Vector Spaces §4.4 Spanning and Independence

Satya Mandal, KU

Summer 2017

Goals

Discuss two important basic concepts:

- Define linear combination of vectors.
- Define $\operatorname{Span}(S)$ of a set S of vectors.
- Define linear Independence of a set of vectors.

Set theory and set theoretic Notations

Borrow (re-introduce) some Set theoretic lingo and notations.

- A collection S of objects is called a set.
- Objects in S are called elements of S.
- We write " $x \in S$ " to mean " x is in S " or " x is an element of S."
- Given two sets, T, S we say T is a subset of S, if each element of T is in S. We write

$$
T \subseteq S \text { to mean } T \text { is a subset of } S
$$

- Read the notation \Longrightarrow as "implies".

Linear Combination

Definition. Let V be a vector space and \mathbf{v} be a vector in V. Then, \mathbf{v} is said to be a linear combination of vectors
$\mathbf{u}_{1}, \mathbf{u}_{2}, \ldots, \mathbf{u}_{\mathbf{k}}$ in V, if
$\mathbf{v}=c_{1} \mathbf{u}_{\mathbf{1}}+c_{2} \mathbf{u}_{\mathbf{2}}+\cdots+c_{k} \mathbf{u}_{\mathbf{k}} \quad$ for some scalars $c_{1}, c_{2}, \ldots, c_{k} \in \mathbb{R}$.

Example 4.4.1a: Linear Combination

Let $S=\{(-1,-2,2),(-2,1,-1)\}$ be a set of two vectors in \mathbb{R}^{3}. Write $\mathbf{u}=(-8,-1,1)$ as a linear combination of the vectors in S, if possible.

Solution:

- Write $(-8,-1,1)=a(-1,-2,2)+b(-2,1,-1)$.
- So, $(-8,-1,1)=(-a-2 b,-2 a+b, 2 a-b)$.
- So,
- The augmented matrix

$$
\left(\begin{array}{ccc}
-1 & -2 & -8 \\
-2 & 1 & -1 \\
2 & -1 & 1
\end{array}\right)
$$

- Its row echelon form (use TI-84 " ref")

$$
\left(\begin{array}{ccc}
1 & -\frac{1}{2} & \frac{1}{2} \\
0 & 1 & 3 \\
0 & 0 & 0
\end{array}\right) . \quad \text { So, } \quad b=3, a=2 \text {. }
$$

- So,

$$
(-8,-1,1)=2(-1,-2,2)+3(-2,1,-1)
$$

Example 4.4.1b: Linear Combination

Let $S=\{(-1,-2,2),(-2,1,-1)\}$ be a set of two vectors in \mathbb{R}^{3}. Write $\mathbf{v}=(-3,-1,3)$ as a linear combination of the vectors in S, if possible.

Solution:

- Write $(-3,-1,3)=a(-1,-2,2)+b(-2,1,-1)$.
- So, $(-3,-1,3)=(-a-2 b,-2 a+b, 2 a-b)$.
- So,

$$
\left\{\begin{array}{cl}
-a & -2 b
\end{array}=-30 子 \begin{array}{cl}
-2 a+b & =-1 \\
2 a & -b
\end{array}=3\right.
$$

- The augmented matrix

$$
\left(\begin{array}{ccc}
-1 & -2 & -3 \\
-2 & 1 & -1 \\
2 & -1 & 3
\end{array}\right)
$$

- Its row echelon form (use TI-84 "ref")

$$
\left(\begin{array}{ccc}
1 & -\frac{1}{2} & \frac{1}{2} \\
0 & 1 & 1 \\
0 & 0 & 1
\end{array}\right)
$$

Last rwo gives $0=1$

So, they system has no solution.

- $\mathbf{v}=(-3,-1,3)$ is not a linear combination of $(-1,-2,2),(-2,1,-1)$.

Example 4.4.1c: Linear Combination

Let $S=\{(-1,-2,2),(-2,1,-1)\}$ be a set of two vectors in \mathbb{R}^{3}. Write $\mathbf{v}=(-3,-1,1)$ as a linear combination of the vectors in S, if possible.

