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Goals

Discuss two related important concepts:

◮ Define Basis of a Vectors Space V .

◮ Define Dimension dim(V ) of a Vectors Space V .

Satya Mandal, KU Vector Spaces §4.5 Basis and Dimension



Preview
Basis

More Problems
Homework

Basis

Let V be a vector space (over R). A set S of vectors in V is
called a basis of V if

1. V = Span(S) and

2. S is linearly independent.

◮ In words, we say that S is a basis of V if S in linealry

independent and if S spans V .

◮ First note, it would need a proof (i.e. it is a theorem)
that any vector space has a basis.
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◮ The definition of basis does not require that S is a finite
set.

◮ However, we will only deal with situations when
S = {v1, v2, . . . , vn} is a finite set.

◮ If V has a finite basis S = {v1, v2, . . . , vn}, then we say
that V is finite dimensional. Otherwise, we say that V is
infinite dimensional.
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Examples from the Textbook

◮ Reading Assignment: §4.5 Example 1-5.
◮ Example 1. The set S = {(1, 0, 0), (0, 1, 0), (0, 0, 1)} is

a basis of the 3−space R
3.

Proof.
◮ Given any (x , y , z) ∈ R

3 we have

(x , y , z) = x(1, 0, 0) + y(0, 1, 0) + z(0, 0, 1).

So, any x , y , z) ∈ R
3 is a linearl combinations of

elements in S . So, R3 = Span(S).
◮ Also, S us linealry independent:

x(1, 0, 0)+y(0, 1, 0)+z(0, 0, 1) = (0, 0, 0) =⇒ x = y = z = 0.
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Example 1a.

Similarly, a basis of the n−space R
n is given by the set

S = {e1, e2, . . . , en}

where

e1 = (1, 0, . . . , 0), e2 = (0, 1, . . . , 0), . . . , en = (0, 0, . . . , 1).

This one is called the standard basis of Rn.
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Example 2 (edited)

The set S = {(1,−1, 0), (1, 1, 0), (1, 1, 1)} is a basis of R
3
.

Proof.
◮ First we prove Span(S) = R

3
. Let (x , y , z) ∈ R

3
. We

need to find a, b, c such that

(x , y , z) = a(1,−1, 0) + b(1, 1, 0) + c(1, 1, 1)

So,




1 1 1
−1 1 1
0 0 1









a

b

c



 =





x

y

z



 notationally Aa = v
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Compute inverse of A:

[A|I3] =





1 1 1 1 0 0
−1 1 1 0 1 0
0 0 1 0 0 1





Add first row to second





1 1 1 1 0 0
0 2 2 1 1 0
0 0 1 0 0 1





Subtract third row from first and subtract 2 times third row
from second:





1 1 0 1 0 −1
0 2 0 1 1 −2
0 0 1 0 0 1




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Multiply second row by .5; then subtract second row from first:





1 1 0 1 0 −1
0 1 0 .5 .5 −1
0 0 1 0 0 1



 7→





1 0 0 .5 −.5 0
0 1 0 .5 .5 −1
0 0 1 0 0 1





So,

A−1 =





.5 −.5 0

.5 .5 −1
0 0 1




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



a

b

c



 = A−1





x

y

z



 =





.5 −.5 0

.5 .5 −1
0 0 1









x

y

z





Hence

(x , y , z) = a(1,−1, 0) + b(1, 1, 0) + c(1, 1, 1) ∈ Span(S).

Therefore, Span(S) = R
3
.
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◮ Now, we prove S is linearly independent. Let

a(1,−1, 0) + b(1, 1, 0) + c(1, 1, 1) = (0, 0, 0).

We need to prove a = b = c = 0. In fact, in the matrix

from, this equation is A





a

b

c



 =





0
0
0



 where A

is as above. Since, A is non-singular,





a

b

c



 =





0
0
0



 So,

S is linearly independent.

◮ Since, span(S) = R
3 and S is linearly independent, S

forms a bais of R3.
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Examples 4

◮ Let P3 be a vector space of all polynomials of degree less
of equal to 3. Then S{1, x , x2, x3} is a basis of P3.

