Matrices: §2.3 The Inverse of Matrices

Satya Mandal, KU

Summer 2017

Satya Mandal, KU Matrices: §2.3 The Inverse of Matrices

イロン 不同と 不同と 不同と

- Define inverse of a matrix.
- Point out that not every matrix A has an inverse.
- Discuss uniqueness of inverse of a matrix A.
- Discuss methods of computing inverses, particularly by row operations.
- Discuss properties of inverses.
- Apply them to solve systems of linear equations.

・ 同 ト ・ ヨ ト ・ ヨ ト

Uniqueness of Inverse Examples Finding Inverse by Gauss-Jordan Elimination Example: Non-existence Inverse of 2 × 2 Matrices Properties of Inverses Cancellation Property of Invertible Matrices Systems of Equations

Definition:

Let A be a square matrix A (of size $n \times n$).

A is said to be invertible (or nonsingular) if there exists a matrix B such that

 $AB = BA = I_n$ where I_n is the identity matrix of order n.

- Subsequently, we will see that such a B is unique (if exists), which will be called "the" inverse of A.
- Note we assumed that A is a square matrix. We will see, not all square matrices have an inverse.

・ロン ・回と ・ヨン ・ヨン

Uniqueness of Inverse

Examples Finding Inverse by Gauss-Jordan Elimination Example Example: Non-existence Inverse of 2×2 Matrices Properties of Inverses Cancellation Property of Invertible Matrices Systems of Equations

イロン イヨン イヨン イヨン

Uniqueness of Inverse

Theorem. Suppose A is an invetible matrix. Then, its inverse is unique. This unique inverse is denoted by A^{-1} . **Proof.** Since A is invertible, it has at least one inverse. Suppose it has two inverses, B and C. By definition

$$AB = BA = I_n = AC = CA.$$
 So,

$$B = BI_n = B(AC) = (BA)C = I_nC = C.$$

So, B = C. The proof is complete.

Uniqueness of Inverse

Examples Finding Inverse by Gauss-Jordan Elimination Example Example: Non-existence Inverse of 2×2 Matrices Properties of Inverses Cancellation Property of Invertible Matrices Systems of Equations

・ロト ・回ト ・ヨト ・ヨト

Example: Computing Inverse

Recall: In §2.2, HW Problem 3(b), in deed, computes the inverse of the matrix $A = \begin{pmatrix} 1 & 1 \\ 1 & 2 \end{pmatrix}$, by solving

$$\left(\begin{array}{rrr}1&1\\1&2\end{array}\right)\left(\begin{array}{r}x&y\\z&w\end{array}\right)=\left(\begin{array}{r}1&0\\0&1\end{array}\right)$$

The same method is elaborated, to compute the inverse of a matrix of order 3, below.

Uniqueness of Inverse Examples Finding Inverse by Gauss-Jordan Elimination Example Example: Non-existence Properties of Inverses Systems of Equations

Inverse of a given Matrix

Let

Let
$$A = \begin{bmatrix} 1 & 1 \\ -1 & 1 \end{bmatrix}, \quad B = .5 \begin{bmatrix} 1 & -1 \\ 1 & 1 \end{bmatrix}$$
Then $AB = BA = I_2$. So, $A^{-1} = B$.

・ロト ・回 ト ・ヨト ・ヨト

3

Uniqueness of Inverse Examples Finding Inverse by Gauss-Jordan Elimination Example Example: Non-existence Inverse of 2 × 2 Matrices Properties of Inverses Cancellation Property of Invertible Matrices Systems of Equations

・ロト ・回ト ・ヨト ・ヨト

Э

Inverse by solving

Let
$$A = \begin{bmatrix} 1 & 1 & 0 \\ 1 & 0 & 1 \\ 0 & 1 & 1 \end{bmatrix}$$
 and let $A^{-1} = \begin{bmatrix} a & x & u \\ b & y & v \\ c & z & w \end{bmatrix}$

