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Goals

Discuss two important basic concepts:

I Define linear combination of vectors.

I Define Span(S) of a set S of vectors.

I Define linear Independence of a set of vectors.
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Set theory and set theoretic Notations

Borrow (re-introduce) some Set theoretic lingo and notations.

I A collection S of objects is called a set.

I Objects in S are called elements of S .

I We write ”x ∈ S” to mean ”x is in S” or ”x is an
element of S .”

I Given two sets, T , S we say T is a subset of S , if each
element of T is in S . We write

T ⊆ S to mean T is a subset of S .

I Read the notation =⇒ as ”implies”.
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Linear Combination

Definition. Let V be a vector space and v be a vector in V .
Then, v is said to be a linear combination of vectors
u1,u2, . . . ,uk in V , if

v = c1u1+c2u2+· · ·+ckuk for some scalars c1, c2, . . . , ck ∈ R.
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Example 4.4.1a: Linear Combination

Let S = {(−1,−2, 2), (−2, 1,−1)} be a set of two vectors in
R3. Write u = (−8,−1, 1) as a linear combination of the
vectors in S , if possible.
Solution:

I Write (−8,−1, 1) = a(−1,−2, 2) + b(−2, 1,−1).

I So, (−8,−1, 1) = (−a − 2b,−2a + b, 2a − b).

I So, 
−a −2b = −8
−2a +b = −1
2a −b = 1
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I The augmented matrix −1 −2 −8
−2 1 −1
2 −1 1


I Its row echelon form (use TI-84 ”ref”) 1 −1

2
1
2

0 1 3
0 0 0

 . So, b = 3, a = 2.

I So,

(−8,−1, 1) = 2(−1,−2, 2) + 3(−2, 1,−1)

Satya Mandal, KU Vector Spaces §4.4 Spanning and Independence



Preview
Sets and Subsets

Spanning
Examples

Linear Independence

Example 4.4.1b: Linear Combination

Let S = {(−1,−2, 2), (−2, 1,−1)} be a set of two vectors in
R3. Write v = (−3,−1, 3) as a linear combination of the
vectors in S , if possible.
Solution:

I Write (−3,−1, 3) = a(−1,−2, 2) + b(−2, 1,−1).

I So, (−3,−1, 3) = (−a − 2b,−2a + b, 2a − b).

I So, 
−a −2b = −3
−2a +b = −1
2a −b = 3
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I The augmented matrix −1 −2 −3
−2 1 −1
2 −1 3


I Its row echelon form (use TI-84 ”ref”) 1 −1

2
1
2

0 1 1
0 0 1

 . Last rwo gives 0 = 1

So, they system has no solution.

I v = (−3,−1, 3) is not a linear combination of
(−1,−2, 2), (−2, 1,−1).
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Example 4.4.1c: Linear Combination

Let S = {(−1,−2, 2), (−2, 1,−1)} be a set of two vectors in
R3. Write v = (−3,−1, 1) as a linear combination of the
vectors in S , if possible.
Solution:

I Write (−3,−1, 1) = a(−1,−2, 2) + b(−2, 1,−1).

I So, (−3,−1, 1) = (−a − 2b,−2a + b, 2a − b).

I So, 
−a −2b = −3
−2a +b = −1
2a −b = 1
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I The augmented matrix −1 −2 −3
−2 1 −1
2 −1 1


I Its row echelon form (use TI-84 ”ref”) 1 −1

2
1
2

0 1 1
0 0 0

 . So b = 1, a = 1

So, they system has no solution.

I So, (−3,−1, 1) = (−1,−2, 2) + (−2, 1,−1)
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Example 4.4.1d

Let S = {(−1,−2, 2), (−2, 1,−1)} be a set of two vectors in
R3. Write w = (−9,−13, 13) as a linear combination of the
vectors in S , if possible.
Solution:

I Write (−9,−13, 13) = a(−1,−2, 2) + b(−2, 1,−1).

