# Chapter 1: System of Linear Equations § 1.3 Application of Linear systems (Read Only) 

## Satya Mandal, KU

Summer 2017: Fall 18 Update

## Goals

In this section, we do a few applications of linear systems, as follows.

- Fitting polynomials,
- Network analysis,
- Kirchoff's Laws for electrical networks


## Invincibility of Linear Algebra

System of linear equations is much easier to handle than nonlinear systems. (I do not mean for this class only, I mean for expert mathematicians and scientists.) In fact, it is really very difficult to handle nonlinear systems. That is why, there is a wide range of applications of linear systems.

## Number of points needed

Recall the facts:

- there is exactly one line $y=c+m x$ that passes through two given points.
- there is exactly one parabola $y=a x^{2}+b x+c$ that passes through three given points.
- More generally, given $n+1$ points in the plane, there is exactly one polynomial

$$
p(x)=a_{0}+a_{1} x+\cdots+a_{n-1} x^{n-1}+a_{n} x^{n} \quad \text { of degree } n
$$

so that the graph $y=p(x)$ will pass through these points.

## Method to fit polynomial

Suppose a collection of data is represented by $n$ points:

$$
\left(x_{1}, y_{1}\right),\left(x_{2}, y_{2}\right), \ldots,\left(x_{n}, y_{n}\right)
$$

Assume the $x$-coordinates $x_{1}, x_{2}, \ldots, x_{n}$ are distinct.
We determine a UNIQUE polynomial
$p(x)=a_{0}+a_{1} x_{1}+a_{2} x^{2}+\cdots+a_{n-1} x^{n-1} \quad$ with $\quad \operatorname{deg}(p) \leq n-1$
so that the graph of $y=p(x)$ passes through these points.

- Given $n$ such points, to determine $p(x)$ we need to find the coefficients $a_{0}, a_{1}, \ldots, a_{n-1}$.
- Since $\left(x_{i}, y_{i}\right)$ passes through the graph of $y=p(x)$, we have $y_{i}=p\left(x_{i}\right)$.


## Continued

More explicitly,

$$
\left\{\begin{array}{llllll}
a_{0} & +a_{1} x_{1} & +a_{2} x_{1}^{2} & +\cdots & +a_{n-1} x_{1}^{n-1} & =y_{1}  \tag{1}\\
a_{0} & +a_{1} x_{2} & +a_{2} x_{2}^{2} & +\cdots & +a_{n-1} x_{2}^{n-1} & =y_{2} \\
a_{0} & +a_{1} x_{3} & +a_{2} x_{3}^{2} & +\cdots & +a_{n-1} x_{3}^{n-1} & =y_{3} \\
\cdots & \cdots & \cdots & \cdots & \cdots & \cdots \\
a_{0} & +a_{1} x_{n} & +a_{2} x_{n}^{2} & +\cdots & +a_{n-1} x_{n}^{n-1} & =y_{n}
\end{array}\right.
$$

This is a linear system of $n$ equations, with $n$ unknowns (variables) $a_{0}, a_{1}, a_{2}, \ldots, a_{n-1}$.

## Continued

The augmented matrix of this linear system is:

$$
\left(\begin{array}{cccccc}
1 & x_{1} & x_{1}^{2} & \cdots & x_{1}^{n-1} & y_{1} \\
1 & x_{2} & x_{2}^{2} & \cdots & x_{2}^{n-1} & y_{2} \\
1 & x_{3} & x_{3}^{2} & \cdots & x_{3}^{n-1} & y_{3} \\
\cdots & \cdots & \cdots & \cdots & \cdots & \cdots \\
1 & x_{n} & x_{n}^{2} & \cdots & x_{n}^{n-1} & y_{n}
\end{array}\right)
$$

and the coefficients matrix is

$$
\left(\begin{array}{ccccc}
1 & x_{1} & x_{1}^{2} & \cdots & x_{1}^{n-1} \\
1 & x_{2} & x_{2}^{2} & \cdots & x_{2}^{n-1} \\
1 & x_{3} & x_{3}^{2} & \cdots & x_{3}^{n-1} \\
\cdots & \cdots & \cdots & \cdots & \cdots \\
1 & x_{n} & x_{n}^{2} & \cdots & x_{n}^{n-1}
\end{array}\right) .
$$

This matrix is called Vandermonde-matrix in $x_{1}, x_{2}, \ldots, x_{n}$.