Solution:

- Write $(-3,-1,1)=a(-1,-2,2)+b(-2,1,-1)$.
- So, $(-3,-1,1)=(-a-2 b,-2 a+b, 2 a-b)$.
- So,
- The augmented matrix

$$
\left(\begin{array}{ccc}
-1 & -2 & -3 \\
-2 & 1 & -1 \\
2 & -1 & 1
\end{array}\right)
$$

- Its row echelon form (use TI-84 "ref")

$$
\left(\begin{array}{ccc}
1 & -\frac{1}{2} & \frac{1}{2} \\
0 & 1 & 1 \\
0 & 0 & 0
\end{array}\right) . \quad \text { So } \quad b=1, a=1
$$

So, they system has no solution.

- So, $(-3,-1,1)=(-1,-2,2)+(-2,1,-1)$

Example 4.4.1d

Let $S=\{(-1,-2,2),(-2,1,-1)\}$ be a set of two vectors in \mathbb{R}^{3}. Write $\mathbf{w}=(-9,-13,13)$ as a linear combination of the vectors in S, if possible.

Solution:

- Write $(-9,-13,13)=a(-1,-2,2)+b(-2,1,-1)$.
- So, $(-9,-13,13)=(-a-2 b,-2 a+b, 2 a-b)$.
- So,

$$
\left\{\begin{aligned}
-a-2 b & =-9 \\
-2 a+b & =-13 \\
2 a-b & =13
\end{aligned}\right.
$$

- The augmented matrix

$$
\left(\begin{array}{ccl}
-1 & -2 & -9 \\
-2 & 1 & -13 \\
2 & -1 & 13
\end{array}\right)
$$

- Its row echelon form (use TI-84 "ref")

$$
\left(\begin{array}{ccc}
1 & -\frac{1}{2} & \frac{13}{2} \\
0 & 1 & 1 \\
0 & 0 & 0
\end{array}\right) . \quad \text { so } \quad b=1, a=7
$$

- So,

$$
\mathbf{w}=(-9,-13,13)=7(-1,-2,2)+(-2,1,-1)
$$

Example 4.4.1e

Let $S=\{(-1,-2,2),(-2,1,-1)\}$ be a set of two vectors in \mathbb{R}^{3}. Write $\mathbf{z}=(-4,-3,3)$ as a linear combination of the vectors in S, if possible.

Solution:

- Write $(-4,-3,3)=a(-1,-2,2)+b(-2,1,-1)$.
- So, $(-4,-3,3)=(-a-2 b,-2 a+b, 2 a-b)$.
- So,
- The augmented matrix

$$
\left[\begin{array}{ccc}
-1 & -2 & -4 \\
-2 & 1 & -3 \\
2 & -1 & 3
\end{array}\right]
$$

- Its row echelon form (use TI-84 "ref")

$$
\left[\begin{array}{ccc}
1 & -\frac{1}{2} & \frac{3}{2} \\
0 & 1 & 1 \\
0 & 0 & 0
\end{array}\right] . \quad \text { So, } \quad a=2, \quad b=1 \text {. }
$$

- So,

$$
\mathbf{z}=(-4,-3,3)=2(-1,-2,2)+(-2,1,-1) .
$$

Span of a Sets

Definition. Let $S=\left\{\mathbf{v}_{\mathbf{1}}, \mathbf{v}_{\mathbf{2}}, \ldots, \mathbf{v}_{\mathbf{k}}\right\}$ be a subset of a vector space V.

- The span of S is the set of all linear combinations of vectors in S. So,
$\operatorname{span}(S)=\left\{c_{1} \mathbf{v}_{\mathbf{1}}+c_{2} \mathbf{v}_{\mathbf{2}} \cdots+c_{k} \mathbf{v}_{\mathbf{k}}: c_{1}, c_{2}, \cdots, c_{k}\right.$ are scalars $\}$
The $\operatorname{span}(S)$ is also denoted by $\operatorname{span}\left(\mathbf{v}_{\mathbf{1}}, \mathbf{v}_{2}, \ldots, \mathbf{v}_{\mathbf{k}}\right)$.
- If $V=\operatorname{span}(S)$, we say V is spanned by S.