Then

$$AA^{-1} = \left[egin{array}{ccc} 1 & 1 & 0 \ 1 & 0 & 1 \ 0 & 1 & 1 \end{array}
ight] \left[egin{array}{ccc} a & x & u \ b & y & v \ c & z & w \end{array}
ight] = \left[egin{array}{ccc} 1 & 0 & 0 \ 0 & 1 & 0 \ 0 & 0 & 1 \end{array}
ight]$$

	Uniqueness of Inverse
	Examples
	Finding Inverse by Gauss-Jordan Elimination
Preview	Example
Inverse of a matrix	Example: Non-existence
More Examples	Inverse of 2×2 Matrices
	Properties of Inverses
	Cancellation Property of Invertible Matrices
	Systems of Equations

So,

$$\begin{bmatrix} a+b & x+y & u+v \\ a+c & x+z & u+w \\ b+c & y+z & v+w \end{bmatrix} = \begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{bmatrix}$$

This gives three systems of linear equations

$$\begin{cases} a+b=1\\ a+c=0\\ b+c=0 \end{cases} \begin{cases} x+y=0\\ x+z=1\\ y+z=0 \end{cases} \begin{cases} u+v=0\\ u+w=0\\ v+w=1 \end{cases}$$

We solve them as before:

$$\begin{cases} a = .5 \\ b = .5 \\ c = -.5 \end{cases} \begin{cases} x = .5 \\ y = -.5 \\ z = .5 \end{cases} \begin{cases} u = -.5 \\ v = .5 \\ w = .5 \end{cases}$$

	officiences of inference				
	Examples				
	Finding Inverse by Gauss-Jordan Elimination				
Preview	Example				
Inverse of a matrix	Example: Non-existence				
More Examples	Inverse of 2×2 Matrices				
	Properties of Inverses				
	Cancellation Property of Invertible Matrices				
	Systems of Equations				

$$A^{-1} = \begin{bmatrix} a & x & u \\ b & y & v \\ c & z & w \end{bmatrix} = \begin{bmatrix} .5 & .5 & -.5 \\ .5 & -.5 & .5 \\ -.5 & .5 & .5 \end{bmatrix}$$

It is obvious $AA^{-1} = I_n$. We should also check $A^{-1}A = I_n$, which we skip.

▲圖 ▶ ▲ 臣 ▶ ▲ 臣 ▶ …

Uniqueness of Inverse Examples Finding Inverse by Gauss-Jordan Elimination Example: Non-existence Inverse of 2 × 2 Matrices Properties of Inverses Cancellation Property of Invertible Matrices Systems of Equations

An Algorithm to find Inverse

In the above example, we solved three systems of linear equations to find the inverse. An algorithm to do the same by Gauss-Jordan Elimination is as follows:

- let A be a matrix of size $n \times n$.
- Let I be the identity matrix of order n
- Form the $n \times 2n$ matrix [A|I] by adjoining I to A.
- ► By row operations, try to reduce [A|I] to the form [I|B]. If it works, A⁻¹ = B; else, A is not invertible.
- Check (ideally) that AB = BA = I. (Subsequently, we will see that this step is not necessary.)

Uniqueness of Inverse Examples Finding Inverse by Gauss-Jordan Elimination Example: Non-existence Inverse of 2 × 2 Matrices Properties of Inverses Cancellation Property of Invertible Matrices Systems of Equations

Example 2.3.1

We will use the above algorithm to compute inverse of

$$A = \left[\begin{array}{rrrr} 1 & 2 & 2 \\ 3 & 7 & 9 \\ -1 & -4 & -7 \end{array} \right]$$

We adjoin the identity matrix I_3 to A, and get

Now we apply row operations.

