Matrices: §2.4 Elementary Matrices

Satya Mandal, KU

Summer 2017

Goals

- Define Elementary Matrices, corresponding to elementary operations.
- We will see that performing an elementary row operation on a matrix A is same as multiplying A on the left by an elmentary matrix E .
- We will see that any matrix A is invertible if and only if it is the product of elementary matrices.

```
Example
Examples
Row Equivalence
Theorem 2.2
Examples
```


Definition

Definition: A square matrix A (of size $n \times n$) is called an Elementary Matrix if it can be obtained from the identity matrix I_{n} by a single elementary row operation. That means A is obtained by

- switching two rows on I_{n}, or
- multiplying a row of I_{n} by a scalar $c \neq 0$ or
- adding a scalar multiple of a row of I_{n} to another row.

Inverse of Elementary Matrices

Theorem If E is elementary, then E^{-1} exists and is elementary.

- Proof For each of the three types of elementary matrices, write down the inverse and check. I will do it on the board.

Example 2.4.1

Let

$$
A=\left[\begin{array}{lll}
1 & 0 & 0 \\
3 & 1 & 0 \\
0 & 0 & 1
\end{array}\right]
$$

Is this matrix elementary. If yes why?
Answer: Yes, it is. The matrix A is obtained from I_{3} by adding 3 time the first row of I_{3} to the second row.

Example 2.4.2

Let

$$
A=\left[\begin{array}{ccc}
1 & 0 & 0 \\
0 & 1 & 0 \\
0 & 0 & 1.5
\end{array}\right]
$$

Is this matrix elementary. If yes why?
Answer: Yes, it is. The matrix A is obtained from I_{3} by multiplying its third row by 1.5 .

Example 2.4.3

Let

$$
A=\left[\begin{array}{lll}
0 & 0 & 1 \\
0 & 1 & 0 \\
1 & 0 & 0
\end{array}\right]
$$

Is this matrix elementary. If yes why?
Answer: Yes, it is. The matrix A is obtained from I_{3} by switching its first and third row.

Theorem 2.1

Theorem. Let A be a matrix of size $m \times n$. Let E be an elementary matrix (of size $m \times m$) obtained by performing an elementary row operation on I_{m} and B be the matrix obtained from A by performing the same operation on A. Then $B=E A$.

Proof.

We will prove only for one operation (out of three) and when when $n=m=3$. Suppose E is the matrix obtained by interchanging first and third rows.

Then, $\quad E=\left[\begin{array}{lll}0 & 0 & 1 \\ 0 & 1 & 0 \\ 1 & 0 & 0\end{array}\right]$ also write $A=\left[\begin{array}{lll}x & y & z \\ a & b & c \\ u & v & w\end{array}\right]$
So, $\quad E A=\left[\begin{array}{lll}0 & 0 & 1 \\ 0 & 1 & 0 \\ 1 & 0 & 0\end{array}\right]\left[\begin{array}{lll}x & y & z \\ a & b & c \\ u & v & w\end{array}\right]=\left[\begin{array}{lll}u & v & w \\ a & b & c \\ x & y & z\end{array}\right]$
which is obtained by switching first and third rows of A.

Example 2.4.4

Let

$$
A=\left[\begin{array}{cccc}
1 & 7 & 1 & 17 \\
-1 & 1 & 1 & 8 \\
8 & 18 & 0 & 9
\end{array}\right], \quad B=\left[\begin{array}{cccc}
8 & 18 & 0 & 9 \\
-1 & 1 & 1 & 8 \\
1 & 7 & 1 & 17
\end{array}\right]
$$

Find an elementary matrix E so that $B=E A$.
Solution: The matrix B is obtained by switching first and the last row of A. They have size 3×4. By the theorem above, E is obtained by switching first and the last row of I_{3}. So,

$$
E=\left[\begin{array}{lll}
0 & 0 & 1 \\
0 & 1 & 0 \\
1 & 0 & 0
\end{array}\right] \text {, so } B=E A \text { (Directly Check, as well.). }
$$

