Vector Spaces §4.5 Basis and Dimension

Satya Mandal, KU

Summer 2017

Goals

Discuss two related important concepts:

- Define Basis of a Vectors Space V.
- Define Dimension $\operatorname{dim}(V)$ of a Vectors Space V.

Definition:Linear Independence of infinite sets

In fact, we defined linear independence of finite sets S, only. Before we proceed, we define the same for infinite sets.
Definition. Suppose V is a vector space and $S \subseteq V$ is a subset (possibly infinite). We say S is Linearly Independent, if any finite subset $\left\{\mathbf{v}_{1}, \mathbf{v}_{2}, \ldots, \mathbf{v}_{n}\right\} \subseteq S$ is linearly independent. That means, for any finite subset $\left\{\mathbf{v}_{1}, \mathbf{v}_{2}, \ldots, \mathbf{v}_{n}\right\} \subseteq S$ and scalars c_{1}, \ldots, c_{n},

$$
c_{1} \mathbf{v}_{1},+c_{2} \mathbf{v}_{2}+\cdots+c_{n} \mathbf{v}_{n}=\mathbf{0} \Longrightarrow c_{1}=c_{2}=\cdots=c_{n}=0 .
$$

Basis

Let V be a vector space (over \mathbb{R}). A set S of vectors in V is called a basis of V if

1. $V=\operatorname{Span}(S)$ and
2. S is linearly independent.

- In words, we say that S is a basis of V if S spans V and if S is linearly independent.
- First note, it would need a proof (i.e. it is a theorem) that any vector space has a basis.

Continued

- The definition of basis does not require that S is a finite set.
- However, we will only deal with situations when $S=\left\{\mathbf{v}_{\mathbf{1}}, \mathbf{v}_{\mathbf{2}}, \ldots, \mathbf{v}_{\mathbf{n}}\right\}$ is a finite set.
- If V has a finite basis $S=\left\{\mathbf{v}_{\mathbf{1}}, \mathbf{v}_{\mathbf{2}}, \ldots, \mathbf{v}_{\mathbf{n}}\right\}$, then we say that V is finite dimensional. Otherwise, we say that V is infinite dimensional.

Example 4.5.1a

The set $S=\{(1,0,0),(0,1,0),(0,0,1)\}$ is a basis of the 3 -space \mathbb{R}^{3}.
Proof. We have seen, in $\S 4.4$ that S is spans \mathbb{R}^{3} and it is linearly independent. We repeat the proof.

- Given any $(x, y, z) \in \mathbb{R}^{3}$ we have

$$
(x, y, z)=x(1,0,0)+y(0,1,0)+z(0,0,1)
$$

So, for any $(x, y, z) \in \mathbb{R}^{3},(x, y, z) \in \operatorname{span}(S)$. So, $\mathbb{R}^{3}=\operatorname{Span}(S)$.

- Also, S us linearly independent; because

$$
a(1,0,0)+b(0,1,0)+c(0,0,1)=(0,0,0) \Longrightarrow a=b=c=0 .
$$

So, S is a basis of \mathbb{R}^{3}.

Example 4.5.1b

Similarly, a basis of the n-space \mathbb{R}^{n} is given by the set

$$
\begin{align*}
S= & \left\{\mathbf{e}_{\mathbf{1}}, \mathbf{e}_{2}, \ldots, \mathbf{e}_{\mathbf{n}}\right\} \\
\text { where, } \quad & \left\{\begin{array}{c}
\mathbf{e}_{1}=(1,0,0, \ldots, 0) \\
\mathbf{e}_{2}=(0,1,0, \ldots, 0) \\
\mathbf{e}_{3}=(0,0,1, \ldots, 0) \\
\ldots \\
\mathbf{e}_{n}=(0,0,0, \ldots, 1)
\end{array}\right. \tag{1}
\end{align*}
$$

This one is called the standard basis of \mathbb{R}^{n}.

Example 4.5.2

The set $S=\{(1,-1,0),(1,1,0),(1,1,1)\}$ is a basis of \mathbb{R}^{3}.
Proof.