Uniqueness of Inverse Examples Finding Inverse by Gauss-Jordan Elimination Example Example: Non-existence Inverse of 2 × 2 Matrices Properties of Inverses Cancellation Property of Invertible Matrices Systems of Equations

・ロト ・回ト ・ヨト ・ヨト

2

subtract 3 times first row from second and add first row to third:

$$\begin{bmatrix} 1 & 2 & 2 & 1 & 0 & 0 \\ 0 & 1 & 3 & -3 & 1 & 0 \\ 0 & -2 & -5 & 1 & 0 & 1 \end{bmatrix}$$

Uniqueness of Inverse Examples Finding Inverse by Gauss-Jordan Elimination Example Example: Non-existence Inverse of 2 × 2 Matrices Properties of Inverses Cancellation Property of Invertible Matrices Systems of Equations

Subtract 2 times the second row from the first and add 2 times the second row to the last:

$$\begin{bmatrix} 1 & 0 & -4 & 7 & -2 & 0 \\ 0 & 1 & 3 & -3 & 1 & 0 \\ 0 & 0 & 1 & -5 & 2 & 1 \end{bmatrix}$$

・ロン ・回と ・ヨン ・ヨン

Uniqueness of Inverse Examples Finding Inverse by Gauss-Jordan Elimination Example: Non-existence Inverse of 2 × 2 Matrices Properties of Inverses Cancellation Property of Invertible Matrices Systems of Equations

・ロン ・回と ・ヨン ・ヨン

Add 4 times the last row to the first and subtract 3 times the last row from the second:

This is in the form $[I_3|B]$. So,

$$A^{-1} = B = \left[egin{array}{cccc} -13 & 6 & 4 \ 12 & -5 & -3 \ -5 & 2 & 1 \end{array}
ight]$$

Uniqueness of Inverse Examples Finding Inverse by Gauss-Jordan Elimination Example: Non-existence Inverse of 2 × 2 Matrices Properties of Inverses Cancellation Property of Invertible Matrices Systems of Equations

・ロン ・回と ・ヨン・

Example 2.3.2: non- existence

Here is an example of a matrix, that does not have an inverse.

Let
$$A = \begin{bmatrix} 3 & 2 & 5 \\ 4 & 4 & 8 \\ -2 & 2 & 0 \end{bmatrix}$$

Augment the identity matrix to A: I_3 to A:

Uniqueness of Inverse Examples Finding Inverse by Gauss-Jordan Elimination Example: Non-existence Inverse of 2 × 2 Matrices Properties of Inverses Cancellation Property of Invertible Matrices Systems of Equations

イロト イヨト イヨト イヨト

æ

Continued

Switch the last and the first row:

Divide the first row by -2:

$$\begin{bmatrix} 1 & -1 & 0 & 0 & 0 & -.5 \\ 4 & 4 & 8 & 0 & 1 & 0 \\ 3 & 2 & 5 & 1 & 0 & 0 \end{bmatrix}$$

Uniqueness of Inverse Examples Finding Inverse by Gauss-Jordan Elimination Example: Non-existence Inverse of 2 × 2 Matrices Properties of Inverses Cancellation Property of Invertible Matrices Systems of Equations

イロト イヨト イヨト イヨト

Continued

Subtract 4 times the $1^{\mathit{st}}\text{-row}$ from 2^{nd} and subtract 3 times the 1^{st} from 3^{rd} :

$$\begin{bmatrix} 1 & -1 & 0 & 0 & 0 & -.5 \\ 0 & 8 & 8 & 0 & 1 & 2 \\ 0 & 5 & 5 & 1 & 0 & 1.5 \end{bmatrix}$$

Divide second row by 8:

Uniqueness of Inverse Examples Finding Inverse by Gauss-Jordan Elimination Example Example: Non-existence Inverse of 2 × 2 Matrices Properties of Inverses Cancellation Property of Invertible Matrices Systems of Equations

Continued

Add 2^{nd} row to 1^{st} and subtract 5 times 2^{nd} row to the last:

Γ	1	0	1	.125	0	3.5
	0	1	1	0	.125	4
	0	0	0	1	.625	-18.5

The first half of this matrix does not reduce to the identity I_3 . So, A does not have an inverse.