Proof. Clearly span(S) = P3. Also S is linearly
independent, because

a1 + bx + cx2 + dx3 =⇒ a = b = c = d = 0.
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Example 5.

◮ Let M3,2 be the vector space of all 3× 2 matrices. Let

A1,1 =





1 0
0 0
0 0



 ,A1,2 =





0 1
0 0
0 0



 ,A2,1 =





0 0
1 0
0 0



 ,

A2,2 =





0 0
0 1
0 0



 ,A3,1 =





0 0
0 0
1 0



 ,A3,2 =





0 0
0 0
0 1





Then,
A = {A11,A12,A2,1,A2,2,A3,1,A3,2}

is a basis of M3,2.
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Theorem 4.9

Theorem 4.9(Uniqueness of basis representation): Let V be
a vector space and S = {v1, v2, . . . , vn} be a basis of V .

Then, any vector v ∈ V can be written in one and only one
way as linear combination of vectors in S .

Proof. Suppose v ∈ V . Since Span(S) = V

v = a1v1 + a2v2 + · · ·+ anvn where ai ∈ R.
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Now suppose there are two ways:

v = a1v1+a2v2+· · ·+anvn and v = b1v1+b2v2+· · ·+bnvn

We will prove a1 = b1, a2 = b2, . . . , an = bn.

Subtracting 0 = (a1− b1)v1+(a2− b2)v2+ · · ·+(an− bn)vn

Since, S is linearly independent,
a1 − b1 = 0, a2 − b2 = 0, . . . , an − bn = 0 or
a1 = b1, a2 = b2, . . . , an = bn. The proof is complete.
Reading Assignment: §4.5 Example 6
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Theorem 4.10

Theorem 4.10 (Bases and cardinalities) Let V be a vector
space and S = {v1, v2, . . . , vn} be a basis of V , containing n

vectors. Then any set containing more than n vectors in V is
linearly dependent.
Proof.Let T = {u1,u2, . . . ,um} be set of m vectors in V

with m > n. For simplicity, assume n = 3 and m = 4. So,
S = {v1, v2, v3} and T = {u1,u2,u3,u4}. To prove that T is
dependent, we will have to find scalers x1, x2, x3, x4, not all
zero, such that not all zero,

x1u1 + x2u2 + x3u3 + x4u4 = 0 Equation − I

Subsequently, we will show that Equation-I has non-trivial
solution.
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Since S is a basis we can write

u1 = c11v1 +c12v2 +c13v3
u2 = c21v1 +c22v2 +c23v3
u3 = c31v1 +c32v2 +c33v3
u4 = c41v1 +c42v2 +c43v3

We substitute these in Equation-I and re-group:

(c11x1 +c21x2 +c31x3 +c41x4)v1
+(c12x1 +c22x2 +c32x3 +c42x4)v2
+(c13x1 +c23x2 +c33x3 +c43x4)v3 = 0

Since S = {v1, v2, v3} is linearly independent, the coeffients of
v1, v2, v3 are zero. So, we have (in the next frame):
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c11x1 +c21x2 +c31x3 +c41x4 = 0
c12x1 +c22x2 +c32x3 +c42x4 = 0
c13x1 +c23x2 +c33x3 +c43x4 = 0

This is a system of three homogeneous linear equations in four
variables. (less equations than number of variable. So, the
system has non-tirvial (infinitley many) solutions. So, there
are x1, x2, x3, x4, not all zero, so that Equation-I is valid. So,
T = {u1,u2,u3,u4} is linealry dependent. The proof is
complete.

Reading Assignment: §4.5 Example 7
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Theorem 4.11

Suppose V is a vector space. If V has a basis with n elements
then all bases have n elements.
Proof.Suppose S = {v1, v2, . . . , vn} and
T = {u1,u2, . . . ,um} are two bases of V .

Since, the basisS has n elements, and T is linealry
independent, by the thoerem above m cannot be bigger than
n. So, m ≤ n.

By switching the roles of S and T , we have n ≤ m. So,
m = n. The proof is complete.

