Matrices: §2.3 The Inverse of Matrices

Satya Mandal, KU

Summer 2017

Goals

- Define inverse of a matrix.
- Point out that not every matrix A has an inverse.
- Discuss uniqueness of inverse of a matrix A.
- Discuss methods of computing inverses, particularly by row operations.
- Discuss properties of inverses.
- Apply them to solve systems of linear equations.

Definition:

Let A be a square matrix A (of size $n \times n$).

- A is said to be invertible (or nonsingular) if there exists a matrix B such that
$A B=B A=I_{n}$ where I_{n} is the identity matrix of order n.
- Subsequently, we will see that such a B is unique (if exists), which will be called "the" inverse of A.
- Note we assumed that A is a square matrix. We will see, not all square matrices have an inverse.

Uniqueness of Inverse

Theorem. Suppose A is an invetible matrix. Then, its inverse is unique. This unique inverse is denoted by A^{-1}.
Proof. Since A is invertible, it has at least one inverse. Suppose it has two inverses, B and C. By definition

$$
\begin{aligned}
& A B=B A=I_{n}=A C=C A . \\
& B=B I_{n}=B(A C)=(B A) C=I_{n} C=C
\end{aligned}
$$

So, $B=C$. The proof is complete.

Example: Computing Inverse

Recall: In $\S 2.2$, HW Problem 3(b), in deed, computes the inverse of the matrix $A=\left(\begin{array}{ll}1 & 1 \\ 1 & 2\end{array}\right)$, by solving

$$
\left(\begin{array}{ll}
1 & 1 \\
1 & 2
\end{array}\right)\left(\begin{array}{ll}
x & y \\
z & w
\end{array}\right)=\left(\begin{array}{ll}
1 & 0 \\
0 & 1
\end{array}\right)
$$

The same method is elaborated, to compute the inverse of a matrix of order 3, below.

Examples

Finding Inverse by Gauss-Jordan Elimination Example
Example: Non-existence
Inverse of 2×2 Matrices
Properties of Inverses
Cancellation Property of Invertible Matrices
Systems of Equations

Inverse of a given Matrix

Let

$$
A=\left[\begin{array}{cc}
1 & 1 \\
-1 & 1
\end{array}\right], \quad B=.5\left[\begin{array}{cc}
1 & -1 \\
1 & 1
\end{array}\right]
$$

Then $A B=B A=I_{2}$. So, $A^{-1}=B$.

Example

Example: Non-existence
Inverse of 2×2 Matrices
Properties of Inverses
Cancellation Property of Invertible Matrices
Systems of Equations

Inverse by solving

$$
\text { Let } A=\left[\begin{array}{lll}
1 & 1 & 0 \\
1 & 0 & 1 \\
0 & 1 & 1
\end{array}\right] \text { and let } A^{-1}=\left[\begin{array}{lll}
a & x & u \\
b & y & v \\
c & z & w
\end{array}\right]
$$

Then

$$
A A^{-1}=\left[\begin{array}{lll}
1 & 1 & 0 \\
1 & 0 & 1 \\
0 & 1 & 1
\end{array}\right]\left[\begin{array}{lll}
a & x & u \\
b & y & v \\
c & z & w
\end{array}\right]=\left[\begin{array}{lll}
1 & 0 & 0 \\
0 & 1 & 0 \\
0 & 0 & 1
\end{array}\right]
$$

So,

$$
\left[\begin{array}{lll}
a+b & x+y & u+v \\
a+c & x+z & u+w \\
b+c & y+z & v+w
\end{array}\right]=\left[\begin{array}{lll}
1 & 0 & 0 \\
0 & 1 & 0 \\
0 & 0 & 1
\end{array}\right]
$$

This gives three systems of linear equations

$$
\left\{\begin{array} { l }
{ a + b = 1 } \\
{ a + c = 0 } \\
{ b + c = 0 }
\end{array} \left\{\begin{array} { l }
{ x + y = 0 } \\
{ x + z = 1 } \\
{ y + z = 0 }
\end{array} \left\{\begin{array}{l}
u+v=0 \\
u+w=0 \\
v+w=1
\end{array}\right.\right.\right.
$$