- First we prove $\operatorname{Span}(S)=\mathbb{R}^{3}$. Let $(x, y, z) \in \mathbb{R}^{3}$. We need to find a, b, c such that

$$
(x, y, z)=a(1,-1,0)+b(1,1,0)+c(1,1,1)
$$

So,

$$
\left(\begin{array}{ccc}
1 & 1 & 1 \\
-1 & 1 & 1 \\
0 & 0 & 1
\end{array}\right)\left(\begin{array}{l}
a \\
b \\
c
\end{array}\right)=\left(\begin{array}{l}
x \\
y \\
z
\end{array}\right) . \text { Notationally } A \mathbf{a}=\mathbf{v}
$$

Continued

$$
\text { Using } \mathrm{TI}-84, \quad\left|\begin{array}{ccc}
1 & 1 & 1 \\
-1 & 1 & 1 \\
0 & 0 & 1
\end{array}\right|=2 \neq 0
$$

So, the above system has a solution. Therefore $(x, y, z) \in \operatorname{span}(S)$. So, $\operatorname{span}(S)=\mathbb{R}^{3}$.
Remark. We could so the same, by long calculation.

- Now, we prove S is linearly independent. Let

$$
a(1,-1,0)+b(1,1,0)+c(1,1,1)=(0,0,0)
$$

In the matrix from, this equation is

$$
A\left(\begin{array}{l}
a \\
b \\
c
\end{array}\right)=\left(\begin{array}{l}
0 \\
0 \\
0
\end{array}\right) \quad \text { where } A \text { is as above. }
$$

where A is as above. Since, $|A|=2 \neq 0$,

$$
\left(\begin{array}{l}
a \\
b \\
c
\end{array}\right)=\left(\begin{array}{l}
0 \\
0 \\
0
\end{array}\right)
$$

So, S is linearly independent.

- Since, $\operatorname{span}(S)=\mathbb{R}^{3}$ and S is linearly independent, S forms a bais of \mathbb{R}^{3}.

Examples 4.5.3

- Let P_{3} be a vector space of all polynomials of degree less of equal to 3. Then $S=\left\{1, x, x^{2}, x^{3}\right\}$ is a basis of P_{3}. Proof. Clearly $\operatorname{span}(S)=P_{3}$. Also S is linearly independent, because

$$
a 1+b x+c x^{2}+d x^{3}=0 \quad \Longrightarrow a=b=c=d=0
$$

(Why?)

Example 4.5.4

- Let $\mathbb{M}_{3,2}$ be the vector space of all 3×2 matrices. Let

$$
\begin{aligned}
& A_{1,1}=\left(\begin{array}{ll}
1 & 0 \\
0 & 0 \\
0 & 0
\end{array}\right), A_{1,2}=\left(\begin{array}{ll}
0 & 1 \\
0 & 0 \\
0 & 0
\end{array}\right), A_{2,1}=\left(\begin{array}{ll}
0 & 0 \\
1 & 0 \\
0 & 0
\end{array}\right), \\
& A_{2,2}=\left(\begin{array}{ll}
0 & 0 \\
0 & 1 \\
0 & 0
\end{array}\right), A_{3,1}=\left(\begin{array}{ll}
0 & 0 \\
0 & 0 \\
1 & 0
\end{array}\right), A_{3,2}=\left(\begin{array}{ll}
0 & 0 \\
0 & 0 \\
0 & 1
\end{array}\right)
\end{aligned}
$$

Then,

$$
A=\left\{A_{11}, A_{12}, A_{2,1}, A_{2,2}, A_{3,1}, A_{3,2}\right\}
$$

is a basis of $\mathbb{M}_{3,2}$.