Reading Assignment: §4.5 Example 8.
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Dimension of Vactor Spaces

Definition. Let V be a vector space. Suppose V has a basis
S = {v1, v2, . . . , vn} consisiting of n vectors. Then, we say n

is the dimension of V and write dim(V ) = n. If V consists of
the zero vector only, then the dimension of V is defined to be
zero.
We have

◮ From above example dim(Rn) = n.

◮ From above example dim(P3) = 4. Similalry,
dim(Pn) = n + 1.

◮ From above example dim(M3,2) = 6. Similarly,
dim(Mn,m) = mn.
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Dimensions of Subspaces

◮ If W is a subspace of V , one can prove, then

dim(W ) ≤ dim(V ).

◮ Reading Assignment: §4.5 Example 9, 10, 11.
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Dimensions of Subspaces: Examples

◮ Example 9 (edited)
◮

Let W = {(x , y , 2x + 3y) : x , y ∈ R}

The W is a subspace of R3 and dim(W ) = 2.
Proof.Given (x , y , 2x + 3y) ∈ W , we have

(x , y , 2x + 3y) = x(1, 0, 2) + y(0, 1, 3)

This shows span({(1, 0, 2), (0, 1, 3)}) = W . Also
{(1, 0, 2), (0, 1, 3)} is linearly independent. So,
{(1, 0, 2), (0, 1, 3)} is a basis of W and dim(W ) = 2.
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Dimensions of Subspaces: Examples

Example 10 (edited) Let

S = {(1, 3,−2, 13), (−1, 2,−3, 12), (2, 1, 1, 1)}

and W = span(S). Then W is a subspace of R4 and
dim(W ) = 2.

◮ Proof.Denote the three vectors in S by v1, v2, v3.
◮ Then v3 = v1 − v2. Write T = {v1, v2}.
◮ It follows, any linear combination of vectors in S is also a

linear combination of vectors in T .

◮

So, W = span(S) = span(T ).

◮ Also T is linearly indpendent. So, T is a basis and
dim(W ) = 2.
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Theorem 4.12

Theorem 4.12. (Basis Tests): Let V be a vector space and
dim(V ) = n.

◮ If S = {v1, v2, . . . , vn} is a linearly independent set in V

(consisting of n vectors), then S is a basis of V .

◮ If S = {v1, v2, . . . , vn} span V , then S is a basis of V
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Exercise

◮ Exercise 12 (edited). Let S = {(4,−3), (12,−9)}.
Why S is not a basis for R2?
Answer: S is linearly dependent. This is immediate
because the first vector is a multiple of the second.

◮ Exercise 20 (edited). Why S is not a basis for R3 where

S = {(6, 4, 1), (3,−5, 1), (8, 13, 6), (0, 6, 9)}

Answer: Here dim(R3) = 3. So, any basis will have 3
vectors, while S has four.
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Exercise

◮ Exercise 23 (edited). Let
S = {1− x , 1− x2, 3x2 − 2x − 1}. Why S is not a basis
for P2?
Answer: dimP2 = 3 and S has 3 elements. So, we have
to give different reason. In fact, S is linealry dependent:

3x2 − 2x − 1 = 2(1− x)− 3(1− x2)
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Exercise

◮ Exercise 28 (edited). Why S is not a basis for M22,
where

S =

{[

1 0
0 1

]

,

[

1 0
1 1

]

,

[

1 1
0 1

]}

Answer: dim(M22) = 4 and S has 3 elements.
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Exercise

Exercise 28 (edited). Is S forms a basis for M22, where

S =

{[

1 0
0 1

]

,

[

1 0
1 1

]

,

[

1 1
0 1

]

,

[

1 1
1 0

]}

Answer: dim(M22) = 4 and S has 4 elements. Further, S is
linearly independent. So, S is a basis of M22. To see they are
linearly independent: Let

a

[

1 0
0 1

]

+b

[

1 0
1 1

]

+c

[

1 1
0 1

]

+d

[

1 1
1 0

]

=

[

0 0
0 0

]

[

a + b + c + d c + d

b + d a + b + c

]

=

[

0 0
0 0

]

⇒ a = b = c = d = 0
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Homework

Homework: §4.5 Exercise 7, 8, 9, 10, 15, 16, 17,, 18, 26, 27,
45, 51, 52, 56, 71, 72, 76.
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