Example 2.4.5

Let

$$
A=\left[\begin{array}{cccc}
1 & 1 & 1 & 1 \\
3 & 1 & 1 & 8 \\
8 & 18 & 0 & 9
\end{array}\right], \quad B=\left[\begin{array}{cccc}
1 & 1 & 1 & 1 \\
5 & 3 & 3 & 10 \\
8 & 18 & 0 & 9
\end{array}\right]
$$

Find an elementary matrix E so that $B=E A$.
Solution: The matrix B is obtained by adding 2 times the first row of A to the second row of A. By the thorem above, E is obtained from I_{3} by adding 2 times its first row to second. So,

$$
E=\left[\begin{array}{lll}
1 & 0 & 0 \\
2 & 1 & 0 \\
0 & 0 & 1
\end{array}\right] \text {, so } B=E A \text { (Directly Check, as well.). }
$$

Example 2.4.6

Let

$$
A=\left[\begin{array}{cccc}
1 & 1 & 1 & 1 \\
3 & 1 & 1 & 8 \\
8 & 18 & 0 & 9
\end{array}\right], B=\left[\begin{array}{cccc}
1 & 1 & 1 & 1 \\
9 & 3 & 3 & 24 \\
8 & 18 & 0 & 9
\end{array}\right]
$$

Find an elementary matrix E so that $B=E A$.
Solution: The matrix B is obtained from A by multiplying its second row by 3 . So, by the theorem E is obtained by doing the same to I_{3}. So

$$
E=\left[\begin{array}{lll}
1 & 0 & 0 \\
0 & 3 & 0 \\
0 & 0 & 1
\end{array}\right] \text {, so } B=E A \text { (Directly Check, as well.). }
$$

Definition

Definition. Two matrices A, B of size $m \times n$ are said to be row-equivalent if

$$
B=E_{k} E_{k-1} \cdots E_{2} E_{1} A \quad \text { where } \quad E_{i} \text { are elemetary }
$$

This is same as saying that B is obtained from A by application of a series of elemetary row operations.

Theorem 2.2

Theorem. A square matrix A is invertible if and only if it is product of elementary matrices.

Proof. Need to prove two statements. First prove, if A is product it of elementary matrices, then A is invertible. So, suppose $A=E_{k} E_{k-1} \cdots E_{2} E_{1}$ where E_{i} are elementary. Since elementary matrices are invertible, E_{i}^{-1} exists. Write $B=E_{1}^{-1} E_{2}^{-1} \cdots E_{k-1}^{-1} E_{k}^{-1}$. Then

$$
A B=\left(E_{k} E_{k-1} \cdots E_{2} E_{1}\right)\left(E_{1}^{-1} E_{2}^{-1} \cdots E_{k-1}^{-1} E_{k}^{-1}\right)=I .
$$

Similarly, $B A=I$. So, B is the inverse of A.

Proof of "only if":

Conversely, assume A is invertible. We have to prove that A is product of elementary matrices. Since A is invertible. The linear system $A \mathbf{x}=\mathbf{0}$ has only the trivial solution $\mathbf{x}=\mathbf{0}$. So, the augmented matrix $[A \mid \mathbf{0}]$ reduces to $[I \mid \mathbf{0}]$ by application of elementary row operations. So, $E_{k} E_{k-1} \cdots E_{2} E_{1}[A \mid 0]=[I \mid 0]$ where E_{i} are elementary. So

$$
E_{k} E_{k-1} \cdots E_{2} E_{1} A=I \quad \text { or } \quad A=E_{1}^{-1} E_{2}^{-1} \cdots E_{k-1}^{-1} E_{k}^{-1}
$$

All the factors on the right are elementary. So, A is product of elementary matrices. The proof is complete.