Theorem 4.5.1

Theorem 4.5.1(Uniqueness of basis representation): Let V be a vector space and $S=\left\{\mathbf{v}_{\mathbf{1}}, \mathbf{v}_{\mathbf{2}}, \ldots, \mathbf{v}_{\mathbf{n}}\right\}$ be a basis of V. Then, any vector $\mathbf{v} \in V$ can be written in one and only one way as linear combination of vectors in S.
Proof. Suppose $\mathbf{v} \in V$. Since $\operatorname{Span}(S)=V$

$$
\mathbf{v}=a_{1} \mathbf{v}_{\mathbf{1}}+a_{2} \mathbf{v}_{\mathbf{2}}+\cdots+a_{n} \mathbf{v}_{\mathbf{n}} \quad \text { where } a_{i} \in \mathbb{R} .
$$

Now suppose there are two ways:
$\mathbf{v}=a_{1} \mathbf{v}_{\mathbf{1}}+a_{2} \mathbf{v}_{\mathbf{2}}+\cdots+a_{n} \mathbf{v}_{\mathbf{n}}$ and $\mathbf{v}=b_{1} \mathbf{v}_{\mathbf{1}}+b_{2} \mathbf{v}_{\mathbf{2}}+\cdots+b_{n} \mathbf{v}_{\mathbf{n}}$ We will prove $a_{1}=b_{1}, a_{2}=b_{2}, \ldots, a_{n}=b_{n}$.

Subtracting $\quad \mathbf{0}=\left(a_{1}-b_{1}\right) \mathbf{v}_{\mathbf{1}}+\left(a_{2}-b_{2}\right) \mathbf{v}_{\mathbf{2}}+\cdots+\left(a_{n}-b_{n}\right) \mathbf{v}_{\mathbf{n}}$
Since, S is linearly independent, $a_{1}-b_{1}=0, a_{2}-b_{2}=0, \ldots, a_{n}-b_{n}=0$ or $a_{1}=b_{1}, a_{2}=b_{2}, \ldots, a_{n}=b_{n}$. The proof is complete.

Theorem 4.5.2

Theorem 4.5.2 (Bases and cardinalities) Let V be a vector space and $S=\left\{\mathbf{v}_{\mathbf{1}}, \mathbf{v}_{2}, \ldots, \mathbf{v}_{\mathbf{n}}\right\}$ be a basis of V, containing n vectors. Then any set containing more than n vectors in V is linearly dependent.
Proof.Let $T=\left\{\mathbf{u}_{1}, \mathbf{u}_{2}, \ldots, \mathbf{u}_{\mathbf{m}}\right\}$ be set of m vectors in V with $m>n$. For simplicity, assume $n=3$ and $m=4$. So, $S=\left\{\mathbf{v}_{1}, \mathbf{v}_{2}, \mathbf{v}_{3}\right\}$ and $T=\left\{\mathbf{u}_{1}, \mathbf{u}_{2}, \mathbf{u}_{3}, \mathbf{u}_{4}\right\}$. To prove that T is dependent, we will have to find scalars $a_{1}, a_{2}, a_{3}, a_{4}$, not all zeros, such that not all zero,

$$
a_{1} \mathbf{u}_{1}+a_{2} \mathbf{u}_{2}+a_{3} \mathbf{u}_{3}+a_{4} \mathbf{u}_{4}=\mathbf{0} \quad \text { Equation - } 1
$$

Subsequently, we will show that Equation-I has non-trivial solution.

Continued

Since S is a basis we can write

$$
\begin{aligned}
& \mathbf{u}_{\mathbf{1}}=c_{11} \mathbf{v}_{\mathbf{1}}+c_{12} \mathbf{v}_{\mathbf{2}}+c_{13} \mathbf{v}_{\mathbf{3}} \\
& \mathbf{u}_{\mathbf{2}}=c_{21} \mathbf{v}_{\mathbf{1}}+c_{22} \mathbf{v}_{\mathbf{2}}+c_{23} \mathbf{v}_{\mathbf{3}} \\
& \mathbf{u}_{\mathbf{3}}=c_{31} \mathbf{v}_{\mathbf{1}}+c_{32} \mathbf{v}_{\mathbf{2}}+c_{33} \mathbf{v}_{\mathbf{3}} \\
& \mathbf{u}_{\mathbf{4}}=c_{41} \mathbf{v}_{\mathbf{1}}+c_{42} \mathbf{v}_{\mathbf{2}}+c_{43} \mathbf{v}_{\mathbf{3}}
\end{aligned}
$$

