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Goals

I Give definition of Vector Spaces

I Give examples and non-examples of Vector Spaces
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Operations on Sets

I On the set of integers Z, or on the set of real numbers R
we worked with addition +, multiplication ×.

I On the n−space Rn, we have addition and scalar
multiplication.

I These are called operations on the respective sets. Such
an operation associates an oredered pair to an element in
V , like,

(u, v) 7→ u + v, or (c , v) 7→ cv

These are called binary operations, because they associate
an ordered pair to an element in V .
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Operations on Sets: Continued

I Likewise, in mathematics, we define the same on any set
V . Given two sets V ,R , a binary operation ∗, o associates
an ordered pair to an element in V .

∗ : V × V −→ V (u, v) 7→ u ∗ v
o : R × V −→ V (c , v) 7→ cov

Such operations are mostly denoted by +,× and called
addition, multiplication or scalar multiplication, depending
on the context.

I Examples of Binary operations include:(a) Matrix
addition, multiplication; (b) polynomial addition and
multiplication;(c) addition, multiplication and
composition of functions.
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Vector Spaces: Motivations

There are many mathematical sets V , with an addition + and
a scalar multiplication, satisfy the properties of the vectors in
n−spaces Rn, listed in Theorem 4.1 and 4.2. Examples of
such sets include

I the set all of matrices Mm,n of size m × n,

I set of polynomial,

I Set of all real valued continuous functions on a set.

In order to unify the study of such sets, abstract vector spaces
are defined, simply by listing the properties in Theorem 4.1.1
in §4.1.
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Vector Spaces: Definition

Definition: Let V be a set with two operations (vector
addition + and scalar multiplication). We say that V is a
Vector Space over the real numbers R if, for all u, v,w in V
and all scalars (reals) c , d , the following propertices are
stistified:

I (1. Closure under addition): u + v is in V .
I (2. Commutativity): u + v = v + u.
I (3. Associativity I): (u + v) + w = u + (v + w)
I (4. Additive Identity or zero):There is an element in V ,

denoted by 0 and to be called a (the) zero vector such
that

u + 0 = u, for every u ∈ V .
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Continued:

I (5. Additive inverse): For every u ∈ V there is and an
element in x ∈ V , denoted x such that u + x = 0. Such
an x would be called the/an additive inverse of u.

I (6. Closure under scalar multiplication): cu is in V

I (7. Distributivity I): c(u + v) = cu + cv.

I (8. Distributivity II):(c + d)u = cu + du.

I (9. Associativity II): c(du) = (cd)u

I (10. Multiplicative Identity): 1u = u
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Four Entities of Vector Spaces

Note that a Vector Space as four entities:

I (1) A set of vectors V ,

I (2) a set of scalars,

I (3,4 ) two operations.

I In this course, the set of scalars is R. The theory of
Vector spaces over complex scalars C would be exactly
analogous, while we avoid it in this course.
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Standard Examples

We give a list of easy examples.

I Example 1: The plane, R2,R3 with standard addition
and scalar multiplication is a Vector Space. More
generally, the n−space, Rn with standard addition and
scalar multiplication is a Vector Space.

I Example 2: Let M2,4 be the set of all 2× 4. So,

M2,4 =

{(
a b c d
x y z w

)
: a, b, c , d , x , y , z ,w ∈ R

}
Then, with standard addition and scalar multiplication
M2,4 is a Vector Space.
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Examples from the Textbook

I Example 3: Let Pn denote the set of all polynomials of
degree less or equal to n. So,

P2 = {anxn+· · ·+a2x
2+a1x+a0 : ai ∈ R ∀ i = 0, 1, . . . , n}

With standard addition and scalar multiplication Pn is a
Vector Space.

I Example 4. Let I be an interval and C (I ) denotes the
set of all real-valued continuous functions on I . Then,
with standard addition and scalar multiplication C (I ) is a
Vector Space. For example,

C (−∞,∞),C (0, 1),C [0, 1],C (0, 1],C [1, 0)

are vector spaces.
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Formal Proofs

To give a proof we need to check all the 10 properties in the
definition. While each step may be easy, students at this level
are not used to writing a formal proof. Here is a proof that
C (0, 1) is a vector space.

I So, the vectors are continuous functions
f(x) : (0, 1) −→ R.

I For vectors f, g ∈ C (0, 1) addition is defined as follows:

(f + g)(x) = f (x) + g(x)

I For f ∈ C (0, 1), c ∈ R scalar multiplication is defined as

(cf)(x) = c(f(x)).
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Formal Proofs: Continued

For this addition and scalar multiplication, we have to check
all 10 properties in the defintion. Suppose f, g,h ∈ C (0, 1)
and c , d ∈ R.

I (1. Closure under addition): C (0, 1) is closed under
addition. This is because sum f + g of two continuous
functions f, g is continuous. So, f + g ∈ C (0, 1).

I (2. Commutativity): Clearly, f + g = g + f.

I (3. Associativity I): Clearly (f + g) + h = f + (g + h)

I (4. The Zero): Let f0 denote the constant-zero function.
So, f0(x) = 0 ∀ x ∈ R So, (f + f0)(x) = f(x) + 0 = f(x).
Therefore f0 satisfies the condition (4).
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Continued

I (5. Additive inverse): Let −f denote the function
(−f)(x) = −f(x). Then (f + (−f)) = 0 = f0.

I (6. Closure under scalar multiplication): Clearly, cf is
continuous and so cf ∈ C (0, 1).

I (7. Distributivity I): Clearly, c(f + g) = cf + cg.

I (8. Distributivity II): Clearly, (c + d)f = cf + df.