I So, (−9,−13, 13) = (−a − 2b,−2a + b, 2a − b).

I So, 
−a −2b = −9
−2a +b = −13
2a −b = 13
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I The augmented matrix −1 −2 −9
−2 1 −13
2 −1 13


I Its row echelon form (use TI-84 ”ref”) 1 −1

2
13
2

0 1 1
0 0 0

 . so b = 1, a = 7

I So,

w = (−9,−13, 13) = 7(−1,−2, 2) + (−2, 1,−1)
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Example 4.4.1e

Let S = {(−1,−2, 2), (−2, 1,−1)} be a set of two vectors in
R3. Write z = (−4,−3, 3) as a linear combination of the
vectors in S , if possible.
Solution:

I Write (−4,−3, 3) = a(−1,−2, 2) + b(−2, 1,−1).

I So, (−4,−3, 3) = (−a − 2b,−2a + b, 2a − b).

I So, 
−a −2b = −4
−2a +b = −3
2a −b = 3
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I The augmented matrix −1 −2 −4
−2 1 −3
2 −1 3


I Its row echelon form (use TI-84 ”ref”) 1 −1

2
3
2

0 1 1
0 0 0

 . So, a = 2, b = 1.

I So,

z = (−4,−3, 3) = 2(−1,−2, 2) + (−2, 1,−1).
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Span of a Sets

Definition. Let S = {v1, v2, . . . , vk} be a subset of a vector
space V .

I The span of S is the set of all linear combinations of
vectors in S . So,

span(S) = {c1v1+c2v2 · · ·+ckvk : c1, c2, · · · , ck are scalars}

The span(S) is also denoted by span(v1, v2, . . . , vk).

I If V = span(S), we say V is spanned by S .
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Span(S) is a subspace ofV

Theorem 4.4.1 Let S = {v1, v2, . . . , vk} be a subset of a
vector space V .

I Then, span(S) is a subspace of V .

I In fact, Span(S) is the smallest subspace of V that
contains S . That means, if W is a subspace of V then,

S ⊆ W =⇒ span(S) ⊆ W .
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Proof.First, we show span(S) is a subspace of V .

I First, 0 = 0v1 + 0v2 + · · ·+ 0vk ∈ spanS . So, span(S) is
nonempty.

I Let u, v ∈ Span(S) and c be a scalar. Then

u = c1v1 +c2v2 +· · ·+ckvk, v = d1v1 +d2v2 +· · ·+dkvk

where c1, c2, . . . , ck , d1, d2, . . . , dk are scalars. Then

u + v = (c1 + d1)v1 + (c2 + d2)v2 + · · ·+ (ck + dk)vk

cu = (cc1)v1 + (cc2)v2 + · · ·+ (cck)vk

So u + v, cu ∈ span(S). So span(S) is a subspace of V .
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I So, we have shown that span(S) is nonempty and closed
under both addition and scalar multiplication. So, by
Theorem 4.3.1, span(S) is a subspace of V .

I Now, we prove that span(S) is the smallest subspace W ,
of V , that contains S . Suppose W is a subspace of V
and S ⊆ W . Let u ∈ span(S). we will have to show
u ∈ W . Then,

u = c1v1 + c2v2 + · · ·+ ckvk,

where c1, c2, . . . , ck are scalars. Now, v1, v2, . . . , vk ∈ W .
Since W is closed under scalar multiplication civi ∈ W .
Since W is closed under addition u ∈ W . The proof is
complete.
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More Problems on spanning sets

Examples 4.4.2: of Spanning Sets

I Most obvious and natural spanning set of the 3−space R3

is S = {(1, 0, 0), (0, 1, 0), (0, 0, 1)} Because for any vector
u = (a, b, c) ∈ R3 w e have

u = (a, b, c) = a(1, 0, 0) + b(0, 1, 0) + c(0, 0, 1)

I Similarly, most obvious and natural spanning set of the
real plane R2 is S = {(1, 0), (0, 1)}.
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More Problems on spanning sets

Continued

I More generally, we give the natural spanning set of Rn.

