Vector Spaces §4.5 Basis and Dimension

Satya Mandal, KU

October 23

Goals

Discuss two related important concepts:

- Define Basis of a Vectors Space V.
- Define Dimension $\operatorname{dim}(V)$ of a Vectors Space V.

Basis

Let V be a vector space (over \mathbb{R}). A set S of vectors in V is called a basis of V if

1. $V=\operatorname{Span}(S)$ and
2. S is linearly independent.

- In words, we say that S is a basis of V if S in linealry independent and if S spans V.
- First note, it would need a proof (i.e. it is a theorem) that any vector space has a basis.

Continued

- The definition of basis does not require that S is a finite set.
- However, we will only deal with situations when $S=\left\{\mathbf{v}_{\mathbf{1}}, \mathbf{v}_{\mathbf{2}}, \ldots, \mathbf{v}_{\mathbf{n}}\right\}$ is a finite set.
- If V has a finite basis $S=\left\{\mathbf{v}_{\mathbf{1}}, \mathbf{v}_{\mathbf{2}}, \ldots, \mathbf{v}_{\mathbf{n}}\right\}$, then we say that V is finite dimensional. Otherwise, we say that V is infinite dimensional.

Examples from the Textbook

- Reading Assignment: $\S 4.5$ Example 1-5.
- Example 1. The set $S=\{(1,0,0),(0,1,0),(0,0,1)\}$ is a basis of the 3 -space \mathbb{R}^{3}. Proof.
- Given any $(x, y, z) \in \mathbb{R}^{3}$ we have

$$
(x, y, z)=x(1,0,0)+y(0,1,0)+z(0,0,1) .
$$

So, any $x, y, z) \in \mathbb{R}^{3}$ is a linearl combinations of elements in S. So, $\mathbb{R}^{3}=\operatorname{Span}(S)$.

- Also, S us linealry independent:

$$
x(1,0,0)+y(0,1,0)+z(0,0,1)=(0,0,0) \Longrightarrow x=y=z=0 .
$$

Example 1a.

Similarly, a basis of the n-space \mathbb{R}^{n} is given by the set

$$
S=\left\{\mathbf{e}_{\mathbf{1}}, \mathbf{e}_{\mathbf{2}}, \ldots, \mathbf{e}_{\mathbf{n}}\right\}
$$

where

$$
\mathbf{e}_{1}=(1,0, \ldots, 0), \mathbf{e}_{2}=(0,1, \ldots, 0), \ldots, \mathbf{e}_{\mathbf{n}}=(0,0, \ldots, 1) .
$$

This one is called the standard basis of \mathbb{R}^{n}.

Example 2 (edited)

The set $S=\{(1,-1,0),(1,1,0),(1,1,1)\}$ is a basis of \mathbb{R}^{3}.

Proof.

- First we prove $\operatorname{Span}(S)=\mathbb{R}^{3}$. Let $(x, y, z) \in \mathbb{R}^{3}$. We need to find a, b, c such that

$$
(x, y, z)=a(1,-1,0)+b(1,1,0)+c(1,1,1)
$$

So,

$$
\left[\begin{array}{ccc}
1 & 1 & 1 \\
-1 & 1 & 1 \\
0 & 0 & 1
\end{array}\right]\left[\begin{array}{l}
a \\
b \\
c
\end{array}\right]=\left[\begin{array}{l}
x \\
y \\
z
\end{array}\right] \text { notationally } \quad A \mathbf{a}=\mathbf{v}
$$

Continued

Compute inverse of A :

$$
\begin{aligned}
& \qquad\left[A \mid I_{3}\right]=\left[\begin{array}{ccc|ccc}
1 & 1 & 1 & 1 & 0 & 0 \\
-1 & 1 & 1 & 0 & 1 & 0 \\
0 & 0 & 1 & 0 & 0 & 1
\end{array}\right] \\
& \text { Add first row to second }\left[\begin{array}{ccc|ccc}
1 & 1 & 1 & 1 & 0 & 0 \\
0 & 2 & 2 & 1 & 1 & 0 \\
0 & 0 & 1 & 0 & 0 & 1
\end{array}\right]
\end{aligned}
$$

Subtract third row from first and subtract 2 times third row from second:

$$
\left[\begin{array}{ccc|ccc}
1 & 1 & 0 & 1 & 0 & -1 \\
0 & 2 & 0 & 1 & 1 & -2 \\
0 & 0 & 1 & 0 & 0 & 1
\end{array}\right]
$$

