Determinant: §3.2 Evaluation of Determinant with Elementary Operations

Satya Mandal, KU

Summer 17

Satya Mandal, KU Determinant: §3.2 Evaluation of Determinant with Elementary

個 と く ヨ と く ヨ と …

"As far as the laws of mathematics refer to reality, they are not certain; and as far as they are certain, they do not refer to reality." - Albert Einstein

・ 回 と ・ ヨ と ・ ヨ と

3

Determant and Elementary Operations Elementary Column Operations Zero Determinant Examples

- Discuss effect of elementary operations on determinants.
- Use them to compute determinant of a matrix A by reducing it to a simpler matrix (like triangular matrices).
- This method is helpful, because expansion by cofactors may take too long.

・ロト ・回ト ・ヨト ・ヨト

Determant and Elementary Operations Elementary Column Operations Zero Determinant Examples

Effect of Elementary Operations

Theorem 3.2.3. Let *A*, *B* be two square matrices of same size.

► If *B* is obtained by interchanging two rows of *A*, then

$$|B| = -|A|$$

If B is obtained by adding a scalar multiple of a row of A to another row of A, then

$$|B| = |A|$$

► If *B* is obtained by multiplying a row of *A* by a scalar *c*, then

$$|B| = c|A|$$

イロト イポト イヨト イヨト

Determant and Elementary Operations Elementary Column Operations Zero Determinant Examples

Elementary Column Operations

- Like elementary row operations, there are three elementary column operations: Interchanging two columns, multiplying a column by a scalar *c*, and adding a scalar multiple of a column to another column.
- ► Two matrices *A*, *B* are called column-equivalent, if *B* is obtained by application of a series of elementary column operations to *A*.
- Theorem 3.3 remains valid if the word "row" is replaced by "column".

(ロ) (同) (E) (E) (E)

Determant and Elementary Operations Elementary Column Operations Zero Determinant Examples

Zero Determinant

Suppose A is a square matrix. Assume one of the following three holds:

- An entire row (or column) of A is zero, OR
- two rows (or columns) are equal, OR
- one row (or column) is a scalar multiple of another row (or column).

Then, |A| = 0.

(ロ) (同) (E) (E) (E)

Determant and Elementary Operations Elementary Column Operations Zero Determinant Examples

Example 3.2.1

Use elementary operations to compute the determinant of

$$A = \left[\begin{array}{rrrr} 1 & 1 & 1 \\ 3 & 0 & -1 \\ 1 & -2 & -1 \end{array} \right]$$

Idea is to reduce it to a triangular matrix by elementary row and column operations. Subtract 3 times first row from second:

$$|A| = \begin{vmatrix} 1 & 1 & 1 \\ 0 & -3 & -4 \\ 1 & -2 & -1 \end{vmatrix}$$

・ロン ・回と ・ヨン ・ヨン

Determant and Elementary Operations Elementary Column Operations Zero Determinant Examples

Continued

Subtract first row from the third and then take out -1 from the second row:

$$|A| = \begin{vmatrix} 1 & 1 & 1 \\ 0 & -3 & -4 \\ 0 & -3 & -2 \end{vmatrix} = - \begin{vmatrix} 1 & 1 & 1 \\ 0 & 3 & 4 \\ 0 & -3 & -2 \end{vmatrix}$$

Add second row to third:

$$|A| = - \begin{vmatrix} 1 & 1 & 1 \\ 0 & 3 & 4 \\ 0 & 0 & 2 \end{vmatrix} = -1 * 3 * 2 = -6$$

・ロト ・回ト ・モト ・モト

= nar

Determant and Elementary Operations Elementary Column Operations Zero Determinant Examples

Use elementary operations to compute the determinant of

$$A = \left[\begin{array}{rrrr} 3 & 8 & -7 \\ 0 & -5 & 4 \\ 3 & -7 & 13 \end{array} \right]$$

We try to reduce it to a triangular matrix. Subtract the first row from last:

$$|A| = \begin{vmatrix} 3 & 8 & -7 \\ 0 & -5 & 4 \\ 0 & -15 & 20 \end{vmatrix}$$

Determant and Elementary Operations Elementary Column Operations Zero Determinant Examples