・ロン ・回 と ・ ヨ と ・ ヨ と

Uniqueness of Inverse Examples Finding Inverse by Gauss-Jordan Elimination Example Example: Non-existence Inverse of 2 × 2 Matrices Properties of Inverses Cancellation Property of Invertible Matrices Systems of Equations

イロト イポト イヨト イヨト

Determinant and Inverse of 2×2 Matrices

Let

$$A = \left(\begin{array}{cc} a & b \\ c & d \end{array}\right)$$

It follows easily:

$$\left(\begin{array}{cc} a & b \\ c & d \end{array}\right) \left(\begin{array}{cc} d & -b \\ -c & a \end{array}\right) = \left(\begin{array}{cc} ad - bc & 0 \\ 0 & ad - bc \end{array}\right)$$

• Define determinant of A as det(A) = ad - bc.

	Uniqueness of Inverse
	Examples
	Finding Inverse by Gauss-Jordan Elimination
Preview	Example
Inverse of a matrix	Example: Non-existence
More Examples	Inverse of 2 \times 2 Matrices
	Properties of Inverses
	Cancellation Property of Invertible Matrices
	Systems of Equations
	-)

It follows from above,

$$A^{-1} = rac{1}{ad-bc} \left(egin{array}{cc} d & -b \ -c & a \end{array}
ight) \qquad {\it if} \quad {\it ad-bc}
eq 0.$$

In next chapter is devoted to determinant of matrices of higher order. It also generalizes this formula for inverse.

向下 イヨト イヨト

Uniqueness of Inverse Examples Finding Inverse by Gauss-Jordan Elimination Example Example: Non-existence Inverse of 2 × 2 Matrices **Properties of Inverses** Cancellation Property of Invertible Matrices Systems of Equations

Properties of Inverses

Let A, B be two invertible matrices (of size $n \times n$), $c \neq 0$ is a scalar and k is a positive integer. Then,

•
$$(A^{-1})^{-1} = A.$$

• $(A^k)^{-1} = (A^{-1})^k$
• $(cA)^{-1} = \frac{1}{c}A^{-1}$

•
$$(A^T)^{-1} = (A^{-1})^T$$

•
$$(AB)^{-1} = B^{-1}A^{-1}$$

・ロト ・回ト ・ヨト ・ヨト

Uniqueness of Inverse Examples Finding Inverse by Gauss-Jordan Elimination Example: Non-existence Inverse of 2 × 2 Matrices **Properties of Inverses** Cancellation Property of Invertible Matrices Systems of Equations

・ロン ・回と ・ヨン・

Proof.

In each case, we need to verify the definition of inverse. I will only prove the last one and leave the rest as exercises. We have

$$(AB)(B^{-1}A^{-1}) = A(BB^{-1})A^{-1} = A(I)A^{-1} = AA^{-1} = I$$

and similarly $(B^{-1}A^{-1})AB = I$. So, the last statement is proved.

Uniqueness of Inverse Examples Finding Inverse by Gauss-Jordan Elimination Example: Non-existence Inverse of 2 × 2 Matrices Properties of Inverses Cancellation Property of Invertible Matrices Systems of Equations

Cancellation

Recall, in general, for matrices, AC = BC does not necessarily imply A = B. (Please review the example in my notes on §2.2.) But invertible matrices has the cancellation property: Let C be an invertible matrix. Then,

$$AC = BC \implies A = B.$$

$$\blacktriangleright CA = CB \implies A = B.$$

イロト イヨト イヨト イヨト

Uniqueness of Inverse Examples Finding Inverse by Gauss-Jordan Elimination Example Example: Non-existence Inverse of 2 × 2 Matrices Properties of Inverses Cancellation Property of Invertible Matrices Systems of Equations

・ロン ・回 と ・ ヨ と ・ ヨ と

Proof.