We solve them as before:

$$
\left\{\begin{array} { l }
{ a = . 5 } \\
{ b = . 5 } \\
{ c = - . 5 }
\end{array} \left\{\begin{array} { l }
{ x = . 5 } \\
{ y = - . 5 } \\
{ z = . 5 }
\end{array} \left\{\begin{array}{l}
u=-.5 \\
v=.5 \\
w=.5
\end{array}\right.\right.\right.
$$

So,

$$
A^{-1}=\left[\begin{array}{lll}
a & x & u \\
b & y & v \\
c & z & w
\end{array}\right]=\left[\begin{array}{ccc}
.5 & .5 & -.5 \\
.5 & -.5 & .5 \\
-.5 & .5 & .5
\end{array}\right]
$$

It is obvious $A A^{-1}=I_{n}$. We should also check $A^{-1} A=I_{n}$, which we skip.

An Algorithm to find Inverse

In the above example, we solved three systems of linear equations to find the inverse. An algorithm to do the same by Gauss-Jordan Elimination is as follows:

- let A be a matrix of size $n \times n$.
- Let I be the identity matrix of order n
- Form the $n \times 2 n$ matrix $[A \mid I]$ by adjoining I to A.
- By row operations, try to reduce $[A \mid I]$ to the form $[I \mid B]$. If it works, $A^{-1}=B$; else, A is not invertible.
- Check (ideally) that $A B=B A=I$. (Subsequently, we will see that this step is not necessary.)

Example 2.3.1

We will use the above algorithm to compute inverse of

$$
A=\left[\begin{array}{ccc}
1 & 2 & 2 \\
3 & 7 & 9 \\
-1 & -4 & -7
\end{array}\right]
$$

We adjoin the identity matrix I_{3} to A, and get

$$
\left[\begin{array}{cccccc}
1 & 2 & 2 & 1 & 0 & 0 \\
3 & 7 & 9 & 0 & 1 & 0 \\
-1 & -4 & -7 & 0 & 0 & 1
\end{array}\right]
$$

Now we apply row operations.

subtract 3 times first row from second and add first row to third:

$$
\left[\begin{array}{cccccc}
1 & 2 & 2 & 1 & 0 & 0 \\
0 & 1 & 3 & -3 & 1 & 0 \\
0 & -2 & -5 & 1 & 0 & 1
\end{array}\right]
$$

Subtract 2 times the second row from the first and add 2 times the second row to the last:

$$
\left[\begin{array}{cccccc}
1 & 0 & -4 & 7 & -2 & 0 \\
0 & 1 & 3 & -3 & 1 & 0 \\
0 & 0 & 1 & -5 & 2 & 1
\end{array}\right]
$$

Add 4 times the last row to the first and subtract 3 times the last row from the second:

$$
\left[\begin{array}{cccccc}
1 & 0 & 0 & -13 & 6 & 4 \\
0 & 1 & 0 & 12 & -5 & -3 \\
0 & 0 & 1 & -5 & 2 & 1
\end{array}\right]
$$

This is in the form $\left[I_{3} \mid B\right]$. So,

$$
A^{-1}=B=\left[\begin{array}{ccc}
-13 & 6 & 4 \\
12 & -5 & -3 \\
-5 & 2 & 1
\end{array}\right]
$$

Example 2.3.2: non- existence

Here is an example of a matrix, that does not have an inverse.

$$
\text { Let } \quad A=\left[\begin{array}{ccc}
3 & 2 & 5 \\
4 & 4 & 8 \\
-2 & 2 & 0
\end{array}\right]
$$

Augment the identity matrix to $A: I_{3}$ to A :

$$
\left[\begin{array}{cccccc}
3 & 2 & 5 & 1 & 0 & 0 \\
4 & 4 & 8 & 0 & 1 & 0 \\
-2 & 2 & 0 & 0 & 0 & 1
\end{array}\right]
$$

Continued

Switch the last and the first row:

$$
\left[\begin{array}{cccccc}
-2 & 2 & 0 & 0 & 0 & 1 \\
4 & 4 & 8 & 0 & 1 & 0 \\
3 & 2 & 5 & 1 & 0 & 0
\end{array}\right]
$$

Divide the first row by -2 :

$$
\left[\begin{array}{cccccc}
1 & -1 & 0 & 0 & 0 & -.5 \\
4 & 4 & 8 & 0 & 1 & 0 \\
3 & 2 & 5 & 1 & 0 & 0
\end{array}\right]
$$

