that Equation-I is valid. So, $T = {\mathbf{u_1}, \mathbf{u_2}, \mathbf{u_3}, \mathbf{u_4}}$ is linealry dependent. The proof is complete.

Reading Assignment: §4.5 Example 7

・ 同 ト ・ ヨ ト ・ ヨ ト

Theorem 4.11

Suppose V is a vector space. If V has a basis with n elements then all bases have n elements.

Proof.Suppose $S = \{\mathbf{v}_1, \mathbf{v}_2, \dots, \mathbf{v}_n\}$ and $T = \{\mathbf{u}_1, \mathbf{u}_2, \dots, \mathbf{u}_m\}$ are two bases of V. Since, the basis S has n elements, and T is linealry independent, by the thoerem above m cannot be bigger than n. So, $m \le n$. By switching the roles of S and T, we have $n \le m$. So,

m = n. The proof is complete.

Reading Assignment: §4.5 Example 8.

- 4 回 ト 4 ヨ ト 4 ヨ ト

Dimension of Vactor Spaces

Definition. Let V be a vector space. Suppose V has a basis $S = {\mathbf{v_1}, \mathbf{v_2}, \dots, \mathbf{v_n}}$ consisting of n vectors. Then, we say n is the dimension of V and write $\dim(V) = n$. If V consists of the zero vector only, then the dimension of V is defined to be zero.

We have

- From above example dim $(\mathbb{R}^n) = n$.
- From above example dim(P₃) = 4. Similalry, dim(P_n) = n + 1.
- From above example dim(M_{3,2}) = 6. Similarly, dim(M_{n,m}) = mn.

・ロン ・回 と ・ヨン ・ヨン

Preview Basis More Problems Homework

Dimensions of Subspaces

• If W is a subspace of V, one can prove, then

 $\dim(W) \leq \dim(V).$

▶ Reading Assignment: §4.5 Example 9, 10, 11.

・ 同 ト ・ ヨ ト ・ ヨ ト

Dimensions of Subspaces: Examples

Example 9 (edited)

Let
$$W = \{(x, y, 2x + 3y) : x, y \in \mathbb{R}\}$$

The W is a subspace of \mathbb{R}^3 and dim(W) = 2. **Proof.**Given $(x, y, 2x + 3y) \in W$, we have

$$(x, y, 2x + 3y) = x(1, 0, 2) + y(0, 1, 3)$$

This shows $span(\{(1,0,2), (0,1,3)\}) = W$. Also $\{(1,0,2), (0,1,3)\}$ is linearly independent. So, $\{(1,0,2), (0,1,3)\}$ is a basis of W and dim(W) = 2.

・ 同 ト ・ ヨ ト ・ ヨ ト

Dimensions of Subspaces: Examples

Example 10 (edited) Let

 $S = \{(1,3,-2,13), (-1,2,-3,12), (2,1,1,1)\}$

and W = span(S). Then W is a subspace of \mathbb{R}^4 and $\dim(W) = 2$.

- Proof.Denote the three vectors in S by v₁, v₂, v₃.
- Then $\mathbf{v_3} = \mathbf{v_1} \mathbf{v_2}$. Write $T = {\mathbf{v_1}, \mathbf{v_2}}$.
- ► It follows, any linear combination of vectors in *S* is also a linear combination of vectors in *T*.

So,
$$W = span(S) = span(T)$$
.

Also T is linearly indpendent. So, T is a basis and dim(W) = 2.

Theorem 4.12

Theorem 4.12. (Basis Tests): Let V be a vector space and $\dim(V) = n$.

- If S = {v₁, v₂,..., v_n} is a linearly independent set in V (consisting of n vectors), then S is a basis of V.
- If $S = {\mathbf{v_1}, \mathbf{v_2}, \dots, \mathbf{v_n}}$ span V, then S is a basis of V

・ 同 ト ・ ヨ ト ・ ヨ ト

Exercise

- ► Exercise 12 (edited). Let S = {(4, -3), (12, -9)}. Why S is not a basis for R²?
 Answer: S is linearly dependent. This is immediate because the first vector is a multiple of the second.
- Exercise 20 (edited). Why S is not a basis for \mathbb{R}^3 where

$$S = \{(6,4,1), (3,-5,1), (8,13,6), (0,6,9)\}$$

Answer: Here dim $(\mathbb{R}^3) = 3$. So, any basis will have 3 vectors, while *S* has four.

• Exercise 23 (edited). Let $S = \{1 - x, 1 - x^2, 3x^2 - 2x - 1\}$. Why S is not a basis for P_2 ?

Answer: dim $P_2 = 3$ and *S* has 3 elements. So, we have to give different reason. In fact, *S* is linealry dependent:

$$3x^2 - 2x - 1 = 2(1 - x) - 3(1 - x^2)$$

・ 同 ト ・ ヨ ト ・ ヨ ト

► Exercise 28 (edited). Why S is not a basis for M₂₂, where

$$S = \left\{ \left[\begin{array}{rrr} 1 & 0 \\ 0 & 1 \end{array} \right], \left[\begin{array}{rrr} 1 & 0 \\ 1 & 1 \end{array} \right], \left[\begin{array}{rrr} 1 & 1 \\ 0 & 1 \end{array} \right] \right\}$$

Answer: dim $(\mathbb{M}_{22}) = 4$ and *S* has 3 elements.

・ロン ・回 と ・ヨン ・ヨン

Exercise

Exercise 28 (edited). Is S forms a basis for \mathbb{M}_{22} , where

$$S = \left\{ \left[\begin{array}{rrr} 1 & 0 \\ 0 & 1 \end{array} \right], \left[\begin{array}{rrr} 1 & 0 \\ 1 & 1 \end{array} \right], \left[\begin{array}{rrr} 1 & 1 \\ 0 & 1 \end{array} \right], \left[\begin{array}{rrr} 1 & 1 \\ 1 & 0 \end{array} \right] \right\}$$

Answer: dim $(\mathbb{M}_{22}) = 4$ and *S* has 4 elements. Further, *S* is linearly independent. So, *S* is a basis of \mathbb{M}_{22} . To see they are linearly independent: Let

$$a\begin{bmatrix}1&0\\0&1\end{bmatrix}+b\begin{bmatrix}1&0\\1&1\end{bmatrix}+c\begin{bmatrix}1&1\\0&1\end{bmatrix}+d\begin{bmatrix}1&1\\1&0\end{bmatrix}=\begin{bmatrix}0&0\\0&0\end{bmatrix}$$
$$\begin{bmatrix}a+b+c+d&c+d\\b+d&a+b+c\end{bmatrix}=\begin{bmatrix}0&0\\0&0\end{bmatrix}\Rightarrow a=b=c=d=0$$

Preview Basis More Problems Homework

Homework: §4.5 Exercise 7, 8, 9, 10, 15, 16, 17,, 18, 26, 27, 45, 51, 52, 56, 71, 72, 76.

・ロト ・回ト ・ヨト ・ヨト