$\operatorname{Span}(S)$ is a subspace of V

Theorem 4.4.1 Let $S=\left\{\mathbf{v}_{\mathbf{1}}, \mathbf{v}_{\mathbf{2}}, \ldots, \mathbf{v}_{\mathbf{k}}\right\}$ be a subset of a vector space V.

- Then, $\operatorname{span}(S)$ is a subspace of V.
- In fact, $\operatorname{Span}(S)$ is the smallest subspace of V that contains S. That means, if W is a subspace of V then,

$$
S \subseteq W \quad \Longrightarrow \quad \operatorname{span}(S) \subseteq W
$$

Proof.First, we show $\operatorname{span}(S)$ is a subspace of V.

- First, $\mathbf{0}=0 \mathbf{v}_{\mathbf{1}}+0 \mathbf{v}_{\mathbf{2}}+\cdots+0 \mathbf{v}_{\mathbf{k}} \in \operatorname{spanS}$. So, $\operatorname{span}(S)$ is nonempty.
- Let $\mathbf{u}, \mathbf{v} \in \operatorname{Span}(S)$ and c be a scalar. Then
$\mathbf{u}=c_{1} \mathbf{v}_{\mathbf{1}}+c_{2} \mathbf{v}_{\mathbf{2}}+\cdots+c_{k} \mathbf{v}_{\mathbf{k}}, \quad \mathbf{v}=d_{\mathbf{1}} \mathbf{v}_{\mathbf{1}}+d_{\mathbf{2}} \mathbf{v}_{\mathbf{2}}+\cdots+d_{k} \mathbf{v}_{\mathbf{k}}$
where $c_{1}, c_{2}, \ldots, c_{k}, d_{1}, d_{2}, \ldots, d_{k}$ are scalars. Then

$$
\begin{gathered}
\mathbf{u}+\mathbf{v}=\left(c_{1}+d_{1}\right) \mathbf{v}_{1}+\left(c_{2}+d_{2}\right) \mathbf{v}_{2}+\cdots+\left(c_{k}+d_{k}\right) \mathbf{v}_{\mathbf{k}} \\
c \mathbf{u}=\left(c c_{1}\right) \mathbf{v}_{\mathbf{1}}+\left(c c_{2}\right) \mathbf{v}_{\mathbf{2}}+\cdots+\left(c c_{k}\right) \mathbf{v}_{\mathbf{k}}
\end{gathered}
$$

So $\mathbf{u}+\mathbf{v}, c \mathbf{u} \in \operatorname{span}(S)$. So $\operatorname{span}(S)$ is a subspace of V.

- So, we have shown that $\operatorname{span}(S)$ is nonempty and closed under both addition and scalar multiplication. So, by Theorem 4.3.1, $\operatorname{span}(S)$ is a subspace of V.
- Now, we prove that $\operatorname{span}(S)$ is the smallest subspace W, of V, that contains S. Suppose W is a subspace of V and $S \subseteq W$. Let $\mathbf{u} \in \operatorname{span}(S)$. we will have to show $\mathbf{u} \in W$. Then,

$$
\mathbf{u}=c_{1} \mathbf{v}_{\mathbf{1}}+c_{2} \mathbf{v}_{\mathbf{2}}+\cdots+c_{k} \mathbf{v}_{\mathbf{k}}
$$

where $c_{1}, c_{2}, \ldots, c_{k}$ are scalars. Now, $\mathbf{v}_{\mathbf{1}}, \mathbf{v}_{\mathbf{2}}, \ldots, \mathbf{v}_{\mathbf{k}} \in W$. Since W is closed under scalar multiplication $c_{i} \mathbf{v}_{\mathbf{i}} \in W$. Since W is closed under addition $\mathbf{u} \in W$. The proof is complete.

Examples 4.4.2: of Spanning Sets

- Most obvious and natural spanning set of the 3 -space \mathbb{R}^{3} is $S=\{(1,0,0),(0,1,0),(0,0,1)\}$ Because for any vector $\mathbf{u}=(a, b, c) \in \mathbb{R}^{3} \mathrm{w}$ e have

$$
\mathbf{u}=(a, b, c)=a(1,0,0)+b(0,1,0)+c(0,0,1)
$$

- Similarly, most obvious and natural spanning set of the real plane \mathbb{R}^{2} is $S=\{(1,0),(0,1)\}$.

