Determinant: §3.3 Properties of Determinants

Satya Mandal, KU

Summer 2017
" The most incomprehensible thing about the world is that it is comprehensible." - Albert Einstein

Goals

Learn some basic properties of determinant. Among them are:

- Determinant of the product of two matrices is the product of the determinant of the two matrices:

$$
|A B|=|A||B| .
$$

- For a $n \times n$ matrix A and a scalar c we have

$$
\begin{gathered}
|c A|=c^{n}|A| \\
\text { Also, if }|A| \neq 0 \quad \Longrightarrow \quad\left|A^{-1}\right|=\frac{1}{|A|} .
\end{gathered}
$$

- A square matrix A is invertible $\Longleftrightarrow|A| \neq 0$.

Theorem 3.3.1: The Product Formula

If A, B are two square matrix of order n then

$$
|A B|=|A||B|
$$

Proof. (It is too long, so will not be in the exams.) However, suppose E is an elmentary metix.

- If E is obtained by switching two rows of I_{n} then
$|E|=-1$. Then, $E B$ is the matrix obtained by switching two rows of B. By the theorem is $\S 3.2$,

$$
|E B|=-|B|=|E||B|
$$

- If E is obtained by multiplying a row of I_{n} by c, then $|E|=c$. Then, $E B$ is the matrix obtained by multiplying the same row of B by c. By the same theorem (§3.2),

$$
|E B|=c|B|=|E||B|
$$

Continued

- If E is obtained by adding a scalar multiple of a row of I_{n} to another row,then $|E|=1$. Then, $E B$ is the matrix obtained by doing the same with rows of B. By the same theorem (§3.2), $|E B|=|B|=|E||B|$

$$
\begin{equation*}
\text { So, if } E \text { is elementary }|E B|=|E||B| \tag{1}
\end{equation*}
$$

From this it follows that, by repeated application, for elementary matrices E_{1}, \ldots, E_{k} we have

$$
\left|E_{1} E_{2} \cdots E_{k} B\right|=\left|E_{1}\right|\left|\left(E_{2} \cdots E_{k} B\right)\right|=\left|E_{1}\right|\left|E_{2}\right||\cdots| E_{k}| | B \mid
$$

Continued

If A is invertible, by theorem above, $A=E_{1} E_{2} \cdots E_{k}$, for some elementary matrices E_{i}. So.

$$
\begin{aligned}
|A B|= & \left|E_{1} E_{2} \cdots E_{k} B\right|=\left|E_{1}\right|\left|E_{2}\right| \cdots\left|E_{k}\right||B| \\
& =\left|E_{1} E_{2} \cdots E_{k}\right||B|=|A||B| .
\end{aligned}
$$

Continued

If A is not invertible, then A is row equivalent to a matrix C with an entire row zero. That means $E_{1} E_{2} \cdots E_{n} A$ has an entire row zero, where E_{i} are elementary. Expanding by a zero row, we have $\left|E_{k} \cdots E_{2} E_{1} A\right|=0$. By Equation 1 , $\left|E_{k-1} \cdots E_{2} E_{1} A\right|=0$. Inductively, it follows $|A|=0$. Since $E_{1} E_{2} \cdots E_{n} A$ has an entire row zero, so does $E_{1} E_{2} \cdots E_{n} A B$. Therefore $\left|E_{1} E_{2} \cdots E_{n} A B\right|=0$. Again, by repeated use of Equation 1, it follows $|A B|=0$.

$$
\text { So, } \quad|A B|=0=0 \times|B|=|A||B|
$$

This completes the proof.

Product of more than 2 matrices

Corallary 3.3.2: If $A_{1}, A_{2}, \ldots A_{k}$ are k matrices then

$$
\left|A_{1} A_{2} \cdots A_{k}\right|=\left|A_{1}\right|\left|A_{2}\right| \cdots\left|A_{k}\right|
$$

Proof. For 2 matrices this is true by theorem 3.5. For more than two matrices, we use induction:

$$
\left|A_{1}\left(A_{2} \cdots A_{k}\right)\right|=\left|A_{1}\right|\left|\left(A_{2} \cdots A_{k}\right)\right|=\left|A_{1}\right|\left|A_{2}\right| \cdots\left|A_{k}\right|
$$

The proof is complete.

Example 3.3.1

$$
A=\left[\begin{array}{ccc}
2 & 1 & 3 \\
-1 & 3 & 1 \\
7 & -3 & 2
\end{array}\right], B=\left[\begin{array}{ccc}
2 & 3 & 1 \\
13 & 4 & 5 \\
3 & 9 & -8
\end{array}\right] \text { Verify }|A B|=|A||B| .
$$

Solution: We have to compute $A B,|A B|,|A|,|B|$ verify $|A B|=|A||B|$.

$$
A B=\left[\begin{array}{ccc}
2 & 1 & 3 \\
-1 & 3 & 1 \\
7 & -3 & 2
\end{array}\right]\left[\begin{array}{ccc}
2 & 3 & 1 \\
13 & 4 & 5 \\
3 & 9 & -8
\end{array}\right]
$$