Let


e1 = (1, 0, 0, . . . , 0)
e2 = (0, 1, 0, . . . , 0)
e3 = (0, 0, 1, . . . , 0)

· · ·
en = (0, 0, 0, . . . , 1)

(1)

Then, {e1, e2, e3, . . . , en} is a spanning set of Rn.

I Remark. If S is spanning set of V and T is a bigger set
(i.e. S ⊆ T ) than T is also a spanning set of V .
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More Problems on spanning sets

Example 4.4.3

Let S = {(1, 1), (−1, 1)}. Is S a spanning set of R2?
Solution.

I Yes, it is a spanning set of R2. We need to show that any
vector (x , y) ∈ R2 is a linear combination of elements is
S .

So, a(1, 1) + b(−1, 1) = (x , y) OR

{
a −b = x
a +b = y

must have at least one solution, for any (x , y). In the
matrix form (

1 −1
1 1

)(
a
b

)
=

(
x
y

)
Satya Mandal, KU Vector Spaces §4.4 Spanning and Independence
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More Problems on spanning sets

I Use TI-84(
a
b

)
=

(
1 −1
1 1

)−1(
x
y

)
=

1

2

(
1 1
−1 1

)(
x
y

)
I Since the systems have solution for all (x , y), S is a

spanning set R2. Therefore, S is a spanning set of R2.

I We have could just argued det

(
1 −1
1 1

)
= 2 6= 0.

Hence the system has a solution. That would suffice.

Satya Mandal, KU Vector Spaces §4.4 Spanning and Independence
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More Problems on spanning sets

Example 4.4.4

Let S = {(1, 1, 1)}. Is S a spanning set of R3?
Solution. No. Because

span(S) = {c(1, 1, 1) : c ∈ R} = {(c , c , c) : c ∈ R}.

is only the line through the origin and (1, 1, 1). It is strictly
smaller than R3. For example, (1, 0, 0) /∈ span(S).
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More Problems on spanning sets

Example 4.4.5

Let S = {(1, 0, 0), (0, 1, 0)}. Is S a spanning set of R3?
Solution. No. Because

span(S) = {a(1, 0, 0) + b(0, 1, 0) : a, b ∈ R}

= {(a, b, 0) : a, b ∈ R}.

is only the xy -plane, which is strictly smaller than R3. For
example, (0, 0, 1) /∈ span(S).
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More Problems on spanning sets

Example 4.4.5a

Let S = {(1, 0, 1), (1, 1, 0), (0, 1, 1)}. Is S a spanning set of
R3?
Solution.

I Yes, it is a spanning set of R3. We need to show that any
vector (x , y , z) ∈ R3 is a linear combination of elements
is S .

So, a(1, 0, 1) + b(1, 1, 0) + c(0, 1, 1) = (x , y , z)

OR


a +b = x

b +c = y
a +c = z

must have at least one solution, for any (x , y , z).
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More Problems on spanning sets

I In the matrix form 1 1 0
0 1 1
1 0 1

 a
b
c

 =

 x
y
z



I Use TI-84, we have det

 1 1 0
0 1 1
1 0 1

 = 2 6= 0 So, the

system has a solution for all (x , y , z) ∈ R3. Therefore, S
is a spanning set of R3.

I Remark. Note, we did not have to solve the system
explicitly.

Satya Mandal, KU Vector Spaces §4.4 Spanning and Independence
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More Problems on spanning sets

Example 4.4.6

Let S = {(1, 1, 1), (1,−1, 1), (1, 1,−1), (7, 13, 17)}. Is S a
spanning set of R3?
Solution. To check, Write

a(1, 1, 1) + b(1,−1, 1) + c(1, 1,−1) + d(7, 13, 17) = (x , y , z)

OR


a +b +c +7d = x
a −b +c +13d = y
a +b −c +17d = z

Question is, whether the system has one or more solutions, for
any (x , y , z).