Continued

Multiply second row by .5 ; then subtract second row from first:

$$
\left[\begin{array}{ccc|ccc}
1 & 1 & 0 & 1 & 0 & -1 \\
0 & 1 & 0 & .5 & .5 & -1 \\
0 & 0 & 1 & 0 & 0 & 1
\end{array}\right] \mapsto\left[\begin{array}{ccc|ccc}
1 & 0 & 0 & .5 & -.5 & 0 \\
0 & 1 & 0 & .5 & .5 & -1 \\
0 & 0 & 1 & 0 & 0 & 1
\end{array}\right]
$$

So,

$$
A^{-1}=\left[\begin{array}{ccc}
.5 & -.5 & 0 \\
.5 & .5 & -1 \\
0 & 0 & 1
\end{array}\right]
$$

Continued

$$
\left[\begin{array}{l}
a \\
b \\
c
\end{array}\right]=A^{-1}\left[\begin{array}{l}
x \\
y \\
z
\end{array}\right]=\left[\begin{array}{ccc}
.5 & -.5 & 0 \\
.5 & .5 & -1 \\
0 & 0 & 1
\end{array}\right]\left[\begin{array}{l}
x \\
y \\
z
\end{array}\right]
$$

Hence

$$
(x, y, z)=a(1,-1,0)+b(1,1,0)+c(1,1,1) \in \operatorname{Span}(S) .
$$

Therefore, $\operatorname{Span}(S)=\mathbb{R}^{3}$.

- Now, we prove S is linearly independent. Let

$$
a(1,-1,0)+b(1,1,0)+c(1,1,1)=(0,0,0) .
$$

We need to prove $a=b=c=0$. In fact, in the matrix
from, this equation is $A\left[\begin{array}{l}a \\ b \\ c\end{array}\right]=\left[\begin{array}{l}0 \\ 0 \\ 0\end{array}\right]$ where A
is as above. Since, A is non-singular, $\left[\begin{array}{l}a \\ b \\ c\end{array}\right]=\left[\begin{array}{l}0 \\ 0 \\ 0\end{array}\right]$ So,
S is linearly independent.

- Since, $\operatorname{span}(S)=\mathbb{R}^{3}$ and S is linearly independent, S forms a bais of \mathbb{R}^{3}.

Examples 4

- Let P_{3} be a vector space of all polynomials of degree less of equal to 3 . Then $S\left\{1, x, x^{2}, x^{3}\right\}$ is a basis of P_{3}. Proof. Clearly $\operatorname{span}(S)=P_{3}$. Also S is linearly independent, because

$$
a 1+b x+c x^{2}+d x^{3} \quad \Longrightarrow a=b=c=d=0 .
$$

Example 5.

- Let $\mathbb{M}_{3,2}$ be the vector space of all 3×2 matrices. Let

$$
\begin{aligned}
& A_{1,1}=\left[\begin{array}{ll}
1 & 0 \\
0 & 0 \\
0 & 0
\end{array}\right], A_{1,2}=\left[\begin{array}{ll}
0 & 1 \\
0 & 0 \\
0 & 0
\end{array}\right], A_{2,1}=\left[\begin{array}{ll}
0 & 0 \\
1 & 0 \\
0 & 0
\end{array}\right], \\
& A_{2,2}=\left[\begin{array}{ll}
0 & 0 \\
0 & 1 \\
0 & 0
\end{array}\right], A_{3,1}=\left[\begin{array}{ll}
0 & 0 \\
0 & 0 \\
1 & 0
\end{array}\right], A_{3,2}=\left[\begin{array}{ll}
0 & 0 \\
0 & 0 \\
0 & 1
\end{array}\right]
\end{aligned}
$$

Then,

$$
A=\left\{A_{11}, A_{12}, A_{2,1}, A_{2,2}, A_{3,1}, A_{3,2}\right\}
$$

is a basis of $\mathbb{M}_{3,2}$.