## Continued

- Since $x_{1}, \ldots, x_{n}$ are assumed to be distinct, it is known that the linear system (1), has a unique solution.
- We can reduce the augmented matrix to row echelon form and solve for $a_{0}, a_{1}, \ldots, a_{n-1}$.


## Example 1.3.1

Determine the polynomial function (of degree 2) that passes through the points $(2,4),(3,6),(4,10)$.
Solution: Let $p(x)=a+b x+c x^{2}$. Since these points pass through the graph of $y=p(x)=a+b x+c x^{2}$, we have

$$
\left\{\begin{array} { l } 
{ a + b 2 + c 2 ^ { 2 } = 4 } \\
{ a + b 3 + c 3 ^ { 2 } = 6 } \\
{ a + b 4 + c 4 ^ { 2 } = 1 0 }
\end{array} \text { or } \left\{\begin{array}{l}
a+2 b+4 c=4 \\
a+3 b+9 c=6 \\
a+4 b+16 c=10
\end{array}\right.\right.
$$

## Continued

The augmented matrix of this system is:

$$
\left(\begin{array}{llll}
1 & 2 & 4 & 4 \\
1 & 3 & 9 & 6 \\
1 & 4 & 16 & 10
\end{array}\right)
$$

Now we reduce the matrix to the row-echelon form. To do this subtract row-1 from row-2 and row-3:

$$
\left(\begin{array}{llll}
1 & 2 & 4 & 4 \\
0 & 1 & 5 & 2 \\
0 & 2 & 12 & 6
\end{array}\right)
$$

Now, subtract 2 times row-2 from row-3:


## Continued

Divide the last row by 2 :

$$
\left(\begin{array}{llll}
1 & 2 & 4 & 4 \\
0 & 1 & 5 & 2 \\
0 & 0 & 1 & 1
\end{array}\right)
$$

The matrix is in row-echelon form. The linear system corresponding to this matrix is:

So $\quad c=1, \quad b=2-5=-3, \quad a=4-4+6=6$

## Continued

So

$$
p(x)=a+b x+c x^{2}=6-3 x+x^{2} .
$$

You can use TI to graph it, and check that the graph passes through the given three points.

## Example 1.3.2

Here is some US census population data:

| Year | 1980 | 1990 | 2000 |
| :--- | :---: | :---: | :---: |
| population y | 227 | 249 | 281 |

Here population is given in millions.

- Fit a quadratic polynomial passing through these points.
- Use it to predict population in year 2010 and 2020.

Solution: Let $t$ be the variable time and set $t=0$ for the year 1980. The table reduces to

| $t$ | 0 | 10 | 20 |
| :---: | :---: | :---: | :---: |
| $y$ | 227 | 249 | 281 |

## Continued

Let $p(t)=a+b t+c t^{2}$ be the polynomial that fits this data.
Since the data points pass through the graph of $y=p(t)=a+b t+c t^{2}$, we have

$$
\begin{aligned}
& \left\{\begin{aligned}
a+b 0+c 0^{2} & =227 \\
a+b 10+c 10^{2} & =249 \\
a+b 20+c 20^{2} & =281
\end{aligned}\right. \\
& \left\{\begin{aligned}
a & =227 \\
a+10 b+100 c & =249 \\
a+20 b+400 c & =281
\end{aligned}\right.
\end{aligned}
$$

## Continued

The augmented matrix is

$$
\left(\begin{array}{llll}
1 & 0 & 0 & 227 \\
1 & 10 & 100 & 249 \\
1 & 20 & 400 & 281
\end{array}\right)
$$

Now use TI-84 (or you can hand reduce) to reduce the matrix to Gauss-Jordan form:

$$
\begin{gathered}
\left(\begin{array}{llll}
1 & 0 & 0 & 227 \\
0 & 1 & 0 & 1.7 \\
0 & 0 & 1 & .05
\end{array}\right) \\
\text { So, } a=227, b=1.7, c=0.05
\end{gathered}
$$

## Continued

$$
\text { So, } \quad y=p(t)=227+1.7 t+.05 t^{2}
$$

This answers part (1). For part (2), for year 2010, we have $t=30$ and predicted population is

$$
p(30)=227+1.7 * 30+.05 * 30^{2}=323 \mathrm{mi} .
$$

Similarly, for year 2020, wehave $t=40$ and predicted population is

$$
p(30)=227+1.7 * 40+.05 * 40^{2}=375 \mathrm{mi} .
$$

## Basic Network

A network consists of junctions and branches. Following is an example of network:


Such network systems are used to model variety of situations, including in economics, traffic, telephone signal and electrical engineering.