We substitute these in Equation-I and re-group:

$$
\begin{aligned}
& \left(c_{11} a_{1}+c_{21} a_{2}+c_{31} a_{3}+c_{41} a_{4}\right) \mathbf{v}_{1} \\
& +\left(c_{12} a_{1}+c_{22} a_{2}+c_{32} a_{3}+c_{42} a_{4}\right) \mathbf{v}_{2} \\
& +\left(c_{13} a_{1}+c_{23} a_{2}+c_{33} a_{3}+c_{43} a_{4}\right) \mathbf{v}_{3}=\mathbf{0}
\end{aligned}
$$

Since $S=\left\{\mathbf{v}_{1}, \mathbf{v}_{2}, \mathbf{v}_{3}\right\}$ is linearly independent, the coeffients of $\mathbf{v}_{\mathbf{1}}, \mathbf{v}_{\mathbf{2}}, \mathbf{v}_{\mathbf{3}}$ are zero. So, we have (in the next frame):

Continued

$$
\begin{aligned}
& c_{11} a_{1}+c_{21} a_{2}+c_{31} a_{3}+c_{41} a_{4}=0 \\
& c_{12} a_{1}+c_{22} a_{2}+c_{32} a_{3}+c_{42} a_{4}=0 \\
& c_{13} a_{1}+c_{23} a_{2}+c_{33} a_{3}+c_{43} a_{4}=0
\end{aligned}
$$

In matrix notation:

$$
\left(\begin{array}{llll}
c_{11} & c_{21} & c_{31} & c_{41} \\
c_{12} & c_{22} & c_{32} & c_{42} \\
c_{13} & c_{23} & c_{33} & c_{43}
\end{array}\right)\left(\begin{array}{l}
a_{1} \\
a_{2} \\
a_{3} \\
a_{4}
\end{array}\right)=\left(\begin{array}{l}
0 \\
0 \\
0
\end{array}\right)
$$

This is a system of three homogeneous linear equations in four variables. (less equations than number of variable. So, the system has non-trivial (infinitely many) solutions. So, there are $a_{1}, a_{2}, a_{3}, a_{4}$, not all zeros, so that Equation-l is valid. So, $T=\left\{\mathbf{u}_{\mathbf{1}}, \mathbf{u}_{\mathbf{2}}, \mathbf{u}_{\mathbf{3}}, \mathbf{u}_{4}\right\}$ is linearly dependent. The proof is complete.

Theorem 4.5.3

Suppose V is a vector space. If V has a basis with n elements then all bases have n elements.
Proof. Suppose $S=\left\{\mathbf{v}_{\mathbf{1}}, \mathbf{v}_{\mathbf{2}}, \ldots, \mathbf{v}_{\mathbf{n}}\right\}$ and $T=\left\{\mathbf{u}_{1}, \mathbf{u}_{\mathbf{2}}, \ldots, \mathbf{u}_{\mathrm{m}}\right\}$ are two bases of V.
Since, the basis S has n elements, and T is linealry independent, by the theorem above m cannot be bigger than n. So, $m \leq n$.
By switching the roles of S and T, we have $n \leq m$. So, $m=n$. The proof is complete.

Dimension of Vector Spaces

Definition. Let V be a vector space. Suppose V has a basis $S=\left\{\mathbf{v}_{\mathbf{1}}, \mathbf{v}_{\mathbf{2}}, \ldots, \mathbf{v}_{\mathbf{n}}\right\}$ consisting of n vectors. Then, we say n is the dimension of V and write

$$
\operatorname{dim}(V)=n .
$$

If V consists of the zero vector only, then the dimension of V is defined to be zero.

Examples 4.5.5

We have

- From above example $\operatorname{dim}\left(\mathbb{R}^{n}\right)=n$.
- From above example $\operatorname{dim}\left(P_{3}\right)=4$. Similalry, $\operatorname{dim}\left(P_{n}\right)=n+1$.
- From above example $\operatorname{dim}\left(\mathbb{M}_{3,2}\right)=6$. Similarly, $\operatorname{dim}\left(\mathbb{M}_{n, m}\right)=m n$.

