Determinant: §3.2 Evaluation of Determinant with Elementary Operations

Satya Mandal, KU

Summer 17
"As far as the laws of mathematics refer to reality, they are not certain; and as far as they are certain, they do not refer to reality." - Albert Einstein

Goals

- Discuss effect of elementary operations on determinants.
- Use them to compute determinant of a matrix A by reducing it to a simpler matrix (like triangular matrices).
- This method is helpful, because expansion by cofactors may take too long.

Effect of Elementary Operations

Theorem 3.2.3. Let A, B be two square matrices of same size.

- If B is obtained by interchanging two rows of A, then

$$
|B|=-|A|
$$

- If B is obtained by adding a scalar multiple of a row of A to another row of A, then

$$
|B|=|A|
$$

- If B is obtained by multiplying a row of A by a scalar c, then

$$
|B|=c|A|
$$

Elementary Column Operations

- Like elementary row operations, there are three elementary column operations: Interchanging two columns, multiplying a column by a scalar c, and adding a scalar multiple of a column to another column.
- Two matrices A, B are called column-equivalent, if B is obtained by application of a series of elementary column operations to A.
- Theorem 3.3 remains valid if the word "row" is replaced by "column".

Zero Determinant

Suppose A is a square matrix. Assume one of the following three holds:

- An entire row (or column) of A is zero, OR
- two rows (or columns) are equal, OR
- one row (or column) is a scalar multiple of another row (or column).

$$
\text { Then, } \quad|A|=0 .
$$

Example 3.2.1

Use elementary operations to compute the determinant of

$$
A=\left[\begin{array}{ccc}
1 & 1 & 1 \\
3 & 0 & -1 \\
1 & -2 & -1
\end{array}\right]
$$

Idea is to reduce it to a triangular matrix by elementary row and column operations. Subtract 3 times first row from second:

$$
|A|=\left|\begin{array}{ccc}
1 & 1 & 1 \\
0 & -3 & -4 \\
1 & -2 & -1
\end{array}\right|
$$

Continued

Subtract first row from the third and then take out -1 from the second row:

$$
|A|=\left|\begin{array}{ccc}
1 & 1 & 1 \\
0 & -3 & -4 \\
0 & -3 & -2
\end{array}\right|=-\left\lvert\, \begin{array}{ccc}
1 & 1 & 1 \\
0 & 3 & 4 \\
0 & -3 & -2
\end{array}\right.
$$

Add second row to third:

$$
|A|=-\left|\begin{array}{ccc}
1 & 1 & 1 \\
0 & 3 & 4 \\
0 & 0 & 2
\end{array}\right|=-1 * 3 * 2=-6
$$

Example 3.2.2

Use elementary operations to compute the determinant of

$$
A=\left[\begin{array}{ccc}
3 & 8 & -7 \\
0 & -5 & 4 \\
3 & -7 & 13
\end{array}\right]
$$

We try to reduce it to a triangular matrix. Subtract the first row from last:

$$
|A|=\left\lvert\, \begin{array}{ccc}
3 & 8 & -7 \\
0 & -5 & 4 \\
0 & -15 & 20
\end{array}\right.
$$

Continued

Subtract 3 times second row from third:

$$
|A|=\left|\begin{array}{ccc}
3 & 8 & -7 \\
0 & -5 & 4 \\
0 & 0 & 8
\end{array}\right|=3 *(-5) * 8=-120
$$

Example 3.2.3

Use elementary operations to compute the determinant of

$$
A=\left[\begin{array}{cccc}
0 & -3 & 8 & 2 \\
15 & 1 & -1 & -8 \\
-4 & 6 & 0 & 9 \\
-7 & 0 & 0 & 14
\end{array}\right]
$$

We will try to reduce it to a triangular matrix. Add 2 times fourth row to the second and then switch first and second rows.

$$
|A|=\left|\begin{array}{cccc}
0 & -3 & 8 & 2 \\
1 & 1 & -1 & 20 \\
-4 & 6 & 0 & 9 \\
-7 & 0 & 0 & 14
\end{array}\right|=-\left\lvert\, \begin{array}{cccc}
1 & 1 & -1 & 20 \\
0 & -3 & 8 & 2 \\
-4 & 6 & 0 & 9 \\
-7 & 0 & 0 & 14
\end{array}\right.
$$

Continued

Now add 4 times the first row to the third and then add 7 times the first row to the fourth:

$$
|A|=-\left|\begin{array}{cccc}
1 & 1 & -1 & 20 \\
0 & -3 & 8 & 2 \\
0 & 10 & -4 & 89 \\
0 & 7 & -7 & 154
\end{array}\right|
$$

Take out 7 from fouth row and then switch second and fourth roe:

$$
\left.|A|=-7\left|\begin{array}{cccc}
1 & 1 & -1 & 20 \\
0 & -3 & 8 & 2 \\
0 & 10 & -4 & 89 \\
0 & 1 & -1 & 22
\end{array}\right|=+7 \right\rvert\, \begin{array}{cccc}
1 & 1 & -1 & 20 \\
0 & 1 & -1 & 22 \\
0 & 10 & -4 & 89 \\
0 & -3 & 8 & 2
\end{array}
$$

Continued

Subtract 10 times the second row from third, and then add 3 time the second row to fourth:

$$
|A|=7\left|\begin{array}{cccc}
1 & 1 & -1 & 20 \\
0 & 1 & -1 & 22 \\
0 & 0 & 6 & -131 \\
0 & -3 & 8 & 2
\end{array}\right|=7\left|\begin{array}{cccc}
1 & 1 & -1 & 20 \\
0 & 1 & -1 & 22 \\
0 & 0 & 6 & -131 \\
0 & 0 & 5 & 68
\end{array}\right|
$$

Now subtract fourth row from third and then subtract 5 times the third row from fourth:

$$
\left.|A|=7\left|\begin{array}{cccc}
1 & 1 & -1 & 20 \\
0 & 1 & -1 & 22 \\
0 & 0 & 1 & -199 \\
0 & 0 & 5 & 68
\end{array}\right|=7 \right\rvert\, \begin{array}{cccc}
1 & 1 & -1 & 20 \\
0 & 1 & -1 & 22 \\
0 & 0 & 1 & -199 \\
0 & 0 & 0 & 1063
\end{array}
$$

Continued

So,

$$
|A|=7(1 * 1 * 1 * 1063)=7441
$$

