Chapter 1: System of Linear Equations § 1.3 Application of Linear systems (Read Only)

Satya Mandal, KU

Summer 2017: Fall 18 Update

Satya Mandal, KU Chapter 1: System of Linear Equations § 1.3 Application of Li

イロト イポト イヨト イヨト

In this section, we do a few applications of linear systems, as follows.

- Fitting polynomials,
- Network analysis,
- Kirchoff's Laws for electrical networks

イロト イヨト イヨト イヨト

Invincibility of Linear Algebra

System of linear equations is much easier to handle than nonlinear systems. (I do not mean for this class only, I mean for expert mathematicians and scientists.) In fact, it is really very difficult to handle nonlinear systems. That is why, there is a wide range of applications of linear systems.

Examples

Number of points needed

Recall the facts:

- ► there is exactly one line y = c + mx that passes through two given points.
- ► there is exactly one parabola y = ax² + bx + c that passes through three given points.
- ► More generally, given n + 1 points in the plane, there is exactly one polynomial

$$p(x) = a_0 + a_1 x + \dots + a_{n-1} x^{n-1} + a_n x^n \quad \text{of degree } n$$

so that the graph y = p(x) will pass through these points.

(ロ) (同) (E) (E) (E)

Examples

Method to fit polynomial

Suppose a collection of data is represented by n points:

 $(x_1, y_1), (x_2, y_2), \ldots, (x_n, y_n).$

Assume the *x*-coordinates x_1, x_2, \ldots, x_n are distinct. We determine a UNIQUE polynomial

$$p(x) = a_0 + a_1 x_1 + a_2 x^2 + \dots + a_{n-1} x^{n-1}$$
 with $\deg(p) \le n-1$

so that the graph of y = p(x) passes through these points.

► Given *n* such points, to determine *p*(*x*) we need to find the coefficients *a*₀, *a*₁, ..., *a*_{*n*-1}.

Since (x_i, y_i) passes through the graph of y = p(x), we have y_i = p(x_i).

Examples

Continued

More explicitly,

$$\begin{cases} a_{0} + a_{1}x_{1} + a_{2}x_{1}^{2} + \cdots + a_{n-1}x_{1}^{n-1} = y_{1} \\ a_{0} + a_{1}x_{2} + a_{2}x_{2}^{2} + \cdots + a_{n-1}x_{2}^{n-1} = y_{2} \\ a_{0} + a_{1}x_{3} + a_{2}x_{3}^{2} + \cdots + a_{n-1}x_{3}^{n-1} = y_{3} \\ \cdots \\ a_{0} + a_{1}x_{n} + a_{2}x_{n}^{2} + \cdots + a_{n-1}x_{n}^{n-1} = y_{n} \end{cases}$$
(1)

This is a linear system of *n* equations, with *n* unknowns (variables) $a_0, a_1, a_2, \ldots, a_{n-1}$.

・ロン ・回と ・ヨン ・ヨン

Examples

Continued

The augmented matrix of this linear system is:

and the coefficients matrix is

$$\left(\begin{array}{cccccc} 1 & x_1 & x_1^2 & \cdots & x_1^{n-1} \\ 1 & x_2 & x_2^2 & \cdots & x_2^{n-1} \\ 1 & x_3 & x_3^2 & \cdots & x_3^{n-1} \\ \cdots & \cdots & \cdots & \cdots \\ 1 & x_n & x_n^2 & \cdots & x_n^{n-1} \end{array}\right)$$

This matrix is called **Vandermonde-matrix** in $\overline{x}_1, \overline{x}_2, \dots, \overline{x}_n \ge -\infty$

Examples

Continued

- Since x₁,..., xn are assumed to be distinct, it is known that the linear system (1), has a unique solution.
- ► We can reduce the augmented matrix to row echelon form and solve for a₀, a₁,..., a_{n-1}.

(ロ) (同) (E) (E) (E)

Examples

Example 1.3.1

Determine the polynomial function (of degree 2) that passes through the points (2, 4), (3, 6), (4, 10). **Solution**: Let $p(x) = a + bx + cx^2$. Since these points pass through the graph of $y = p(x) = a + bx + cx^2$, we have

$$\begin{cases} a + b2 + c2^{2} = 4 \\ a + b3 + c3^{2} = 6 \\ a + b4 + c4^{2} = 10 \end{cases} or \begin{cases} a + 2b + 4c = 4 \\ a + 3b + 9c = 6 \\ a + 4b + 16c = 10 \end{cases}$$

イロト イポト イヨト イヨト

Examples

Continued

The augmented matrix of this system is:

$$\left(\begin{array}{rrrrr}1 & 2 & 4 & 4 \\ 1 & 3 & 9 & 6 \\ 1 & 4 & 16 & 10\end{array}\right)$$

Now we reduce the matrix to the row-echelon form. To do this subtract row-1 from row-2 and row-3:

$$\left(\begin{array}{rrrrr}1&2&4&4\\0&1&5&2\\0&2&12&6\end{array}\right)$$

Now, subtract 2 times row-2 from row-3:

- \

Examples

Continued

Divide the last row by 2:

$$\left(\begin{array}{rrrrr}1 & 2 & 4 & 4\\0 & 1 & 5 & 2\\0 & 0 & 1 & 1\end{array}\right)$$

The matrix is in row-echelon form. The linear system corresponding to this matrix is:

$$\begin{cases} a +2b +4c = 4 \\ b +5c = 2 \\ c = 1. \end{cases}$$

So c = 1, b = 2 - 5 = -3, a = 4 - 4 + 6 = 6

Examples

Continued

So

$$p(x) = a + bx + cx^2 = 6 - 3x + x^2$$
.