Subtract 3 times second row from third:

$$|A| = \begin{vmatrix} 3 & 8 & -7 \\ 0 & -5 & 4 \\ 0 & 0 & 8 \end{vmatrix} = 3 * (-5) * 8 = -120$$

<ロ> (四) (四) (三) (三) (三) (三)

Determant and Elementary Operations Elementary Column Operations Zero Determinant Examples

Example 3.2.3

Use elementary operations to compute the determinant of

$${f A}=\left[egin{array}{ccccc} 0&-3&8&2\ 15&1&-1&-8\ -4&6&0&9\ -7&0&0&14 \end{array}
ight]$$

We will try to reduce it to a triangular matrix. Add 2 times fourth row to the second and then switch first and second rows.

$$|A| = \begin{vmatrix} 0 & -3 & 8 & 2 \\ 1 & 1 & -1 & 20 \\ -4 & 6 & 0 & 9 \\ -7 & 0 & 0 & 14 \end{vmatrix} = - \begin{vmatrix} 1 & 1 & -1 & 20 \\ 0 & -3 & 8 & 2 \\ -4 & 6 & 0 & 9 \\ -7 & 0 & 0 & 14 \end{vmatrix}$$

Satya Mandal, KU Determinant: §3.2 Evaluation of Determinant with Elementary

Preview Determant and Elementary Operations Elementary Column Operations Zero Determinant Examples

Continued

Now add 4 times the first row to the third and then add 7 times the first row to the fourth:

$$|\mathcal{A}| = - \begin{vmatrix} 1 & 1 & -1 & 20 \\ 0 & -3 & 8 & 2 \\ 0 & 10 & -4 & 89 \\ 0 & 7 & -7 & 154 \end{vmatrix}$$

Take out 7 from fouth row and then switch second and fourth roe:

$$|A| = -7 \begin{vmatrix} 1 & 1 & -1 & 20 \\ 0 & -3 & 8 & 2 \\ 0 & 10 & -4 & 89 \\ 0 & 1 & -1 & 22 \end{vmatrix} = +7 \begin{vmatrix} 1 & 1 & -1 & 20 \\ 0 & 1 & -1 & 22 \\ 0 & 10 & -4 & 89 \\ 0 & -3 & 8 & 2 \end{vmatrix}$$

Satya Mandal, KU Determinant: §3.2 Evaluation of Determinant with Elementary

э

Determant and Elementary Operations Elementary Column Operations Zero Determinant Examples

Continued

Subtract 10 times the second row from third, and then add 3 time the second row to fourth:

$$|A| = 7 \begin{vmatrix} 1 & 1 & -1 & 20 \\ 0 & 1 & -1 & 22 \\ 0 & 0 & 6 & -131 \\ 0 & -3 & 8 & 2 \end{vmatrix} = 7 \begin{vmatrix} 1 & 1 & -1 & 20 \\ 0 & 1 & -1 & 22 \\ 0 & 0 & 6 & -131 \\ 0 & 0 & 5 & 68 \end{vmatrix}$$

Now subtract fourth row from third and then subtract 5 times the third row from fourth:

$$|A| = 7 \begin{vmatrix} 1 & 1 & -1 & 20 \\ 0 & 1 & -1 & 22 \\ 0 & 0 & 1 & -199 \\ 0 & 0 & 5 & 68 \end{vmatrix} = 7 \begin{vmatrix} 1 & 1 & -1 & 20 \\ 0 & 1 & -1 & 22 \\ 0 & 0 & 1 & -199 \\ 0 & 0 & 0 & 1063 \end{vmatrix}$$

Satya Mandal, KU Determinant: §3.2 Evaluation of Determinant with Elementary

Determant and Elementary Operations Elementary Column Operations Zero Determinant Examples

$$|A| = 7(1 * 1 * 1 * 1063) = 7441$$

Satya Mandal, KU Determinant: §3.2 Evaluation of Determinant with Elementary

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 - のへで