Continued

Subtract 4 times the $1^{\text {st }}$-row from $2^{\text {nd }}$ and subtract 3 times the $1^{\text {st }}$ from $3^{\text {rd }}$:

$$
\left[\begin{array}{cccccc}
1 & -1 & 0 & 0 & 0 & -.5 \\
0 & 8 & 8 & 0 & 1 & 2 \\
0 & 5 & 5 & 1 & 0 & 1.5
\end{array}\right]
$$

Divide second row by 8 :

$$
\left[\begin{array}{cccccc}
1 & -1 & 0 & 0 & 0 & -.5 \\
0 & 1 & 1 & 0 & .125 & 4 \\
0 & 5 & 5 & 1 & 0 & 1.5
\end{array}\right]
$$

Continued

Add $2^{\text {nd }}$ row to $1^{\text {st }}$ and subtract 5 times $2^{\text {nd }}$ row to the last:

$$
\left[\begin{array}{cccccc}
1 & 0 & 1 & .125 & 0 & 3.5 \\
0 & 1 & 1 & 0 & .125 & 4 \\
0 & 0 & 0 & 1 & .625 & -18.5
\end{array}\right]
$$

The first half of this matrix does not reduce to the identity l_{3}. So, A does not have an inverse.

Determinant and Inverse of 2×2 Matrices

Let

$$
A=\left(\begin{array}{ll}
a & b \\
c & d
\end{array}\right)
$$

It follows easily:

$$
\left(\begin{array}{ll}
a & b \\
c & d
\end{array}\right)\left(\begin{array}{cc}
d & -b \\
-c & a
\end{array}\right)=\left(\begin{array}{cc}
a d-b c & 0 \\
0 & a d-b c
\end{array}\right)
$$

- Define determinant of A as $\operatorname{det}(A)=a d-b c$.
- It follows from above,

$$
A^{-1}=\frac{1}{a d-b c}\left(\begin{array}{cc}
d & -b \\
-c & a
\end{array}\right) \quad \text { if } \quad a d-b c \neq 0 .
$$

- In next chapter is devoted to determinant of matrices of higher order. It also generalizes this formula for inverse.

Properties of Inverses

Let A, B be two invertible matrices (of size $n \times n$), $c \neq 0$ is a scalar and k is a positive integer. Then,

- $\left(A^{-1}\right)^{-1}=A$.
- $\left(A^{k}\right)^{-1}=\left(A^{-1}\right)^{k}$.
- $(c A)^{-1}=\frac{1}{c} A^{-1}$
- $\left(A^{T}\right)^{-1}=\left(A^{-1}\right)^{T}$
- $(A B)^{-1}=B^{-1} A^{-1}$

Proof.

In each case, we need to verify the definition of inverse. I will only prove the last one and leave the rest as exercises. We have

$$
(A B)\left(B^{-1} A^{-1}\right)=A\left(B B^{-1}\right) A^{-1}=A(I) A^{-1}=A A^{-1}=I
$$

and similarly $\left(B^{-1} A^{-1}\right) A B=I$. So, the last statement is proved.

Cancellation

Recall, in general, for matrices, $A C=B C$ does not necessarily imply $A=B$. (Please review the example in my notes on §2.2.) But invertible matrices has the cancellation property: Let C be an invertible matrix. Then,

- $A C=B C \quad \Longrightarrow A=B$.
- $C A=C B \quad \Longrightarrow A=B$.

Proof.

Suppose $A C=B C$. On the right side each of this equation, multiply by C^{-1}. Then we have,

$$
\begin{aligned}
(A C) C^{-1} & =(B C) C^{-1} \Longrightarrow A\left(C C^{-1}\right)=B\left(C C^{-1}\right) \\
& \Rightarrow A(I)=B(I) \Longrightarrow A=B .
\end{aligned}
$$

So, the first statement is established. Similiarly, prove the second statement.

Theorem.

Suppose

Ax $=\mathbf{b} \quad$ Systems of Linear Equations

If A is invertible, then $\mathbf{x}=A^{-1} \mathbf{b}$.
Proof.

$$
A \mathbf{x}=\mathbf{b} \Rightarrow A^{-1} A \mathbf{x}=A^{-1} \mathbf{b} \Rightarrow I_{n} \mathbf{x}=A^{-1} \mathbf{b} \Rightarrow \mathbf{x}=A^{-1} \mathbf{b}
$$

The proof is complete.