You can use TI to graph it, and check that the graph passes through the given three points.

<ロ> (日) (日) (日) (日) (日)

Examples

Example 1.3.2

Here is some US census population data:

Year	1980	1990	2000
population y	227	249	281

Here population is given in millions.

- Fit a quadratic polynomial passing through these points.
- ▶ Use it to predict population in year 2010 and 2020.

Solution: Let *t* be the variable time and set t = 0 for the year 1980. The table reduces to

t	0	10	20
y	227	249	281

イロト イポト イヨト イヨト

Examples

Continued

Let $p(t) = a + bt + ct^2$ be the polynomial that fits this data.

Since the data points pass through the graph of $y = p(t) = a + bt + ct^2$, we have

$$\left(\begin{array}{ccc} a & +b0 & +c0^2 & = 227 \ a & +b10 & +c10^2 & = 249 \ a & +b20 & +c20^2 & = 281 \end{array} \right)$$

$$\begin{cases} a = 227 \\ a +10b +100c = 249 \\ a +20b +400c = 281 \end{cases}$$

イロン イ部ン イヨン イヨン 三日

Examples

Continued

The augmented matrix is

$$\left(\begin{array}{rrrrr} 1 & 0 & 0 & 227 \\ 1 & 10 & 100 & 249 \\ 1 & 20 & 400 & 281 \end{array}\right)$$

Now use TI-84 (or you can hand reduce) to reduce the matrix to Gauss-Jordan form:

$$\begin{pmatrix} 1 & 0 & 0 & 227 \\ 0 & 1 & 0 & 1.7 \\ 0 & 0 & 1 & .05 \end{pmatrix}$$
So, $a = 227, b = 1.7, c = 0.05$

Examples

Continued

So,
$$y = p(t) = 227 + 1.7t + .05t^2$$
.

This answers part (1). For part (2), for year 2010, we have t = 30 and predicted population is

$$p(30) = 227 + 1.7 * 30 + .05 * 30^2 = 323 mi.$$

Similarly, for year 2020, we have t = 40 and predicted population is

$$p(30) = 227 + 1.7 * 40 + .05 * 40^2 = 375 mi.$$

・ロン ・回と ・ヨン・

Examples

Basic Network

A network consists of junctions and branches. Following is an example of network:

Such network systems are used to model variety of situations, including in economics, traffic, telephone signal and electrical engineering.

・日本 ・ モン・ ・ モン

Examples

Continued

Such models assumes that **the total flow into a junction is equal to total flow out of the junction.** Accordingly, above network is represented by

$$x=y+13+z.$$

・ロト ・回ト ・ヨト ・ヨト

Examples

Example 1.3.3

The flow of traffic through a network of telephone towers is shown in the following figure:

- Solve this system for x_1, x_2, x_3, x_4, x_5 .
- Find the traffic flow when $x_2 = 20$ and $x_3 = 5$.
- Find the traffic flow when $x_2 = 15$ and $x_3 = 0$.

▲ 聞 ▶ ▲ 臣 ▶ ▲ 臣 ▶ …

Examples

Continued

Solution: From junction A, we get

$$x_1 + x_2 = 30$$

From junction B, we get

 $x_1 + x_3 = 15 + x_4$ OR $x_1 + x_3 - x_4 = 15$

From junction Y, we get

 $x_2 + 20 = x_3 + x_5$ OR $x_2 - x_3 - x_5 = -20$

From junction Z, we get

$$x_4 + x_5 = 35.$$

イロト イポト イヨト イヨト

Examples

Continued

We will write the system in a better way:

$$\begin{cases} x_1 + x_2 &= 30 \\ x_1 + x_3 - x_4 &= 15 \\ x_2 - x_3 &- x_5 &= -20 \\ & & x_4 + x_5 &= 35 \end{cases}$$

To solve this linear system, we write the augmented matrix:

Examples

Continued

Reduce this matrix to row-echelon form. Subtract row 1 from row 2:

Add second row to third:

イロト イヨト イヨト イヨト

Examples

Continued

Add third roe to fourth:

Multiply second row by -1 and third row by -1:

The matrix is in row-echelon form.