## Continued

Such models assumes that the total flow into a junction is equal to total flow out of the junction. Accordingly, above network is represented by

$$
x=y+13+z .
$$

## Example 1.3.3

The flow of traffic through a network of telephone towers is shown in the following figure:


- Solve this system for $x_{1}, x_{2}, x_{3}, x_{4}, x_{5}$.
- Find the traffic flow when $x_{2}=20$ and $x_{3}=5$.
- Find the traffic flow when $x_{2}=15$ and $x_{3}=0$.


## Continued

Solution: From junction $A$, we get

$$
x_{1}+x_{2}=30
$$

From junction $B$, we get

$$
x_{1}+x_{3}=15+x_{4} \quad O R \quad x_{1}+x_{3}-x_{4}=15
$$

From junction Y , we get

$$
x_{2}+20=x_{3}+x_{5} \quad O R \quad x_{2}-x_{3}-x_{5}=-20
$$

From junction Z, we get

$$
x_{4}+x_{5}=35
$$

## Continued

We will write the system in a better way:

To solve this linear system, we write the augmented matrix:

$$
\left(\begin{array}{cccccc}
1 & 1 & 0 & 0 & 0 & 30 \\
1 & 0 & 1 & -1 & 0 & 15 \\
0 & 1 & -1 & 0 & -1 & -20 \\
0 & 0 & 0 & 1 & 1 & 35
\end{array}\right)
$$

## Continued

Reduce this matrix to row-echelon form. Subtract row 1 from row 2:

$$
\left(\begin{array}{cccccc}
1 & 1 & 0 & 0 & 0 & 30 \\
0 & -1 & 1 & -1 & 0 & -15 \\
0 & 1 & -1 & 0 & -1 & -20 \\
0 & 0 & 0 & 1 & 1 & 35
\end{array}\right)
$$

Add second row to third:

$$
\left(\begin{array}{cccccc}
1 & 1 & 0 & 0 & 0 & 30 \\
0 & -1 & 1 & -1 & 0 & -15 \\
0 & 0 & 0 & -1 & -1 & -35 \\
0 & 0 & 0 & 1 & 1 & 35
\end{array}\right)
$$

## Continued

Add third roe to fourth:

$$
\left(\begin{array}{cccccc}
1 & 1 & 0 & 0 & 0 & 30 \\
0 & -1 & 1 & -1 & 0 & -15 \\
0 & 0 & 0 & -1 & -1 & -35 \\
0 & 0 & 0 & 0 & 0 & 0
\end{array}\right)
$$

Multiply second row by -1 and third row by -1 :

$$
\left(\begin{array}{cccccc}
1 & 1 & 0 & 0 & 0 & 30 \\
0 & 1 & -1 & 1 & 0 & 15 \\
0 & 0 & 0 & 1 & 1 & 35 \\
0 & 0 & 0 & 0 & 0 & 0
\end{array}\right)
$$

The matrix is in row-echelon form.

## Continued

The corresponding linear system is given by:

$$
\begin{gathered}
\left\{\begin{array}{cccc}
x_{1} & +x_{2} & & =30 \\
& x_{2} & -x_{3} & +x_{4} \\
& & x_{4} \quad+x_{5} & =35
\end{array}\right. \\
\\
\end{gathered}
$$

## Continued

This answers (1). For (2) $t=x_{2}=20, s=x_{3}=5$. So,

$$
x_{1}=10, \quad x_{2}=20, \quad x_{3}=5, \quad x_{4}=0, \quad x_{5}=30
$$

For (3) $t=x_{2}=15, s=x_{3}=0$. So,

$$
x_{1}=15, \quad x_{2}=15, \quad x_{3}=0, \quad x_{4}=0, \quad x_{5}=35
$$

## Kirchhoff's Laws

Systems of Linear equations is also used in electrical network. Analysis of electrical network is guided by two properties known as Kirchhoff's Laws:

- All the current flowing into a junction must flow out of it.
- The sum of the products $I R$ ( $I$ is current and $R$ is resistance) around a closed path is equal to the total voltage.
A battery is denoted by $\Vdash$ or $\dashv \mid$ and the resistance is denoted by


## Example 1.3.4

Consider the electrical circuit.