Corollary 4.5.4: Dimensions of Subspaces

Corollary 4.5.4: Let V be a vector space and W be a subspace of V. Then

$$
\operatorname{dim}(W) \leq \operatorname{dim}(V)
$$

Proof. For simplicity, assume $\operatorname{dim} V=n<\infty$. We give a proof by contrapositive argument.
Suppose $\operatorname{dim} W>n=\operatorname{dim} V$. Then, there is a basis $\mathbf{w}_{1}, \ldots, \mathbf{w}_{n} \cdot \mathbf{w}_{n+1}, \cdots$ of W. In particular, $\mathbf{w}_{1}, \ldots, \mathbf{w}_{n} \cdot \mathbf{w}_{n+1}$ is linearly independent. Since $\operatorname{dim} V=n$, by Theorem 4.5.2, $\mathbf{w}_{1}, \ldots, \mathbf{w}_{n} . \mathbf{w}_{n+1}$ is linearly dependent. This is a contradiction. So, $\operatorname{dim} W \leq \operatorname{dim} V$. This completes the proof.

Example 4.5.6

Let $W=\{(x, y, 2 x+3 y): x, y \in \mathbb{R}\}$
Then, W is a subspace of \mathbb{R}^{3} and $\operatorname{dim}(W)=2$. Proof.Note $\mathbf{0}=(0,0,0) \in W$, and W is closed under addition and scalar multiplication. So, W is a subspace of \mathbb{R}^{3}. Given $(x, y, 2 x+3 y) \in W$, we have

$$
(x, y, 2 x+3 y)=x(1,0,2)+y(0,1,3)
$$

This shows $\operatorname{span}(\{(1,0,2),(0,1,3)\})=W$. Also $\{(1,0,2),(0,1,3)\}$ is linearly independent. So, $\{(1,0,2),(0,1,3)\}$ is a basis of W and $\operatorname{dim}(W)=2$.

Example 4.5.7

Let

$$
S=\{(1,3,-2,13),(-1,2,-3,12),(2,1,1,1)\}
$$

and $W=\operatorname{span}(S)$. Prove $\operatorname{dim}(W)=2$.

- Proof. Denote the three vectors in S by $\mathbf{v}_{\mathbf{1}}, \mathbf{v}_{\mathbf{2}}, \mathbf{v}_{\mathbf{3}}$.
- Then $\mathbf{v}_{\mathbf{3}}=\mathbf{v}_{\mathbf{1}}-\mathbf{v}_{\mathbf{2}}$. Write $T=\left\{\mathbf{v}_{\mathbf{1}}, \mathbf{v}_{\mathbf{2}}\right\}$.
- It follows, any linear combination of vectors in S is also a linear combination of vectors in T.

$$
\text { So, } \quad W=\operatorname{span}(S)=\operatorname{span}(T)
$$

- Also T is linearly independent. So, T is a basis and $\operatorname{dim}(W)=2$.

Theorem 4.5.5

(Basis Tests): Let V be a vector space and $\operatorname{dim}(V)=n$.

- If $S=\left\{\mathbf{v}_{1}, \mathbf{v}_{2}, \ldots, \mathbf{v}_{n}\right\}$ is a linearly independent set in V (consisting of n vectors), then S is a basis of V.
- If $S=\left\{\mathbf{v}_{1}, \mathbf{v}_{2}, \ldots, \mathbf{v}_{n}\right\}$ spans V, then S is a basis of V

Proof. To prove the first one, we need to prove spanS $=W$. We use contrapositive argument. Assume $V \neq \operatorname{span}(S)$.
Then, there is a vector $\mathbf{v}_{n+1} \in V$, such that $\mathbf{v}_{n+1} \notin \operatorname{span}(S)$.
Then, it follows $\left\{\mathbf{v}_{\mathbf{1}}, \mathbf{v}_{\mathbf{2}}, \ldots, \mathbf{v}_{\mathbf{n}}, \mathbf{v}_{n+1}\right\}$ is linearly independent.
On the other hand, by Theorem 4.5.2, $\left\{\mathbf{v}_{\mathbf{1}}, \mathbf{v}_{\mathbf{2}}, \ldots, \mathbf{v}_{\mathbf{n}}, \mathbf{v}_{n+1}\right\}$ is linearly dependent. This is a contradiction. So, $\operatorname{span}(S)=V$ and S is a basis of V.