Continued

- More generally, we give the natural spanning set of \mathbb{R}^{n}.

$$
\text { Let } \quad\left\{\begin{array}{c}
\mathbf{e}_{1}=(1,0,0, \ldots, 0) \tag{1}\\
\mathbf{e}_{2}=(0,1,0, \ldots, 0) \\
\mathbf{e}_{3}=(0,0,1, \ldots, 0) \\
\ldots \\
\mathbf{e}_{n}=(0,0,0, \ldots, 1)
\end{array}\right.
$$

Then, $\left\{\mathbf{e}_{1}, \mathbf{e}_{2}, \mathbf{e}_{3}, \ldots, \mathbf{e}_{n}\right\}$ is a spanning set of \mathbb{R}^{n}.

- Remark. If S is spanning set of V and T is a bigger set (i.e. $S \subseteq T$) than T is also a spanning set of V.

Example 4.4.3

Let $S=\{(1,1),(-1,1)\}$. Is S a spanning set of \mathbb{R}^{2} ?
Solution.

- Yes, it is a spanning set of \mathbb{R}^{2}. We need to show that any vector $(x, y) \in \mathbb{R}^{2}$ is a linear combination of elements is S.
So, $\quad a(1,1)+b(-1,1)=(x, y) \quad$ OR $\quad\left\{\begin{array}{l}a-b=x \\ a+b=y\end{array}\right.$ must have at least one solution, for any (x, y). In the matrix form

$$
\left(\begin{array}{cc}
1 & -1 \\
1 & 1
\end{array}\right)\binom{a}{b}=\binom{x}{y}
$$

- Use TI-84

$$
\binom{a}{b}=\left(\begin{array}{cc}
1 & -1 \\
1 & 1
\end{array}\right)^{-1}\binom{x}{y}=\frac{1}{2}\left(\begin{array}{cc}
1 & 1 \\
-1 & 1
\end{array}\right)\binom{x}{y}
$$

- Since the systems have solution for all $(x, y), S$ is a spanning set \mathbb{R}^{2}. Therefore, S is a spanning set of \mathbb{R}^{2}.
- We have could just argued $\operatorname{det}\left(\begin{array}{cc}1 & -1 \\ 1 & 1\end{array}\right)=2 \neq 0$. Hence the system has a solution. That would suffice.

Example 4.4.4

Let $S=\{(1,1,1)\}$. Is S a spanning set of \mathbb{R}^{3} ?
Solution. No. Because

$$
\operatorname{span}(S)=\{c(1,1,1): c \in \mathbb{R}\}=\{(c, c, c): c \in \mathbb{R}\}
$$

is only the line through the origin and $(1,1,1)$. It is strictly smaller than \mathbb{R}^{3}. For example, $(1,0,0) \notin \operatorname{span}(S)$.

Example 4.4.5

Let $S=\{(1,0,0),(0,1,0)\}$. Is S a spanning set of \mathbb{R}^{3} ?
Solution. No. Because

$$
\begin{aligned}
\operatorname{span}(S)= & \{a(1,0,0)+b(0,1,0): a, b \in \mathbb{R}\} \\
= & \{(a, b, 0): a, b \in \mathbb{R}\}
\end{aligned}
$$

is only the $x y$-plane, which is strictly smaller than \mathbb{R}^{3}. For example, $(0,0,1) \notin \operatorname{span}(S)$.

Example 4.4.5a

Let $S=\{(1,0,1),(1,1,0),(0,1,1)\}$. Is S a spanning set of \mathbb{R}^{3} ?

Solution.

- Yes, it is a spanning set of \mathbb{R}^{3}. We need to show that any vector $(x, y, z) \in \mathbb{R}^{3}$ is a linear combination of elements is S.

So, $\quad a(1,0,1)+b(1,1,0)+c(0,1,1)=(x, y, z)$

$$
\text { OR }\left\{\begin{array}{rll}
a+b & =x \\
& b+c & =y \\
a & +c & =z
\end{array}\right.
$$

must have at least one solution, for any (x, y, z).