I (9. Associativity II): Clearly, c(df) = (cd)f

I (10. Multiplicative Identity):Clearly 1f = f.

All 10 properties are verified. So, C (0, 1) is a vector space.
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A List of Important Vector Spaces

Here is a list of important vector spaces:

I R,R2,R3, more generally Rn are vector spaces.
Geometrically, R2 corresponds to the plane and R3

corresponds to the three dimensional space.

I C (−∞,∞),C (a, b),C [a, b],C (a, b],C [a, b) the set of
real valued continuous functions.

I P the set of all polynomials, with real coefficients

I Pn the set of all polynomials, with real coefficients, of
degree less or equal to n.

I Mm,n the set of all matrices of size m× n with real entries.
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Theorem 4.2.1: Uniqueness of zero and v

Theorem 4.2.1 Suppose V is a vector space. Then,

I There is exactly one vector satisfying the property of zero
(Condition 4.) We say the additive identity 0 is unique.

I Given a vector u there is exactly one vector x ∈ V , that
satisfies condition 5. We say u has a unique additive
inverse, to be denoted by denoted by −u.
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Continued

Proof. Suppose ϕ also satisfy condition 4. So, for any vector
u ∈ V we have

u + 0 = u and u + ϕ = u.

Apply these two equations to 0, ϕ. We have

ϕ = ϕ + 0 = 0 + ϕ = ϕ.

So, the first statement is established.
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Continued

To prove the second statement, assume, x, y ∈ V satisfy
condition 5, for u. So.

u + x = 0 and u + y = 0 To prove : x = y.

We have (using commutativity, Condition 2)

x = x + 0 = x + (u + y) = (x + u) + y = 0 + y = y.
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Properties of Scalar Multiplication

Theorem 4.2.2

Let v be a vector in a vector space V and c be a scalar. Then,

I (1) 0v = 0

I (2) c0 = 0

I (3)
cv = 0 =⇒ c = 0 or v = 0

I (4) (−1)v = −v.
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Proof.

Proof.

I (1) By distributive property, We have
0v + 0v = (0 + 0)v = 0v. By (property 5), there is an
additive inverse −(0v) of 0v. We add the same to both
sides of the above equation

(0v + 0v) + (−(0v)) = 0v + (−(0v)) OR

0v + (0v + (−(0v))) = 0 OR

0v + 0 = 0 Or 0v = 0

So, (1) is established.
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Continued

Proof.

I (2) First, by distributivity

c0 = c(0 + 0) = c0 + c0

Now add −(c0) to both sides:

c0 + (−(c0)) = (c0 +c0) + (−(c0)) OR 0 = c0.

So, (2) is established.
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Continued

Proof.

I (3) Suppose cv = 0. Suppose c 6= 0. Then we can
multiply the equation by 1

c
. So,

1

c
(cv) =

1

c
0 = 0 (by (2))

By axion (10), we have

v = 1v =

(
1

c
c

)
v =

1

c
(cv) =

1

c
0 = 0

So, either c = 0 or v = 0 and (3) is established.
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Continued

Proof.

I (4) We have, by distributivity and axiom (10)

v + (−1)v = 1v + (−1)v = (1− 1)v = 0v = 0 by (1).

So, (−1)v satisfies the axiom (5) of the definition. So
(−1)v = −v. So, (4) is established.
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Examples of Sets with Operations

that are not Vector Spaces

Given a set W and two operations (like addition and scalar
myltiplication), it may fail to be a Vector Space for failure of
any one or more of the axioms of the definition.

I Example 5 The set W of all odd integers, with usual
addition and scalar multiplication, is not a vector space.
Note W is not closed under addition.

I Example 6 The set of all integers Z, with usual addition
and scalar multiplication is not a vector space. Reason: Z
is not closed under scalar multiplication .5(1) /∈ Z not a
Vector Space.
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I Example 7 Set S of polynomial of degree (exactly) 1
with usual addition and scalar multiplication is not a
vector space. Reason:Z is not closed under Addition:
f (x) = 3x + 1, g(x) = −3x are in S . But f + g = 1 is
not in S .

I Example 8 Let R2
1 be a the set of all ordered pairs of

(x , y) in the first quadrant. So
R2 = {(x , y) ∈ R2 : x ≥ 0, y ≥ 1}. Under usual addition
ans scalar multiplication R2

1 is not a vector space.
Reason: (1, 1) does not have a additive inverse in R2

1.
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Exercise 4.2.1 Describe the zero vector (additive identity) of
M2,4.
Solution.

0 =

(
0 0 0 0
0 0 0 0

)
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Examples 4.2.2 Let P2 be the set of all polynomials of
degree (exactly) 2. Is X a vector space? If not, why?
Solution. P2 is not a vector space. (Here, by ”degree 2”
means, exactly of degree 2.)

Let f(x) = x2 + x + 3, g(x) = −x2 + 7x + 4

Then (f + g)(x) = 8x + 7 has degree 1

So, f, g ∈ X , but f + g /∈ X .

So, X is not closed under addition.
Therefore X is not a vector space.
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Example 4.2.3

Let S =


 0 0 a

0 b 0
c 0 0

 : a, b, c ∈ R


Is it a vector space?
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Yes, it is a vector space, because all the 10 conditions, of the
definitions is satisfied:
(1) S is closed under addition, (2) addition commutes, (3)
additions is associative, (4) S has the zero, (5) each matrix
v ∈ S , its −v ∈ S (6) S is claosed under scalar multiplication,
(7) Distributivity I works, (8) Distributivity II works (9)
Associativity II works, (10) 1v = v.

Remark. A theorem will be proved in the next section, which
states that we only need to check 2 contions: that S is closed
under addition and scalar multiplication (condition 1 and 6).
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