Example 2.4.7

Let

$$
A=\left[\begin{array}{lll}
2 & 3 & 0 \\
4 & 5 & 0 \\
0 & 0 & 1
\end{array}\right]
$$

Find its inverse, using the theorem above.
Solution. The method is to reduce A to I_{3} by elementary operations, and interpret it in terms of multiplication by elementary matrices.

Continued

First, subtract 2 time the first row from second, which is same as multiplying A by the elementary matrix

$$
E_{1}=\left[\begin{array}{ccc}
1 & 0 & 0 \\
-2 & 1 & 0 \\
0 & 0 & 1
\end{array}\right] \text {. So } E_{1} A=\left[\begin{array}{ccc}
2 & 3 & 0 \\
0 & -1 & 0 \\
0 & 0 & 1
\end{array}\right]
$$

Continued

Now, multiply second row of $E_{1} A$ by -1 . This is same as multiplying $E_{1} A$ from left by

$$
E_{2}=\left[\begin{array}{ccc}
1 & 0 & 0 \\
0 & -1 & 0 \\
0 & 0 & 1
\end{array}\right] . \quad \text { So } \quad E_{2} E_{1} A=\left[\begin{array}{lll}
2 & 3 & 0 \\
0 & 1 & 0 \\
0 & 0 & 1
\end{array}\right]
$$

Now, subtract 3 times the second row from first. So, with

$$
E_{3}=\left[\begin{array}{ccc}
1 & -3 & 0 \\
0 & 1 & 0 \\
0 & 0 & 1
\end{array}\right], \quad E_{3} E_{2} E_{1} A=\left[\begin{array}{lll}
2 & 0 & 0 \\
0 & 1 & 0 \\
0 & 0 & 1
\end{array}\right]
$$

Continued

Now, multiply the first row of $E_{3} E_{2} E_{1} A$ by .5. So, with

$$
E_{4}=\left[\begin{array}{lll}
.5 & 0 & 0 \\
0 & 1 & 0 \\
0 & 0 & 1
\end{array}\right], \quad E_{4} E_{3} E_{2} E_{1} A=\left[\begin{array}{lll}
1 & 0 & 0 \\
0 & 1 & 0 \\
0 & 0 & 1
\end{array}\right]=I
$$

So,

$$
A=E_{1}^{-1} E_{2}^{-1} E_{3}^{-1} E_{4}^{-1}
$$

If you wish, you can write it more explicitly, by expanding the right hand side.

Example 2.4.8

$$
\text { Let } \quad A=\left[\begin{array}{ccc}
1 & 3 & -3 \\
0 & 1 & 2 \\
-1 & 2 & 0
\end{array}\right], C=\left[\begin{array}{ccc}
0 & 5 & -3 \\
0 & 1 & 2 \\
-1 & 2 & 0
\end{array}\right]
$$

Find an elementary matrix so that $E A=C$.
Solution. If we add third row of A to its first row, we get C. Let E be the matrix that is obtained from the identity matrix I_{3} by adding its third row to the first. Or

$$
E=\left[\begin{array}{lll}
1 & 0 & 1 \\
0 & 1 & 0 \\
0 & 0 & 1
\end{array}\right], \quad \text { so } \quad E A=C
$$

Example 2.4.9

$$
\text { Let } \quad A=\left[\begin{array}{lll}
1 & 0 & 0 \\
0 & 1 & 0 \\
0 & 3 & 1
\end{array}\right]
$$

Compute the inverse of A by elementary operations.
Solution. I_{3} is obtained from A by adding -3 times second row of A to third row of A. Accordingly write

$$
E=\left[\begin{array}{ccc}
1 & 0 & 0 \\
0 & 1 & 0 \\
0 & -3 & 1
\end{array}\right] \quad \text { So, } E A=I_{3}, \quad \text { Check } \quad A E=I_{3}
$$

So, $A^{-1}=E$.