Theorem 4.9

Theorem 4.9(Uniqueness of basis representation): Let V be a vector space and $S=\left\{\mathbf{v}_{\mathbf{1}}, \mathbf{v}_{\mathbf{2}}, \ldots, \mathbf{v}_{\mathbf{n}}\right\}$ be a basis of V. Then, any vector $\mathbf{v} \in V$ can be written in one and only one way as linear combination of vectors in S.
Proof. Suppose v $\in V$. Since $\operatorname{Span}(S)=V$

$$
\mathbf{v}=a_{1} \mathbf{v}_{\mathbf{1}}+a_{2} \mathbf{v}_{\mathbf{2}}+\cdots+a_{n} \mathbf{v}_{\mathbf{n}} \quad \text { where } \quad a_{i} \in \mathbb{R}
$$

Now suppose there are two ways:
$\mathbf{v}=a_{1} \mathbf{v}_{\mathbf{1}}+a_{2} \mathbf{v}_{\mathbf{2}}+\cdots+a_{n} \mathbf{v}_{\mathbf{n}}$ and $\mathbf{v}=b_{1} \mathbf{v}_{\mathbf{1}}+b_{2} \mathbf{v}_{\mathbf{2}}+\cdots+b_{n} \mathbf{v}_{\mathbf{n}}$
We will prove $a_{1}=b_{1}, a_{2}=b_{2}, \ldots, a_{n}=b_{n}$.
Subtracting $\quad \mathbf{0}=\left(a_{1}-b_{1}\right) \mathbf{v}_{\mathbf{1}}+\left(a_{2}-b_{2}\right) \mathbf{v}_{\mathbf{2}}+\cdots+\left(a_{n}-b_{n}\right) \mathbf{v}_{\mathbf{n}}$
Since, S is linearly independent, $a_{1}-b_{1}=0, a_{2}-b_{2}=0, \ldots, a_{n}-b_{n}=0$ or $a_{1}=b_{1}, a_{2}=b_{2}, \ldots, a_{n}=b_{n}$. The proof is complete.
Reading Assignment: §4.5 Example 6

Theorem 4.10

Theorem 4.10 (Bases and cardinalities) Let V be a vector space and $S=\left\{\mathbf{v}_{\mathbf{1}}, \mathbf{v}_{2}, \ldots, \mathbf{v}_{\mathbf{n}}\right\}$ be a basis of V, containing n vectors. Then any set containing more than n vectors in V is linearly dependent.
Proof.Let $T=\left\{\mathbf{u}_{1}, \mathbf{u}_{2}, \ldots, \mathbf{u}_{\mathrm{m}}\right\}$ be set of m vectors in V with $m>n$. For simplicity, assume $n=3$ and $m=4$. So, $S=\left\{\mathbf{v}_{1}, \mathbf{v}_{2}, \mathbf{v}_{3}\right\}$ and $T=\left\{\mathbf{u}_{1}, \mathbf{u}_{2}, \mathbf{u}_{3}, \mathbf{u}_{4}\right\}$. To prove that T is dependent, we will have to find scalers $x_{1}, x_{2}, x_{3}, x_{4}$, not all zero, such that not all zero,

$$
x_{1} \mathbf{u}_{1}+x_{2} \mathbf{u}_{2}+x_{3} \mathbf{u}_{3}+x_{4} \mathbf{u}_{4}=\mathbf{0} \quad \text { Equation - } 1
$$

Subsequently, we will show that Equation-I has non-trivial solution.

Continued

Since S is a basis we can write

$$
\begin{aligned}
& \mathbf{u}_{\mathbf{1}}=c_{11} \mathbf{v}_{\mathbf{1}}+c_{12} \mathbf{v}_{\mathbf{2}}+c_{13} \mathbf{v}_{\mathbf{3}} \\
& \mathbf{u}_{\mathbf{2}}=c_{21} \mathbf{v}_{\mathbf{1}}+c_{22} \mathbf{v}_{\mathbf{2}}+c_{23} \mathbf{v}_{\mathbf{3}} \\
& \mathbf{u}_{\mathbf{3}}=c_{31} \mathbf{v}_{\mathbf{1}}+c_{32} \mathbf{v}_{\mathbf{2}}+c_{33} \mathbf{v}_{\mathbf{3}} \\
& \mathbf{u}_{\mathbf{4}}=c_{41} \mathbf{v}_{\mathbf{1}}+c_{42} \mathbf{v}_{\mathbf{2}}+c_{43} \mathbf{v}_{\mathbf{3}}
\end{aligned}
$$

We substitute these in Equation-I and re-group:

$$
\left.\begin{array}{rl}
\left(c_{11} x_{1}\right. & +c_{21} x_{2}
\end{array}+c_{31} x_{3}+c_{41} x_{4}\right) \mathbf{v}_{\mathbf{1}} .
$$