- In the matrix form

$$
\left(\begin{array}{lll}
1 & 1 & 0 \\
0 & 1 & 1 \\
1 & 0 & 1
\end{array}\right)\left(\begin{array}{l}
a \\
b \\
c
\end{array}\right)=\left(\begin{array}{l}
x \\
y \\
z
\end{array}\right)
$$

- Use TI-84, we have $\operatorname{det}\left(\begin{array}{ccc}1 & 1 & 0 \\ 0 & 1 & 1 \\ 1 & 0 & 1\end{array}\right)=2 \neq 0$ So, the system has a solution for all $(x, y, z) \in \mathbb{R}^{3}$. Therefore, S is a spanning set of \mathbb{R}^{3}.
- Remark. Note, we did not have to solve the system explicitly.

Example 4.4.6

Let $S=\{(1,1,1),(1,-1,1),(1,1,-1),(7,13,17)\}$. Is S a spanning set of \mathbb{R}^{3} ?
Solution. To check, Write

$$
\begin{gathered}
a(1,1,1)+b(1,-1,1)+c(1,1,-1)+d(7,13,17)=(x, y, z) \\
O R \quad\left\{\begin{array}{llll}
a+b & +c & +7 d=x \\
a & -b & +c & +13 d \\
a & =y \\
a & +b & -c & +17 d=z
\end{array}\right.
\end{gathered}
$$

Question is, whether the system has one or more solutions, for any (x, y, z).

Continued

Write the equation in matrix form

$$
\left(\begin{array}{cccc}
1 & 1 & 1 & 7 \\
1 & -1 & 1 & 13 \\
1 & 1 & -1 & 17
\end{array}\right)\left(\begin{array}{l}
a \\
b \\
c \\
d
\end{array}\right)=\left(\begin{array}{l}
x \\
y \\
z
\end{array}\right)
$$

Remark. Since the coefficient matrix is not a square matrix, we cannot use the determinant trick we used before.

Continued

The augmented matrix:

$$
\left(\begin{array}{ccccc}
1 & 1 & 1 & 7 & x \\
1 & -1 & 1 & 13 & y \\
1 & 1 & -1 & 17 & z
\end{array}\right)
$$

Since the matrix has variables, we have to do it by hand. Subtract first row from second and third:
$\left(\begin{array}{ccccc}1 & 1 & 1 & 7 & x \\ 0 & -2 & 0 & 6 & y-x \\ 0 & 0 & -2 & 10 & z-x\end{array}\right)$, This is (nearly) in Echelon form.

Continued

So, the equivalent system:

This system has a solution. Any value of d leads to a solution. For convenience, we take $d=0$. So, the system becomes

$$
\left\{\begin{aligned}
a+b+c & =x \\
-2 b & =y-x \\
-2 c & =z-x
\end{aligned}\right.
$$

Continued

Given any $(x, y, z) \in \mathbb{R}^{3}$, we can take

$$
\left\{\begin{aligned}
c & =-\frac{z-x}{2} \\
b & =-\frac{y-x}{2} \\
a & =x-b-c \\
d & =0
\end{aligned}\right.
$$

Therefore, S is a spanning set of \mathbb{R}^{3}.

Liniear Independence

- Definition. Let $S=\left\{\mathbf{v}_{\mathbf{1}}, \mathbf{v}_{\mathbf{2}}, \ldots, \mathbf{v}_{\mathbf{k}}\right\}$ be a subset of a vector space V. The set S is said to be linearly independent, if

$$
c_{1} \mathbf{v}_{\mathbf{1}}+c_{2} \mathbf{v}_{\mathbf{2}}, \cdots+c_{k} \mathbf{v}_{\mathbf{k}}=\mathbf{0} \Longrightarrow c_{1}=c_{2}=\cdots=c_{k}=0
$$

That means, the equation on the left has only the trivial solution.

- If S is not linearly independent, we say that S is linearly dependent.