(The circuit should be connected, I could not draw a better one.)

## Continued

Use Kirchhoff-Law to determine $I_{1}, I_{2}, I_{3}$.
Solution: Apply (1) of Kirchhoff-Law to junction $J_{1}$, we have

$$
I_{1}+I_{3}=I_{2} \quad \text { Eqn }-1
$$

Applying the same to $J_{2}$ wil give the same equation. So, we will not write it.
Now apply (2) of Kirchhoff-Law

$$
\begin{aligned}
& \left\{\begin{array}{rrl}
R_{1} I_{1}+R_{2} I_{2} & =3 \\
R_{2} I_{2}+R_{3} I_{3} & =1
\end{array} \quad O R\right. \\
& \left\{\begin{array}{rrl}
4 I_{1}+3 I_{2} & =3 & \text { Eqn }-2 \\
3 I_{2}+I_{3}=1 & \text { Eqn }-3
\end{array}\right.
\end{aligned}
$$

## Continued

The the network system is given by

$$
\left\{\begin{array}{rrrr}
I_{1} & -I_{2}+I_{3} & =0 & \text { Eqn }-1 \\
4 I_{1}+3 I_{2} & & =3 & \text { Eqn }-2 \\
3 I_{2}+I_{3} & =1 & \text { Eqn }-3
\end{array}\right.
$$

The augmented matrix is:

$$
\left(\begin{array}{cccc}
1 & -1 & 1 & 0 \\
4 & 3 & 0 & 3 \\
0 & 3 & 1 & 1
\end{array}\right)
$$

Now, we reduce this matrix to row-echelon form.

## Continued

To dothis, first subtract 4 time first reo from second:

$$
\left(\begin{array}{cccc}
1 & -1 & 1 & 0 \\
0 & 7 & -4 & 3 \\
0 & 3 & 1 & 1
\end{array}\right)
$$

Divide row two by 7 :

$$
\left(\begin{array}{cccc}
1 & -1 & 1 & 0 \\
0 & 1 & -\frac{4}{7} & \frac{3}{7} \\
0 & 3 & 1 & 1
\end{array}\right)
$$

## Continued

Subtract 3 times rwo two from row three:

$$
\left(\begin{array}{cccc}
1 & -1 & 1 & 0 \\
0 & 1 & -\frac{4}{7} & \frac{3}{7} \\
0 & 0 & \frac{19}{7} & -\frac{2}{7}
\end{array}\right)
$$

Divide row three by $\frac{19}{7}$ :

$$
\left(\begin{array}{cccc}
1 & -1 & 1 & 0 \\
0 & 1 & -\frac{4}{7} & \frac{3}{7} \\
0 & 0 & 1 & -\frac{2}{19}
\end{array}\right)
$$

## Continued

Now, we further reduce it to Gauss-Jordan form. To do this, add second row to first:

$$
\left(\begin{array}{cccc}
1 & 0 & \frac{3}{7} & \frac{3}{7} \\
0 & 1 & -\frac{4}{7} & \frac{3}{7} \\
0 & 0 & 1 & -\frac{2}{19}
\end{array}\right) .
$$

Now subtract $\frac{3}{7}$ times third row from first:

$$
\left(\begin{array}{cccc}
1 & 0 & 0 & \frac{9}{19} \\
0 & 1 & -\frac{4}{7} & \frac{3}{7} \\
0 & 0 & 1 & -\frac{2}{19}
\end{array}\right) .
$$

## Continued

Now, add $\frac{4}{7}$ time third roe to second:

$$
\left(\begin{array}{cccc}
1 & 0 & 0 & \frac{9}{19} \\
0 & 1 & 0 & \frac{7}{19} \\
0 & 0 & 1 & -\frac{2}{19}
\end{array}\right)
$$

The corresponding linear system s given by,

$$
\left\{\begin{array}{llll}
I_{1} & & & =\frac{9}{19} \\
& I_{2} & & =\frac{7}{19} \\
& & I_{3} & =-\frac{2}{19}
\end{array}\right.
$$