Since $S=\left\{\mathbf{v}_{\mathbf{1}}, \mathbf{v}_{\mathbf{2}}, \mathbf{v}_{\mathbf{3}}\right\}$ is linearly independent, the coeffients of $\mathbf{v}_{\mathbf{1}}, \mathbf{v}_{\mathbf{2}}, \mathbf{v}_{\mathbf{3}}$ are zero. So, we have (in the next frame):

Continued

$c_{11} x_{1}+c_{21} x_{2}+c_{31} x_{3}+c_{41} x_{4}=0$
$c_{12} x_{1}+c_{22} x_{2}+c_{32} x_{3}+c_{42} x_{4}=0$
$c_{13} x_{1}+c_{23} x_{2}+c_{33} x_{3}+c_{43} x_{4}=0$

This is a system of three homogeneous linear equations in four variables. (less equations than number of variable. So, the system has non-tirvial (infinitley many) solutions. So, there are $x_{1}, x_{2}, x_{3}, x_{4}$, not all zero, so that Equation-I is valid. So, $T=\left\{\mathbf{u}_{\mathbf{1}}, \mathbf{u}_{2}, \mathbf{u}_{3}, \mathbf{u}_{4}\right\}$ is linealry dependent. The proof is complete.
Reading Assignment: $\S 4.5$ Example 7

Theorem 4.11

Suppose V is a vector space. If V has a basis with n elements then all bases have n elements.
Proof.Suppose $S=\left\{\mathbf{v}_{1}, \mathbf{v}_{2}, \ldots, \mathbf{v}_{\mathbf{n}}\right\}$ and $T=\left\{\mathbf{u}_{1}, \mathbf{u}_{\mathbf{2}}, \ldots, \mathbf{u}_{\mathrm{m}}\right\}$ are two bases of V.
Since, the basis S has n elements, and T is linealry independent, by the thoerem above m cannot be bigger than n. So, $m \leq n$.
By switching the roles of S and T, we have $n \leq m$. So, $m=n$. The proof is complete.

Reading Assignment: §4.5 Example 8.

Dimension of Vactor Spaces

Definition. Let V be a vector space. Suppose V has a basis $S=\left\{\mathbf{v}_{\mathbf{1}}, \mathbf{v}_{\mathbf{2}}, \ldots, \mathbf{v}_{\mathbf{n}}\right\}$ consisiting of n vectors. Then, we say n is the dimension of V and write $\operatorname{dim}(V)=n$. If V consists of the zero vector only, then the dimension of V is defined to be zero.
We have

- From above example $\operatorname{dim}\left(\mathbb{R}^{n}\right)=n$.
- From above example $\operatorname{dim}\left(P_{3}\right)=4$. Similalry, $\operatorname{dim}\left(P_{n}\right)=n+1$.
- From above example $\operatorname{dim}\left(\mathbb{M}_{3,2}\right)=6$. Similarly, $\operatorname{dim}\left(\mathbb{M}_{n, m}\right)=m n$.

Dimensions of Subspaces

- If W is a subspace of V, one can prove, then

$$
\operatorname{dim}(W) \leq \operatorname{dim}(V)
$$

- Reading Assignment: §4.5 Example 9, 10, 11.

Dimensions of Subspaces: Examples

- Example 9 (edited)

$$
\text { Let } W=\{(x, y, 2 x+3 y): x, y \in \mathbb{R}\}
$$

The W is a subspace of \mathbb{R}^{3} and $\operatorname{dim}(W)=2$.
Proof.Given $(x, y, 2 x+3 y) \in W$, we have

$$
(x, y, 2 x+3 y)=x(1,0,2)+y(0,1,3)
$$

This shows $\operatorname{span}(\{(1,0,2),(0,1,3)\})=W$. Also $\{(1,0,2),(0,1,3)\}$ is linearly independent. So, $\{(1,0,2),(0,1,3)\}$ is a basis of W and $\operatorname{dim}(W)=2$.

Dimensions of Subspaces: Examples

Example 10 (edited) Let

$$
S=\{(1,3,-2,13),(-1,2,-3,12),(2,1,1,1)\}
$$

and $W=\operatorname{span}(S)$. Then W is a subspace of \mathbb{R}^{4} and $\operatorname{dim}(W)=2$.