Comments

- (1) Let $S=\left\{\mathbf{v}_{\mathbf{1}}, \mathbf{v}_{\mathbf{2}}, \ldots, \mathbf{v}_{\mathbf{k}}\right\}$ be a subset of a vector space V. If $\mathbf{0} \in S$ then, S is linearly dependent. Proof.For simplicity, assume $\mathbf{v}_{\mathbf{1}}=\mathbf{0}$. Then,

$$
1 \mathbf{v}_{\mathbf{1}}+0 \mathbf{v}_{\mathbf{2}}+\cdots+0 \mathbf{v}_{\mathbf{k}}=\mathbf{0}
$$

So, S is not linearly indpendent.

- (2)Methods to test Independence: We will mostly be working with vector in $\mathbb{R}^{2}, \mathbb{R}^{3}$, or n-spaces \mathbb{R}^{n}. Gauss-Jordan elimination (with Tl-84) will be used to check if a set is independent.

A Property of Linearly Dependent Sets

Theorem 4.4.2 Let $S=\left\{\mathbf{v}_{\mathbf{1}}, \mathbf{v}_{2}, \ldots, \mathbf{v}_{\mathbf{k}}\right\}$ be a subset of a vector space V. Assume S has at least 2 elements ($k \geq 2$). Then, S is linearly dependent if and only if one of the vectors $\mathbf{v}_{\mathbf{j}}$ can be written as a linear combination of rest of the vectors in S. Proof. Again, we have to prove two statments.

- First, we prove "if" part. We assume that one of the vectors $\mathbf{v}_{\mathbf{j}}$ can be written as a linear combination of rest of the vectors in S.
- For simplicity, we assume that $\mathbf{v}_{\mathbf{1}}$ is a linear combination of rest of the vectors in S. So,

$$
\mathbf{v}_{\mathbf{1}}=c_{2} \mathbf{v}_{\mathbf{2}}+c_{3} \mathbf{v}_{\mathbf{3}}+\cdots+c_{k} \mathbf{v}_{\mathbf{k}}
$$

$$
\text { So, } \quad(-1) \mathbf{v}_{\mathbf{1}}+c_{2} \mathbf{v}_{\mathbf{2}}+c_{3} \mathbf{v}_{\mathbf{3}}+\cdots+c_{k} \mathbf{v}_{\mathbf{k}}=\mathbf{0}
$$

This has at least one coefficient -1 that is nonzero. This establishes that S is a linearly dependent set.

- Now, we prove the "only if" part. We assume that S is linearly dependent. So, there are scalars c_{1}, \cdots, c_{k}, at least one non-zero, such that

$$
c_{1} \mathbf{v}_{\mathbf{1}}+c_{2} \mathbf{v}_{2}+c_{3} \mathbf{v}_{3}+\cdots+c_{k} \mathbf{v}_{\mathbf{k}}=\mathbf{0}
$$

- Without loss of generality (i.e. for simplicity) assume $c_{1} \neq 0$.

So, $\quad \mathbf{v}_{\mathbf{1}}=\left(-\frac{c_{2}}{c_{1}}\right) \mathbf{v}_{\mathbf{2}}+\left(-\frac{c_{3}}{c_{1}}\right) \mathbf{v}_{\mathbf{3}}+\cdots+\left(\frac{c_{k}}{c_{1}}\right) \mathbf{v}_{\mathbf{k}}$

- Therefore, $\mathbf{v}_{\mathbf{1}}$ is a linear combination of the rest. The proof is complete.

Examples 4.4.7

- Again, most natural example of linearly independent set in 3 -space \mathbb{R}^{3} is $S=\{(1,0,0),(0,1,0),(0,0,1)\}$ Because

$$
a(1,0,0)+b(0,1,0)+c(0,0,1)=(0,0,0) \Longrightarrow a=b=c=0
$$

- Similarly, most natural example of linearly independent set in the real plane \mathbb{R}^{2} is $S=\{(1,0),(0,1)\}$.