Satya Mandal, KU Vector Spaces §4.4 Spanning and Independence
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More Problems on spanning sets

Continued

Write the equation in matrix form

 1 1 1 7
1 −1 1 13
1 1 −1 17




a
b
c
d

 =

 x
y
z


Remark. Since the coefficient matrix is not a square matrix,
we cannot use the determinant trick we used before.

Satya Mandal, KU Vector Spaces §4.4 Spanning and Independence
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More Problems on spanning sets

Continued

The augmented matrix: 1 1 1 7 x
1 −1 1 13 y
1 1 −1 17 z


Since the matrix has variables, we have to do it by hand.
Subtract first row from second and third: 1 1 1 7 x

0 −2 0 6 y − x
0 0 −2 10 z − x

 , This is (nearly) in Echelon form.
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More Problems on spanning sets

Continued

So, the equivalent system:
a +b +c +7d = x
−2b +6d = y − x

−2c +10d = z − x

This system has a solution. Any value of d leads to a solution.
For convenience, we take d = 0. So, the system becomes

a +b +c = x
−2b = y − x

−2c = z − x

Satya Mandal, KU Vector Spaces §4.4 Spanning and Independence
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More Problems on spanning sets

Continued

Given any (x , y , z) ∈ R3, we can take
c = − z−x

2

b = − y−x
2

a = x − b − c
d = 0

Therefore, S is a spanning set of R3.
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Examples: Linearly Independent sets

Liniear Independence

I Definition. Let S = {v1, v2, . . . , vk} be a subset of a
vector space V . The set S is said to be linearly
independent, if

c1v1 + c2v2, · · ·+ ckvk = 0 =⇒ c1 = c2 = · · · = ck = 0.

That means, the equation on the left has only the trivial
solution.

I If S is not linearly independent, we say that S is linearly
dependent.
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Examples: Linearly Independent sets

Comments

I (1) Let S = {v1, v2, . . . , vk} be a subset of a vector space
V . If 0 ∈ S then, S is linearly dependent.
Proof.For simplicity, assume v1 = 0. Then,

1v1 + 0v2 + · · ·+ 0vk = 0

So, S is not linearly indpendent.

I (2)Methods to test Independence: We will mostly be
working with vector in R2,R3, or n−spaces Rn.
Gauss-Jordan elimination (with TI-84) will be used to
check if a set is independent.

Satya Mandal, KU Vector Spaces §4.4 Spanning and Independence
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Examples: Linearly Independent sets

A Property of Linearly Dependent Sets

Theorem 4.4.2 Let S = {v1, v2, . . . , vk} be a subset of a vector
space V . Assume S has at least 2 elements (k ≥ 2). Then, S
is linearly dependent if and only if one of the vectors vj can be
written as a linear combination of rest of the vectors in S .
Proof. Again, we have to prove two statments.

Satya Mandal, KU Vector Spaces §4.4 Spanning and Independence
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Examples: Linearly Independent sets

I First, we prove ”if” part. We assume that one of the
vectors vj can be written as a linear combination of rest
of the vectors in S .

I For simplicity, we assume that v1 is a linear combination
of rest of the vectors in S . So,

v1 = c2v2 + c3v3 + · · ·+ ckvk

So, (−1)v1 + c2v2 + c3v3 + · · ·+ ckvk = 0

This has at least one coefficient −1 that is nonzero. This
establishes that S is a linearly dependent set.
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Examples: Linearly Independent sets

I Now, we prove the ”only if” part. We assume that S is
linearly dependent. So, there are scalars c1, · · · , ck , at
least one non-zero, such that

c1v1 + c2v2 + c3v3 + · · ·+ ckvk = 0

I Without loss of generality (i.e. for simplicity) assume
c1 6= 0.