Continued

Now we prove the second statement. We again use contrapositive argument. So, assume S is not linearly independent. By Theorem 4.4.2, at least one of the vectors in S is linear combination of the rest. Without loss of generality, we can assume \mathbf{v}_{n} is linear combination of $S_{1}:=\left\{\mathbf{v}_{1}, \mathbf{v}_{2}, \ldots, \mathbf{v}_{n-1}\right\}$. So, $\mathbf{v}_{n} \in \operatorname{span}\left(S_{1}\right)$. From this it follows, $V=\operatorname{span}(S)=\operatorname{span}\left(S_{1}\right)$. Now, if S_{1} is not linearly independent, this process can continue and we can find a subset $T \subseteq S, S \neq T$, such that $\operatorname{span}(T)=V$. So, T would be a basis of V. Since number of elements in T is less than n, this would contradict that $\operatorname{dim} V=n$.
This completes the proof.

Corollary 4.5.6

Let V be a vector space and $\operatorname{dim}(V)=n<\infty$

- Suppose $S=\left\{\mathbf{v}_{1}, \mathbf{v}_{2}, \ldots, \mathbf{v}_{m}\right\} \subseteq S$ is a linearly independent set in V (consisting of m vectors). Then, $m \leq n$ and S extends to a basis $\left\{\mathbf{v}_{1}, \mathbf{v}_{2}, \ldots, \mathbf{v}_{m}, \mathbf{v}_{m+1}, \cdots, \mathbf{v}_{n}\right\}$ of V.
- Suppose a set $S=\left\{\mathbf{v}_{1}, \mathbf{v}_{2}, \ldots, \mathbf{v}_{m}\right\} \subseteq S$ (consisting of m vectors), spans V. Then, $m \geq n$ and there is a subset $T \subseteq S$, such that T is a basis of V
Proof. Similar to the proof of Theorem 4.5.5.

Corollary 4.5.7

Let V be a vector space and Suppose
$S=\left\{\mathbf{v}_{1}, \mathbf{v}_{2}, \ldots, \mathbf{v}_{m}\right\} \subseteq S$ is a subset of V. Then,

$$
\operatorname{dim}(S) \leq m
$$

Proof. Corollary 4.5.6, there is a subset $T \subseteq S$ that is a basis of $\operatorname{span}(S)$. Since, So, $\operatorname{dim}(\operatorname{span}(S))=($ number of elements in T$) \leq m$

Example 4.5.8

- (Example) Let $S=\{(13,7),(-26,-14)\}$. Give a reason, why S is not a basis for \mathbb{R}^{2} ?
Answer: S is linearly dependent. This is immediate because the first vector is a multiple of the second.
- (Example)

$$
\text { Let } S=\{(5,3,1),(-2,3,1),(7,-8,11),(\sqrt{2}, 2, \sqrt{2})\}
$$

Give a reason, why S is not a basis for \mathbb{R}^{3} where Answer: Here $\operatorname{dim}\left(\mathbb{R}^{3}\right)=3$. So, any basis would have 3 vectors, while S has four.