Continued

- More generally, the natural linearly independent set of \mathbb{R}^{n} :

$$
\text { Let } \quad\left\{\begin{array}{c}
\mathbf{e}_{1}=(1,0,0, \ldots, 0) \\
\mathbf{e}_{2}=(0,1,0, \ldots, 0) \\
\mathbf{e}_{3}=(0,0,1, \ldots, 0) \tag{2}\\
\ldots \\
\mathbf{e}_{n}=(0,0,0, \ldots, 1)
\end{array}\right.
$$

Then, $\left\{\mathbf{e}_{1}, \mathbf{e}_{2}, \mathbf{e}_{3}, \ldots, \mathbf{e}_{n}\right\}$ is a linearly independent subset of \mathbb{R}^{n}. (Compare this with Example 4.2.2, that this set is also a spanning set of \mathbb{R}^{n})

- Remark. If S is a linearly independent subset of V and if $R \subseteq S$, then R is also a linearly independent subset of V.

Example 4.4.8

Is the set $S=\{(-2,4),(1,-2)\}$. linearly independent?
Solution.

- We can see a non-trivial linear combination $1 *(-2,4)+2 *(1,-2)=(0,0)$. So, S is not linearly independent.
- Alternately, to prove it methodically, let

$$
a(-2,4)+b(1,-2)=(0,0)
$$

- Then,

$$
\left\{\begin{array}{cc}
-2 a & +b \\
4 a & -2 b
\end{array}=0 \quad \text { Or } \quad\left(\begin{array}{cc}
-2 & 1 \\
4 & -2
\end{array}\right)\binom{a}{b}=\binom{0}{0}\right.
$$

- The question is, if this system has only the trivial solution or not.?
- Add 2 times the first equation to the second:

$$
\left\{\begin{array}{rc}
-2 a+b & =0 \\
0 & =0
\end{array} \quad \text { So, } \quad a=t, b=2 t\right.
$$

- So, there are lots of non-zero (non trivial) a, b. Hence, $S=\{(-2,4),(1,-2)\}$ is not linearly independent.
- Alternately, $\left|\begin{array}{cc}-2 & 1 \\ 4 & -2\end{array}\right|=0$. So, this homogeneous system has nontrivial solutions. So, S is not linearly independent.

Example 4.4.9

Let $S=\{(1,1,1),(1,-1,3),(1,0,0)\}$. Is it linearly independent or dependent?
Solution. Let $a(1,1,1)+b(1,-1,3)+c(1,0,0)=(0,0,0)$ So,

$$
\left\{\begin{array}{ll}
a+b+c & =0 \\
a & -b \\
a & =0
\end{array} \quad \text { Or, } \quad\left(\begin{array}{ccc}
1 & 1 & 1 \\
1 & -1 & 0 \\
1 & 3 & 0
\end{array}\right)\left(\begin{array}{l}
a \\
b \\
c
\end{array}\right)=\left(\begin{array}{l}
0 \\
0 \\
0
\end{array}\right)\right.
$$

The question is, if the it has only the trivial solution or not.?

- Short Method: $\left|\begin{array}{ccc}1 & 1 & 1 \\ 1 & -1 & 0 \\ 1 & 3 & 0\end{array}\right|=4 \neq 0$. So, the system
has only the zero solution. So, S is linearly independent.
- Explicit Method: Write the augmented matrix

$$
\left(\begin{array}{cccc}
1 & 1 & 1 & 0 \\
1 & -1 & 0 & 0 \\
1 & 3 & 0 & 0
\end{array}\right)
$$

Its Echelon reduction : $\left(\begin{array}{cccc}1 & 1 & 1 & 0 \\ 0 & 1 & \frac{1}{2} & 0 \\ 0 & 0 & 1 & 0\end{array}\right)$

- So, the only solution is the zero-solution: $a=0, b=0$, $c=0$. We conclude that S is linearly independent.

Example 4.4.10

Let $S=\left\{x^{2}-x+1,2 x^{2}+x\right\}$ be a set of polynomials. Is it linearly independent or dependent?
Solution.

- Write $a\left(x^{2}-x+1\right)+b\left(2 x^{2}+x\right)=0$.
- So, $(a+2 b) x^{2}+(-a+b) x+a=0$
- , Equating coefficients of x^{2}, x and the constant terms:

$$
a+2 b=0,-a+b=0, a=0 \quad \text { or } \quad a=b=0
$$

- We conclude, S is linearly independent.