So, v1 =

(
−c2
c1

)
v2 +

(
−c3
c1

)
v3 + · · ·+

(
ck
c1

)
vk

I Therefore, v1 is a linear combination of the rest. The
proof is complete.
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Examples: Linearly Independent sets

Examples 4.4.7

I Again, most natural example of linearly independent set in
3−space R3 is S = {(1, 0, 0), (0, 1, 0), (0, 0, 1)} Because

a(1, 0, 0)+b(0, 1, 0)+c(0, 0, 1) = (0, 0, 0) =⇒ a = b = c = 0.

I Similarly, most natural example of linearly independent
set in the real plane R2 is S = {(1, 0), (0, 1)}.

Satya Mandal, KU Vector Spaces §4.4 Spanning and Independence
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Examples: Linearly Independent sets

Continued

I More generally, the natural linearly independent set of Rn:

Let


e1 = (1, 0, 0, . . . , 0)
e2 = (0, 1, 0, . . . , 0)
e3 = (0, 0, 1, . . . , 0)

· · ·
en = (0, 0, 0, . . . , 1)

(2)

Then, {e1, e2, e3, . . . , en} is a linearly independent subset
of Rn. (Compare this with Example 4.2.2, that this set is
also a spanning set of Rn)

I Remark. If S is a linearly independent subset of V and if
R ⊆ S , then R is also a linearly independent subset of V .
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Examples: Linearly Independent sets

Example 4.4.8

Is the set S = {(−2, 4), (1,−2)}. linearly independent?
Solution.

I We can see a non-trivial linear combination
1 ∗ (−2, 4) + 2 ∗ (1,−2) = (0, 0). So, S is not linearly
independent.

I Alternately, to prove it methodically, let
a(−2, 4) + b(1,−2) = (0, 0).

I Then,{
−2a +b = 0
4a −2b = 0

Or

(
−2 1
4 −2

)(
a
b

)
=

(
0
0

)

Satya Mandal, KU Vector Spaces §4.4 Spanning and Independence



Preview
Sets and Subsets

Spanning
Examples

Linear Independence

Examples: Linearly Independent sets

I The question is, if this system has only the trivial solution
or not.?

I Add 2 times the first equation to the second:{
−2a +b = 0

0 = 0
So, a = t, b = 2t

I So, there are lots of non-zero (non trivial) a, b. Hence,
S = {(−2, 4), (1,−2)} is not linearly independent.

I Alternately,

∣∣∣∣ −2 1
4 −2

∣∣∣∣ = 0. So, this homogeneous

system has nontrivial solutions. So, S is not linearly
independent.
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Examples: Linearly Independent sets

Example 4.4.9

Let S = {(1, 1, 1), (1,−1, 3), (1, 0, 0)}. Is it linearly
independent or dependent?
Solution. Let a(1, 1, 1) + b(1,−1, 3) + c(1, 0, 0) = (0, 0, 0)
So,

a +b +c = 0
a −b = 0
a +3b = 0

Or,

 1 1 1
1 −1 0
1 3 0

 a
b
c

 =

 0
0
0


The question is, if the it has only the trivial solution or not.?
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Examples: Linearly Independent sets

I Short Method:

∣∣∣∣∣∣
1 1 1
1 −1 0
1 3 0

∣∣∣∣∣∣ = 4 6= 0. So, the system

has only the zero solution. So, S is linearly independent.
I Explicit Method: Write the augmented matrix 1 1 1 0

1 −1 0 0
1 3 0 0

 .

Its Echelon reduction :

 1 1 1 0
0 1 1

2
0

0 0 1 0


I So, the only solution is the zero-solution: a = 0, b = 0,

c = 0. We conclude that S is linearly independent.
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Examples: Linearly Independent sets

Example 4.4.10

Let S = {x2 − x + 1, 2x2 + x} be a set of polynomials. Is it
linearly independent or dependent?
Solution.

I Write a(x2 − x + 1) + b(2x2 + x) = 0.

I So, (a + 2b)x2 + (−a + b)x + a = 0

I , Equating coefficients of x2, x and the constant terms:

a + 2b = 0,−a + b = 0, a = 0 or a = b = 0.

I We conclude, S is linearly independent.
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