Example 2.3.3

Compute inverse of $A=\left[\begin{array}{ccc}7 & 3 & -5 \\ -2 & 3 & 2 \\ 3 & 2 & -2\end{array}\right]$
Solution: Augment I_{3} to A. We have

$$
\left[A \mid I_{3}\right]=\left[\begin{array}{cccccc}
7 & 3 & -5 & 1 & 0 & 0 \\
-2 & 3 & 2 & 0 & 1 & 0 \\
3 & 2 & -2 & 0 & 0 & 1
\end{array}\right]
$$

Continued

Subtract 2 times the third row from first:

$$
\left[\begin{array}{cccccc}
1 & -1 & -1 & 1 & 0 & -2 \\
-2 & 3 & 2 & 0 & 1 & 0 \\
3 & 2 & -2 & 0 & 0 & 1
\end{array}\right]
$$

Add 2 times first row to second; then subtract 3 times first row from third:

$$
\left[\begin{array}{cccccc}
1 & -1 & -1 & 1 & 0 & -2 \\
0 & 1 & 0 & 2 & 1 & -4 \\
0 & 5 & 1 & -3 & 0 & 7
\end{array}\right]
$$

Continued

Add $2^{\text {nd }}$ row to $1^{\text {st }}$; then subtract 5 time $2^{\text {nd }}$ row from $3^{\text {rd }}$:

$$
\left[\begin{array}{cccccc}
1 & 0 & -1 & 3 & 1 & -6 \\
0 & 1 & 0 & 2 & 1 & -4 \\
0 & 0 & 1 & -13 & -5 & 27
\end{array}\right]
$$

Add $3^{\text {rd }}$ row to $1^{\text {st }}$:

$$
\left[\begin{array}{cccccc}
1 & 0 & 0 & -10 & -4 & 21 \\
0 & 1 & 0 & 2 & 1 & -4 \\
0 & 0 & 1 & -13 & -5 & 27
\end{array}\right]
$$

Continued

So,

$$
A^{-1}=\left(\begin{array}{ccc}
-10 & -4 & 21 \\
2 & 1 & -4 \\
-13 & -5 & 27
\end{array}\right)
$$

Exercise: Some Algebra

Exercise 2.3.4

$$
A^{-1}=\left(\begin{array}{ccc}
10 & 4 & -21 \\
2 & 1 & -4 \\
3 & 1 & -6
\end{array}\right) \quad B^{-1}=\left(\begin{array}{ccc}
4 & 9 & -4 \\
-2 & 4 & -1 \\
3 & -1 & 5
\end{array}\right)
$$

- (a) Compute $(A B)^{-1}$
- (b) Compute $\left(A^{T}\right)^{-1}$
- (c) Compute $(2 A)^{-1}$

Solution

Solution:

- (a) $(A B)^{-1}=B^{-1} A^{-1}=$

$$
\left(\begin{array}{ccc}
4 & 9 & -4 \\
-2 & 4 & -1 \\
3 & -1 & 5
\end{array}\right)\left(\begin{array}{ccc}
10 & 4 & -21 \\
2 & 1 & -4 \\
3 & 1 & -6
\end{array}\right)=\left(\begin{array}{ccc}
46 & 21 & -96 \\
-15 & -5 & 32 \\
43 & 16 & -89
\end{array}\right)
$$

Solution

Solution:

- (b) $\left(A^{T}\right)^{-1}=\left(A^{-1}\right)^{T}=$

$$
\left(\begin{array}{ccc}
10 & 4 & -21 \\
2 & 1 & -4 \\
3 & 1 & -6
\end{array}\right)^{\top}=\left(\begin{array}{ccc}
10 & 2 & 3 \\
4 & 1 & 1 \\
-21 & -4 & -6
\end{array}\right)
$$

Solution

Solution:

- (c) $(2 A)^{-1}=\frac{1}{2} A^{-1}=$

$$
\frac{1}{2}\left(\begin{array}{ccc}
10 & 4 & -21 \\
2 & 1 & -4 \\
3 & 1 & -6
\end{array}\right)=\left[\begin{array}{ccc}
5 & 2 & -10.5 \\
1 & .5 & -2 \\
1.5 & .5 & -3
\end{array}\right]
$$