Satya Mandal, KU

・ロン ・四 と ・ ヨ と ・ モ と Chapter 1: System of Linear Equations § 1.3 Application of Li

Examples

Continued

The corresponding linear system is given by:

$$\begin{cases} x_1 + x_2 &= 30 \\ x_2 - x_3 + x_4 &= 15 \\ x_4 + x_5 &= 35 \\ 0 &= 0 \end{cases}$$

With $x_2 = t, x_3 = s, \begin{cases} x_1 = 300 - t \\ x_2 = t, \\ x_3 = s, \\ x_4 = 15 - t + s, \\ x_5 = 35 - x_4 = 150 + t - s. \end{cases}$

イロン イヨン イヨン イヨン

Examples

Continued

This answers (1). For (2) $t = x_2 = 20, s = x_3 = 5$. So, $x_1 = 10, \quad x_2 = 20, \quad x_3 = 5, \quad x_4 = 0, \quad x_5 = 30.$ For (3) $t = x_2 = 15, s = x_3 = 0$. So, $x_1 = 15, \quad x_2 = 15, \quad x_3 = 0, \quad x_4 = 0, \quad x_5 = 35.$

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 善臣 の久で

Example 1.3.4

Kirchhoff's Laws

Systems of Linear equations is also used in electrical network. Analysis of electrical network is guided by two properties known as **Kirchhoff's Laws**:

- All the current flowing into a junction must flow out of it.
- ► The sum of the products *IR* (*I* is current and *R* is resistance) around a closed path is equal to the total voltage.

A battery is denoted by $|\vdash \ or \ \dashv|$ and the resistance is denoted by $\sim\!$

(ロ) (同) (E) (E) (E)

Example 1.3.4

Example 1.3.4

Consider the electrical circuit.

(The circuit should be connected, I could not draw a better one.)

Example 1.3.4

Continued

Use Kirchhoff-Law to determine I_1, I_2, I_3 .

Solution: Apply (1) of Kirchhoff-Law to junction J_1 , we have

$$I_1 + I_3 = I_2 \quad Eqn-1$$

Applying the same to $J_{\rm 2}$ wil give the same equation. So, we will not write it.

Now apply (2) of Kirchhoff-Law

$$\begin{cases} R_1 I_1 + R_2 I_2 = 3 \\ R_2 I_2 + R_3 I_3 = 1 \end{cases} OR$$
$$\begin{cases} 4I_1 + 3I_2 = 3 \\ 3I_2 + I_3 = 1 \end{cases} Eqn - 2$$

Example 1.3.4

Continued

The the network system is given by

$$\begin{cases} l_1 & -l_2 & +l_3 &= 0 \quad Eqn-1\\ 4l_1 & +3l_2 &= 3 \quad Eqn-2\\ & 3l_2 & +l_3 &= 1 \quad Eqn-3 \end{cases}$$

The augmented matrix is:

$$\left(\begin{array}{rrrrr} 1 & -1 & 1 & 0 \\ 4 & 3 & 0 & 3 \\ 0 & 3 & 1 & 1 \end{array}\right)$$

Now, we reduce this matrix to row-echelon form.

< ≣ >

Example 1.3.4

Continued

To dothis, first subtract 4 time first reo from second:

$$\left(\begin{array}{rrrrr} 1 & -1 & 1 & 0 \\ 0 & 7 & -4 & 3 \\ 0 & 3 & 1 & 1 \end{array}\right)$$

Divide row two by 7:

$$\left(\begin{array}{rrrrr} 1 & -1 & 1 & 0 \\ 0 & 1 & -\frac{4}{7} & \frac{3}{7} \\ 0 & 3 & 1 & 1 \end{array}\right)$$

イロト イヨト イヨト イヨト

Example 1.3.4

Continued

Subtract 3 times rwo two from row three:

Divide row three by $\frac{19}{7}$:

$$\left(\begin{array}{rrrrr}1 & -1 & 1 & 0\\0 & 1 & -\frac{4}{7} & \frac{3}{7}\\0 & 0 & 1 & -\frac{2}{19}\end{array}\right)$$

イロン イヨン イヨン イヨン

Example 1.3.4

Continued

Now, we further reduce it to Gauss-Jordan form. To do this, add second row to first:

Now subtract $\frac{3}{7}$ times third row from first:

$$\left(\begin{array}{rrrrr} 1 & 0 & 0 & \frac{9}{19} \\ 0 & 1 & -\frac{4}{7} & \frac{3}{7} \\ 0 & 0 & 1 & -\frac{2}{19} \end{array}\right)$$

イロン イ部ン イヨン イヨン 三日

•

•

Example 1.3.4

Continued

Now, add $\frac{4}{7}$ time third roe to second:

$$\left(\begin{array}{rrrrr} 1 & 0 & 0 & \frac{9}{19} \\ 0 & 1 & 0 & \frac{7}{19} \\ 0 & 0 & 1 & -\frac{2}{19} \end{array}\right)$$

The corresponding linear system s given by,

$$\begin{cases} I_1 & = \frac{9}{19} \\ I_2 & = \frac{7}{19} \\ I_3 & = -\frac{2}{19} \end{cases}$$

イロト イヨト イヨト イヨト

æ

.