Continued

$$
\begin{gathered}
{\left[\begin{array}{ccc}
4+13+9 & 6+4+27 & 2+5-24 \\
-2+39+3 & -3+12+9 & -1+15-8 \\
14-39+6 & 21-12+18 & 7-15-16
\end{array}\right]} \\
=\left[\begin{array}{ccc}
26 & 37 & -17 \\
40 & 18 & 6 \\
-19 & 27 & -24
\end{array}\right]
\end{gathered}
$$

Continued

We will compute the determinant of $A B$ by writing the first two columns to the right:

$$
\left[\begin{array}{ccccc}
26 & 37 & -17 & 26 & 37 \\
40 & 18 & 6 & 40 & 18 \\
-19 & 27 & -24 & -19 & 27
\end{array}\right]
$$

Recall the determiant is the
(sum of product of the entries in the left - to -
right diagonals) - (sum of product of the entries in the rightto - left diagonals). So,

$$
|A B|=-33810-(-25494)=-8316
$$

Continued

We will compute the determinant of A in the same way. So, write the first tow columns on the right side of A :

$$
\left[\begin{array}{ccccc}
2 & 1 & 3 & 2 & 1 \\
-1 & 3 & 1 & -1 & 3 \\
7 & -3 & 2 & 7 & -3
\end{array}\right]
$$

So,

$$
|A|=(12+7+9)-(63-6-2)=-27
$$

Continued

For a change, we will compute $|B|$ be expanding by co-factors along the first row. The cofactors

$$
\begin{gathered}
C_{11}=(-1)^{1+1}\left|\begin{array}{cc}
4 & 5 \\
9 & -8
\end{array}\right|=-77, C_{12}=(-1)^{1+2}\left|\begin{array}{cc}
13 & 5 \\
3 & -8
\end{array}\right|=119 \\
C_{13}=(-1)^{1+3}\left|\begin{array}{cc}
13 & 4 \\
3 & 9
\end{array}\right|=105 \\
|B|=2 *(-77)+3 * 119+1 * 105=308
\end{gathered}
$$

Finally, $|A||B|=(-27) * 308=-8316=|A B|$ is varyfied.

Theorem 3.3.3

Let A be an $n \times n$ matrix and c be a scalar. Then,

$$
|c A|=c^{n}|A|
$$

Proof. Let

$$
C=\left(\begin{array}{cccc}
c & 0 & \cdots & 0 \\
0 & c & 0 & 0 \\
\cdots & \cdots & \cdots & \cdots \\
0 & 0 & 0 & c
\end{array}\right) \quad \text { be the diagonal matrix. }
$$

of size $n \times n$. Then, by the product formula

$$
|c A|=|C A|=|C||A|=c^{n}|A| .
$$

The proof is complete.

Theorem 3.3.4: Determinant of A^{-1},

If A is invertible (of order n), then

$$
\left|A^{-1}\right|=\frac{1}{|A|}
$$

Proof. We have $A A^{-1}=I_{n}$. So,

$$
\left|A A^{-1}\right|=\left|I_{n}\right|=1 . \quad \text { By Product Formula } \quad|A|\left|A^{-1}\right|=1
$$

So,

$$
\left|A^{-1}\right|=\frac{1}{|A|}
$$

The proof is complete.

Determinant of Elementary Marrices

- First, note $\left|I_{n}\right|=1$.
- Theorem. Let E be an elementary $n \times n$ matrix. Then
- If E is obtained by adding a constant multiple of a row of I_{n} to another row of I_{n}, then $|E|=\left|I_{n}\right|=1$.
- If E is obtained from I_{n} by multiplying a row of I_{n} by a scalar c, then $|E|=c\left|I_{n}\right|=c$.
- If E is obtained from I_{n} by switching two rows of I_{n} then $|E|=-\left|I_{n}\right|=-1$.

Theorem 3.3.5

Suppose A is a square matrix (of order n). Then,

$$
A \text { is invertible (nonsingualar) } \Longleftrightarrow|A| \neq 0 .
$$

Proof. There are two statements to be proved. First, if A is invertible, we would prove $|A| \neq 0$. In this case, $A A^{-1}=I_{n}$. so $|A|\left|A^{-1}\right|=\left|A A^{-1}\right|=\left|I_{n}\right|=1$. So, $|A| \neq 0$.

Continued

Now we prove the converse. We assume $|A| \neq 0$, and prove that A is invertible. Notice $\left|A^{T}\right|=|A| \neq 0$. By using Gauss-Jordan elimination, for some matrix E, which is product of elementary matrices, $E A$ is in reduced row-Echelon form. Write $B=E A$. Since, B is in reduced row-Echelon form, either $B=I_{n}$ or B has an entire row zero. If B has an entire row zero then $|B|=0$. In that case $0=|B|=|E||A|=0$. Since $|E| \neq 0,|A|=0$. which contradicts the hypothesis. So, $B=I_{n}$ So, $E A=I_{n}$. So, A has a left inverse. Likewise, there is a matrix F such that $F A^{T}=I$. Taking transpose $A F^{T}=I_{n}$. So, A has a right inverse. Now, if follows from the lemma in the next frame $E=F^{T}$ and A has an inverse.