Example: Use inverse to Solve

Use inverse of matrices to solve

$$
\left\{\begin{array}{ccc}
2 x_{1} & -3 x_{2} & -5 x_{3}=1 \\
& 3 x_{2} & -2 x_{3}=3 \\
x_{1} & -2 x_{2} & -2 x_{3}=-3
\end{array}\right.
$$

In the matrix form:

$$
\left(\begin{array}{ccc}
2 & -3 & -5 \\
0 & 3 & -2 \\
1 & -2 & -2
\end{array}\right)\left(\begin{array}{l}
x_{1} \\
x_{2} \\
x_{3}
\end{array}\right)=\left(\begin{array}{c}
1 \\
3 \\
-3
\end{array}\right)
$$

Continued

We write the system as $A \mathbf{x}=\mathbf{b}$, where

$$
A=\left(\begin{array}{ccc}
2 & -3 & -5 \\
0 & 3 & -2 \\
1 & -2 & -2
\end{array}\right), \quad \mathbf{x}=\left(\begin{array}{l}
x_{1} \\
x_{2} \\
x_{3}
\end{array}\right), \quad \mathbf{b}=\left(\begin{array}{c}
1 \\
3 \\
-3
\end{array}\right)
$$

- In matrix notation solution is $\mathbf{x}=A^{-1} \mathbf{b}$, if A^{-1} exists.

Continued

Next, we compute A^{-1}. Augment I_{3} to A :

$$
\left[A \mid I_{3}\right]=\left(\begin{array}{cccccc}
2 & -3 & -5 & 1 & 0 & 0 \\
0 & 3 & -2 & 0 & 1 & 0 \\
1 & -2 & -2 & 0 & 0 & 1
\end{array}\right)
$$

Switch first row and last row:

$$
\left(\begin{array}{cccccc}
1 & -2 & -2 & 0 & 0 & 1 \\
0 & 3 & -2 & 0 & 1 & 0 \\
2 & -3 & -5 & 1 & 0 & 0
\end{array}\right)
$$

Continued

Subtract 2 times $1^{\text {st }}$ row from $3^{\text {rd }}$:

$$
\left(\begin{array}{cccccc}
1 & -2 & -2 & 0 & 0 & 1 \\
0 & 3 & -2 & 0 & 1 & 0 \\
0 & 1 & -1 & 1 & 0 & -2
\end{array}\right)
$$

Switch $2^{\text {nd }}$ and $3^{\text {rd }}$ rows:

$$
\left(\begin{array}{cccccc}
1 & -2 & -2 & 0 & 0 & 1 \\
0 & 1 & -1 & 1 & 0 & -2 \\
0 & 3 & -2 & 0 & 1 & 0
\end{array}\right)
$$

Continued

Add 2 times $2^{\text {nd }}$ row to $1^{\text {st }}$ and subtract 3 times $2^{\text {nd }}$ from $3^{\text {rd }}$:

$$
\left(\begin{array}{cccccc}
1 & 0 & -4 & 2 & 0 & -3 \\
0 & 1 & -1 & 1 & 0 & -2 \\
0 & 0 & 1 & -3 & 1 & 6
\end{array}\right)
$$

Add 4 times $3^{\text {rd }}$ row to $1^{\text {st }}$ and add $3^{\text {rd }}$ row to $2^{\text {nd }}$:

$$
\left(\begin{array}{cccccc}
1 & 0 & 0 & -10 & 4 & 21 \\
0 & 1 & 0 & -2 & 1 & 4 \\
0 & 0 & 1 & -3 & 1 & 6
\end{array}\right)
$$

Continued

$$
\begin{aligned}
& \text { So, } \quad A^{-1}=\left(\begin{array}{ccc}
-10 & 4 & 21 \\
-2 & 1 & 4 \\
-3 & 1 & 6
\end{array}\right) . \text { And, the solution : } \\
& \mathbf{x}=A^{-1} \mathbf{b}=\left(\begin{array}{ccc}
-10 & 4 & 21 \\
-2 & 1 & 4 \\
-3 & 1 & 6
\end{array}\right)\left(\begin{array}{c}
1 \\
3 \\
-3
\end{array}\right)=\left(\begin{array}{c}
-6 \\
-11 \\
-18
\end{array}\right)
\end{aligned}
$$

Another Example

See the old edition of my notes for another example, of such a problem.