Suppose AC = BC. On the right side each of this equation, multiply by C^{-1} . Then we have,

$$(AC)C^{-1} = (BC)C^{-1} \Longrightarrow A(CC^{-1}) = B(CC^{-1})$$

$$\Rightarrow A(I) = B(I) \Longrightarrow A = B.$$

So, the first statement is established. Similiarly, prove the second statement.

Uniqueness of Inverse Examples Finding Inverse by Gauss-Jordan Elimination Example Example: Non-existence Inverse of 2 × 2 Matrices Properties of Inverses Cancellation Property of Invertible Matrices Systems of Equations

Theorem.

Suppose

 $A\mathbf{x} = \mathbf{b}$ Systems of Linear Equations If A is invertible, then $\mathbf{x} = A^{-1}\mathbf{b}$.

Proof.

$$A\mathbf{x} = \mathbf{b} \Rightarrow A^{-1}A\mathbf{x} = A^{-1}\mathbf{b} \Rightarrow I_n\mathbf{x} = A^{-1}\mathbf{b} \Rightarrow \mathbf{x} = A^{-1}\mathbf{b}$$

The proof is complete.

・ロト ・回ト ・ヨト ・ヨト

Example 2.3.3

Compute inverse of
$$A = \begin{bmatrix} 7 & 3 & -5 \\ -2 & 3 & 2 \\ 3 & 2 & -2 \end{bmatrix}$$

Solution: Augment I_3 to A. We have

・ロト ・回ト ・ヨト ・ヨト

Continued

Subtract 2 times the third row from first:

Add 2 times first row to second; then subtract 3 times first row from third:

・ロト ・四ト ・ヨト ・ヨトー

Continued

Add 2^{nd} row to 1^{st} ; then subtract 5 time 2^{nd} row from 3^{rd} :

Add 3^{rd} row to 1^{st} :

$$\begin{bmatrix} 1 & 0 & 0 & -10 & -4 & 21 \\ 0 & 1 & 0 & 2 & 1 & -4 \\ 0 & 0 & 1 & -13 & -5 & 27 \end{bmatrix}$$

・ロン ・回と ・ヨン・

3

Continued

So,

$$A^{-1} = \left(\begin{array}{rrr} -10 & -4 & 21 \\ 2 & 1 & -4 \\ -13 & -5 & 27 \end{array}\right)$$

Exercise: Some Algebra

Exercise 2.3.4

$$A^{-1} = \begin{pmatrix} 10 & 4 & -21 \\ 2 & 1 & -4 \\ 3 & 1 & -6 \end{pmatrix} \quad B^{-1} = \begin{pmatrix} 4 & 9 & -4 \\ -2 & 4 & -1 \\ 3 & -1 & 5 \end{pmatrix}.$$

- ▶ (a) Compute (AB)⁻¹
- ▶ (b) Compute (A^T)⁻¹
- ▶ (c) Compute (2A)⁻¹

個 と く ヨ と く ヨ と …

Solution

Solution:

• (a)
$$(AB)^{-1} = B^{-1}A^{-1} =$$

$$\begin{pmatrix} 4 & 9 & -4 \\ -2 & 4 & -1 \\ 3 & -1 & 5 \end{pmatrix} \begin{pmatrix} 10 & 4 & -21 \\ 2 & 1 & -4 \\ 3 & 1 & -6 \end{pmatrix} = \begin{pmatrix} 46 & 21 & -96 \\ -15 & -5 & 32 \\ 43 & 16 & -89 \end{pmatrix}$$

Solution

Solution: (b) $(A^{T})^{-1} = (A^{-1})^{T} = \begin{pmatrix} 10 & 4 & -21 \\ 2 & 1 & -4 \\ 3 & 1 & -6 \end{pmatrix}^{T} = \begin{pmatrix} 10 & 2 & 3 \\ 4 & 1 & 1 \\ -21 & -4 & -6 \end{pmatrix}$