Example 2.4.10

$$
\text { Let } A=\left[\begin{array}{lll}
1 & 2 & 3 \\
2 & 5 & 6 \\
2 & 5 & 7
\end{array}\right]
$$

Find a sequence of elementary matrices whose product is A.
Solution. Let E_{1} be the matrix obtained by subtracting the second row of I_{3} from its third row and A_{1} is obtained by the same operation on A. So,

$$
E_{1}=\left[\begin{array}{ccc}
1 & 0 & 0 \\
0 & 1 & 0 \\
0 & -1 & 1
\end{array}\right], A_{1}=\left[\begin{array}{lll}
1 & 2 & 3 \\
2 & 5 & 6 \\
0 & 0 & 1
\end{array}\right], \text { so } E_{1} A=A_{1} .
$$

E_{2} be the the matrix obtained by subtracting 2 times the first row of I_{3} from its second row and A_{2} is obtained by the same operation on A_{1}. So,

$$
E_{2}=\left[\begin{array}{ccc}
1 & 0 & 0 \\
-2 & 1 & 0 \\
0 & 0 & 1
\end{array}\right], A_{2}=\left[\begin{array}{lll}
1 & 2 & 3 \\
0 & 1 & 0 \\
0 & 0 & 1
\end{array}\right], \text { so } E_{2} A_{1}=A_{2} .
$$

E_{3} be the the matrix obtained by subtracting 2 times the second row of I_{3} from its first row and A_{3} is obtained by the same operation on A_{2}. So,

$$
E_{3}=\left[\begin{array}{ccc}
1 & -2 & 0 \\
0 & 1 & 0 \\
0 & 0 & 1
\end{array}\right], A_{3}=\left[\begin{array}{lll}
1 & 0 & 3 \\
0 & 1 & 0 \\
0 & 0 & 1
\end{array}\right], \quad \text { so } \quad E_{3} A_{2}=A_{3}
$$

E_{4} be the the matrix obtained by subtracting 3 times the third row of I_{3} from its first row and A_{4} is obtained by the same operation on A_{3}. So,
$E_{4}=\left[\begin{array}{ccc}1 & 0 & -3 \\ 0 & 1 & 0 \\ 0 & 0 & 1\end{array}\right], A_{4}=\left[\begin{array}{lll}1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1\end{array}\right]=I_{3}$, so $E_{4} A_{3}=A_{4}=I_{3}$.
Therefore

$$
E_{4} E_{3} E_{2} E_{1} A=I_{3} \quad \text { and } \quad A^{-1}=E_{4} E_{3} E_{2} E_{4} .
$$

$$
\begin{aligned}
& A^{-1}=E_{4} E_{3} E_{2} E_{1}=\left[\begin{array}{ccc}
1 & 0 & -3 \\
0 & 1 & 0 \\
0 & 0 & 1
\end{array}\right]\left[\begin{array}{ccc}
1 & -2 & 0 \\
0 & 1 & 0 \\
0 & 0 & 1
\end{array}\right] E_{2} E_{1} \\
= & {\left[\begin{array}{ccc}
1 & -2 & -3 \\
0 & 1 & 0 \\
0 & 0 & 1
\end{array}\right] E_{2} E_{1}=\left[\begin{array}{ccc}
1 & -2 & -3 \\
0 & 1 & 0 \\
0 & 0 & 1
\end{array}\right]\left[\begin{array}{ccc}
1 & 0 & 0 \\
-2 & 1 & 0 \\
0 & 0 & 1
\end{array}\right] E_{1} } \\
= & {\left[\begin{array}{ccc}
5 & -2 & -3 \\
-2 & 1 & 0 \\
0 & 0 & 1
\end{array}\right] E_{1}=\left[\begin{array}{ccc}
5 & -2 & -3 \\
-2 & 1 & 0 \\
0 & 0 & 1
\end{array}\right]\left[\begin{array}{ccc}
1 & 0 & 0 \\
0 & 1 & 0 \\
0 & -1 & 1
\end{array}\right] }
\end{aligned}
$$

$$
=\left[\begin{array}{ccc}
5 & 1 & -3 \\
-2 & 1 & 0 \\
0 & -1 & 1
\end{array}\right]
$$