Left and Right Inverses

Lemma: Suppose A is a square matrix of order n. Suppose A has a left inverse B, meaning $B A=I_{n}$. Also suppose A has right inverse C, meaning $A C=I_{n}$. Then, $B=C$ and $A^{-1}=B=C$.
Proof. We have

$$
B=B I_{n}=B(A C)=(B A) C=I_{n} C=C
$$

Theorem 3.3.6: Nonsingularity

Let A be square matrix of order n. Then the following are equivalent:

- A is nonsingular
- The system $A \mathbf{a}=\mathbf{b}$ has a unique solution, for all $n \times 1$ matrix \mathbf{b}.
- The system $A \mathbf{a}=\mathbf{0}$ has only the trivial solution.
- A is row-equivalent to I_{n}.
- A can be written as product of elementary matrices.
- $|A| \neq 0$.

Continued

Proof. It follows by combining everything we proves above. We skip the details.

Remark: This theorem summarizes as lot of things we did above. So, it is very important and useful.

Theorem 3.3.7: Determinant of transpose

Let A be a square matrix of order n. Then,

$$
\left|A^{T}\right|=|A| .
$$

Example 3.3.2.

$$
\begin{gathered}
|A|=\left|\begin{array}{ccc}
16 & 10 & 4 \\
12 & 2 & 8 \\
6 & 14 & 18
\end{array}\right| \\
=2^{3}\left|\begin{array}{lll}
8 & 5 & 2 \\
6 & 1 & 4 \\
3 & 7 & 9
\end{array}\right|=-8\left|\begin{array}{ccc}
6 & 1 & 4 \\
8 & 5 & 2 \\
3 & 7 & 9
\end{array}\right|=+8\left|\begin{array}{lll}
1 & 6 & 4 \\
5 & 8 & 2 \\
7 & 3 & 9
\end{array}\right|
\end{gathered}
$$

(Last two steps represent switching first and second rows, and then first and second column.)

Now subtract 5 times first row from second, and then subtract 7 times first row from last.

$$
=8\left|\begin{array}{ccc}
1 & 6 & 4 \\
0 & -22 & -18 \\
0 & -39 & -19
\end{array}\right|
$$

Expand by first column:

$$
\begin{gathered}
=8\left(1(-1)^{2}\left|\begin{array}{ll}
-22 & -18 \\
-39 & -19
\end{array}\right|+0 *(-1)^{3} C_{21}+0 *(-1)^{4} C_{31}\right) \\
=8(22 * 19-18 * 39)=-2272
\end{gathered}
$$

Example 3.3.3

Let

$$
A=\left[\begin{array}{ccc}
1 & 5 & 4 \\
0 & -6 & 2 \\
0 & 0 & -3
\end{array}\right]
$$

- Compute $\left|A^{T}\right|$
- Compute $\left|A^{2}\right|$
- Compute $\left|A A^{T}\right|$
- Compute $|2 A|$
- Compute $\left|A^{-1}\right|$

Solution.

First A is a triangular matrix and $|A|=18$. So,

- $\left|A^{T}\right|=|A|=18$
- Compute $\left|A^{2}\right|=|A|^{2}=(18)^{2}=324$
- Compute $\left|A A^{T}\right|=|A|\left|A^{T}\right|=|A||A|=324$
- Compute $|2 A|=2^{3}|A|=8 * 18=144$
- Compute $\left|A^{-1}\right|=\frac{1}{|A|}=\frac{1}{18}$

Example 3.3.4

$$
A=\left[\begin{array}{ccc}
4 & -1 & 16 \\
-16 & 4 & -64 \\
-5 & 5 & 16
\end{array}\right]
$$

Is A non-singular (i. e. invertible)?
Solution: We know, A is non-singular if and only if $|A| \neq 0$.

$$
|A|=\left|\begin{array}{ccc}
4 & -1 & 16 \\
-16 & 4 & -64 \\
-5 & 5 & 16
\end{array}\right|=-4\left|\begin{array}{ccc}
4 & -1 & 16 \\
4 & -1 & 16 \\
-5 & 5 & 16
\end{array}\right|=0
$$

because first and second rows are identical. Since $|A|=0 A$ is singular (i. e. not non-singular).

Example 3.3.5.

$$
\begin{aligned}
& 4 x \quad-y+16 z=3 \\
& -2 x+.5 y-4 z=11 \\
& -5 x+5 y+16 z=-1
\end{aligned}
$$

Does this system have a unique solution? Solution: A sysmtem of 3 equiations in three variables, has unique solution if the coefficiant matrix A is non-singular. Which is, if $|A| \neq 0$. Here the coefficiant matrix

$$
A=\left[\begin{array}{ccc}
4 & -1 & 16 \\
-2 & .5 & -4 \\
-5 & 5 & 16
\end{array}\right] \quad \text { and } \quad|A|=0
$$

because first row is 2 times the second row. So, the system does not have unique solution.