- Proof. Denote the three vectors in S by $\mathbf{v}_{\mathbf{1}}, \mathbf{v}_{2}, \mathbf{v}_{\mathbf{3}}$.
- Then $\mathbf{v}_{\mathbf{3}}=\mathbf{v}_{\mathbf{1}}-\mathbf{v}_{\mathbf{2}}$. Write $T=\left\{\mathbf{v}_{\mathbf{1}}, \mathbf{v}_{\mathbf{2}}\right\}$.
- It follows, any linear combination of vectors in S is also a linear combination of vectors in T.

$$
\text { So, } \quad W=\operatorname{span}(S)=\operatorname{span}(T) \text {. }
$$

- Also T is linearly indpendent. So, T is a basis and $\operatorname{dim}(W)=2$.

Theorem 4.12

Theorem 4.12. (Basis Tests): Let V be a vector space and $\operatorname{dim}(V)=n$.

- If $S=\left\{\mathbf{v}_{\mathbf{1}}, \mathbf{v}_{\mathbf{2}}, \ldots, \mathbf{v}_{\mathbf{n}}\right\}$ is a linearly independent set in V (consisting of n vectors), then S is a basis of V.
- If $S=\left\{\mathbf{v}_{\mathbf{1}}, \mathbf{v}_{2}, \ldots, \mathbf{v}_{\mathbf{n}}\right\}$ span V, then S is a basis of V

Exercise

- Exercise 12 (edited). Let $S=\{(4,-3),(12,-9)\}$. Why S is not a basis for \mathbb{R}^{2} ?
Answer: S is linearly dependent. This is immediate because the first vector is a multiple of the second.
- Exercise 20 (edited). Why S is not a basis for \mathbb{R}^{3} where

$$
S=\{(6,4,1),(3,-5,1),(8,13,6),(0,6,9)\}
$$

Answer: Here $\operatorname{dim}\left(\mathbb{R}^{3}\right)=3$. So, any basis will have 3 vectors, while S has four.

Exercise

- Exercise 23 (edited). Let
$S=\left\{1-x, 1-x^{2}, 3 x^{2}-2 x-1\right\}$. Why S is not a basis for P_{2} ?
Answer: $\operatorname{dim} P_{2}=3$ and S has 3 elements. So, we have to give different reason. In fact, S is linealry dependent:

$$
3 x^{2}-2 x-1=2(1-x)-3\left(1-x^{2}\right)
$$

Exercise

- Exercise 28 (edited). Why S is not a basis for \mathbb{M}_{22}, where

$$
S=\left\{\left[\begin{array}{ll}
1 & 0 \\
0 & 1
\end{array}\right],\left[\begin{array}{ll}
1 & 0 \\
1 & 1
\end{array}\right],\left[\begin{array}{ll}
1 & 1 \\
0 & 1
\end{array}\right]\right\}
$$

Answer: $\operatorname{dim}\left(\mathbb{M}_{22}\right)=4$ and S has 3 elements.

Exercise

Exercise 28 (edited). Is S forms a basis for \mathbb{M}_{22}, where

$$
S=\left\{\left[\begin{array}{ll}
1 & 0 \\
0 & 1
\end{array}\right],\left[\begin{array}{ll}
1 & 0 \\
1 & 1
\end{array}\right],\left[\begin{array}{ll}
1 & 1 \\
0 & 1
\end{array}\right],\left[\begin{array}{ll}
1 & 1 \\
1 & 0
\end{array}\right]\right\}
$$

Answer: $\operatorname{dim}\left(\mathbb{M}_{22}\right)=4$ and S has 4 elements. Further, S is linearly independent. So, S is a basis of \mathbb{M}_{22}. To see they are linearly independent: Let

$$
\begin{aligned}
& a\left[\begin{array}{ll}
1 & 0 \\
0 & 1
\end{array}\right]+b\left[\begin{array}{ll}
1 & 0 \\
1 & 1
\end{array}\right]+c\left[\begin{array}{ll}
1 & 1 \\
0 & 1
\end{array}\right]+d\left[\begin{array}{ll}
1 & 1 \\
1 & 0
\end{array}\right]=\left[\begin{array}{ll}
0 & 0 \\
0 & 0
\end{array}\right] \\
& {\left[\begin{array}{cc}
a+b+c+d & c+d \\
b+d & a+b+c
\end{array}\right]=\left[\begin{array}{ll}
0 & 0 \\
0 & 0
\end{array}\right] \Rightarrow a=b=c=d=0}
\end{aligned}
$$

Homework

Homework: §4.5 Exercise 7, 8, 9, 10, 15, 16, 17,, 18, 26, 27, 45, 51, 52, 56, 71, 72, 76.