Examples 4.5.8: Continues

- Example. Let $S=\left\{1-x, 1-x^{2}, 3 x^{2}-2 x-1\right\}$. Give a reason, why S is not a basis for P_{2} ?
Answer: $\operatorname{dim} P_{2}=3$ and S has 3 elements. So, we have to give different reason. In fact, S is linearly dependent:

$$
3 x^{2}-2 x-1=2(1-x)-3\left(1-x^{2}\right)
$$

Examples 4.5.8: Continues

- Example.

$$
\text { Let } S=\left\{\left[\begin{array}{ll}
1 & 0 \\
0 & 1
\end{array}\right],\left[\begin{array}{ll}
1 & 0 \\
1 & 1
\end{array}\right],\left[\begin{array}{ll}
1 & 1 \\
0 & 1
\end{array}\right]\right\}
$$

Give a reason, why S is not a basis for \mathbb{M}_{22}, where Answer: $\operatorname{dim}\left(\mathbb{M}_{22}\right)=4$ and S has 3 elements.

Example 4.5.9

$$
\text { Let } S=\left\{\left[\begin{array}{ll}
1 & 0 \\
0 & 1
\end{array}\right],\left[\begin{array}{ll}
1 & 0 \\
1 & 1
\end{array}\right],\left[\begin{array}{ll}
1 & 1 \\
0 & 1
\end{array}\right],\left[\begin{array}{ll}
1 & 1 \\
1 & 0
\end{array}\right]\right\}
$$

Does S form a basis for \mathbb{M}_{22}, where
Answer: $\operatorname{dim}\left(\mathbb{M}_{22}\right)=4$ and S has 4 elements. Further, S is linearly independent. So, S is a basis of \mathbb{M}_{22}. To see they are linearly independent: Let

$$
\begin{aligned}
& a\left[\begin{array}{ll}
1 & 0 \\
0 & 1
\end{array}\right]+b\left[\begin{array}{ll}
1 & 0 \\
1 & 1
\end{array}\right]+c\left[\begin{array}{ll}
1 & 1 \\
0 & 1
\end{array}\right]+d\left[\begin{array}{ll}
1 & 1 \\
1 & 0
\end{array}\right]=\left[\begin{array}{ll}
0 & 0 \\
0 & 0
\end{array}\right] \\
& {\left[\begin{array}{cc}
a+b+c+d & c+d \\
b+d & a+b+c
\end{array}\right]=\left[\begin{array}{ll}
0 & 0 \\
0 & 0
\end{array}\right] \Rightarrow a=b=c=d=0}
\end{aligned}
$$

Basis of subspaces

Suppose V is subspace of \mathbb{R}^{n}, spanned by a few given vectors.
To find a basis of V do the following:

- Form a matrix A with these vectors, as rows.
- Then, row space of A is V.
- A basis of the row space would be a basis of V, which also gives the dimension.

Example 4.5.10

Let $S=\{(3,2,2),(6,5,-1),(1,1,-1)\}$. Find a basis of $\operatorname{span}(S)$, and $\operatorname{dim}(\operatorname{span}(S))$.
Solution. Form the matrix A, with these rows.

$$
A=\left(\begin{array}{ccc}
3 & 2 & 2 \\
6 & 5 & -1 \\
1 & 1 & -1
\end{array}\right)
$$

Solution: We try to reduce the matrix, to a matrix essentially in Echelon form.

Continued

Switch first and third rows:

$$
\left(\begin{array}{ccc}
1 & 1 & -1 \\
6 & 5 & -1 \\
3 & 2 & 2
\end{array}\right)
$$

Subtract 6 times $1^{\text {st }}$ row, from $2^{\text {nd }}$ and 3 times $1^{\text {st }}$ row, from $3^{r d}$:

$$
\left(\begin{array}{ccc}
1 & 1 & -1 \\
0 & -1 & 5 \\
0 & -1 & 5
\end{array}\right)
$$

Continued

Subtract $2^{\text {nd }}$ row from $3^{\text {rd }}$:

$$
\left(\begin{array}{ccc}
1 & 1 & -1 \\
0 & -1 & 5 \\
0 & 0 & 0
\end{array}\right)
$$

The matrix is essentially in row Echelon form. So,

$$
\left\{\begin{array}{l}
\text { Basis of } \operatorname{span}(S)=\{(1,1,-1),(0,-1,5)\} \\
\operatorname{dim}(\operatorname{span}(S))=2
\end{array}\right.
$$