イロン イヨン イヨン イヨン

Solution

Solution: (c) $(2A)^{-1} = \frac{1}{2}A^{-1} = \frac{1}{2}\begin{pmatrix} 10 & 4 & -21 \\ 2 & 1 & -4 \\ 3 & 1 & -6 \end{pmatrix} = \begin{bmatrix} 5 & 2 & -10.5 \\ 1 & .5 & -2 \\ 1.5 & .5 & -3 \end{bmatrix}$

・ロト ・回ト ・ヨト ・ヨト

Example: Use inverse to Solve

Use inverse of matrices to solve

$$\begin{cases} 2x_1 & -3x_2 & -5x_3 & = 1\\ & 3x_2 & -2x_3 & = 3\\ x_1 & -2x_2 & -2x_3 & = -3 \end{cases}$$

In the matrix form:

$$\begin{pmatrix} 2 & -3 & -5 \\ 0 & 3 & -2 \\ 1 & -2 & -2 \end{pmatrix} \begin{pmatrix} x_1 \\ x_2 \\ x_3 \end{pmatrix} = \begin{pmatrix} 1 \\ 3 \\ -3 \end{pmatrix}$$

・ 回 と ・ ヨ と ・ ヨ と

Continued

We write the system as $A\mathbf{x} = \mathbf{b}$, where

$$A = \begin{pmatrix} 2 & -3 & -5 \\ 0 & 3 & -2 \\ 1 & -2 & -2 \end{pmatrix}, \quad \mathbf{x} = \begin{pmatrix} x_1 \\ x_2 \\ x_3 \end{pmatrix}, \quad \mathbf{b} = \begin{pmatrix} 1 \\ 3 \\ -3 \end{pmatrix}$$

• In matrix notation solution is $\mathbf{x} = A^{-1}\mathbf{b}$, if A^{-1} exists.

•

2

・ロト ・回ト ・ヨト ・ヨト

Continued

Next, we compute A^{-1} . Augment I_3 to A:

Switch first row and last row:

・回 ・ ・ ヨ ・ ・ ヨ ・

Continued

Subtract 2 times 1^{st} row from 3^{rd} :

Switch 2nd and 3rd rows:

$$\left(egin{array}{ccccccc} 1 & -2 & -2 & 0 & 0 & 1 \ 0 & 1 & -1 & 1 & 0 & -2 \ 0 & 3 & -2 & 0 & 1 & 0 \end{array}
ight)$$

< 口 > < 回 > < 回 > < 回 > < 回 > <

3

Continued

Add 2 times 2^{nd} row to 1^{st} and subtract 3 times 2^{nd} from 3^{rd} :

$$\left(egin{array}{cccccc} 1 & 0 & -4 & 2 & 0 & -3 \ 0 & 1 & -1 & 1 & 0 & -2 \ 0 & 0 & 1 & -3 & 1 & 6 \end{array}
ight)$$

Add 4 times 3^{rd} row to 1^{st} and add 3^{rd} row to 2^{nd} :

イロン イヨン イヨン イヨン

Continued

So,
$$A^{-1} = \begin{pmatrix} -10 & 4 & 21 \\ -2 & 1 & 4 \\ -3 & 1 & 6 \end{pmatrix}$$
. And, the solution :
 $\mathbf{x} = A^{-1}\mathbf{b} = \begin{pmatrix} -10 & 4 & 21 \\ -2 & 1 & 4 \\ -3 & 1 & 6 \end{pmatrix} \begin{pmatrix} 1 \\ 3 \\ -3 \end{pmatrix} = \begin{pmatrix} -6 \\ -11 \\ -18 \end{pmatrix}$

<ロ> (四) (四) (三) (三) (三) (三)

Another Example

See the old edition of my notes for another example, of such a problem.

Satya Mandal, KU Matrices: §2.3 The Inverse of Matrices

▲□→ ▲ □→ ▲ □→