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Goals

Discuss two related important concepts:

I Define Basis of a Vectors Space V .

I Define Dimension dim(V ) of a Vectors Space V .
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Definition:Linear Independence of infinite sets

In fact, we defined linear independence of finite sets S , only.
Before we proceed, we define the same for infinite sets.
Definition. Suppose V is a vector space and S ⊆ V is a subset
(possibly infinite). We say S is Linearly Independent, if any
finite subset {v1, v2, . . . , vn} ⊆ S is linearly independent.
That means, for any finite subset {v1, v2, . . . , vn} ⊆ S and
scalars c1, . . . , cn,

c1v1,+c2v2 + · · ·+ cnvn = 0=⇒c1 = c2 = · · · = cn = 0.
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Basis

Let V be a vector space (over R). A set S of vectors in V is
called a basis of V if

1. V = Span(S) and

2. S is linearly independent.

I In words, we say that S is a basis of V if S spans V and
if S is linearly independent.

I First note, it would need a proof (i.e. it is a theorem)
that any vector space has a basis.
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Continued

I The definition of basis does not require that S is a finite
set.

I However, we will only deal with situations when
S = {v1, v2, . . . , vn} is a finite set.

I If V has a finite basis S = {v1, v2, . . . , vn}, then we say
that V is finite dimensional. Otherwise, we say that V is
infinite dimensional.
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Example 4.5.1a

The set S = {(1, 0, 0), (0, 1, 0), (0, 0, 1)} is a basis of the
3−space R3.
Proof. We have seen, in § 4.4 that S is spans R3 and it is
linearly independent. We repeat the proof.

I Given any (x , y , z) ∈ R3 we have

(x , y , z) = x(1, 0, 0) + y(0, 1, 0) + z(0, 0, 1).

So, for any (x , y , z) ∈ R3, (x , y , z) ∈ span(S). So,
R3 = Span(S).

I Also, S us linearly independent; because

a(1, 0, 0)+b(0, 1, 0)+c(0, 0, 1) = (0, 0, 0) =⇒ a = b = c = 0.

So, S is a basis of R3.
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Example 4.5.1b

Similarly, a basis of the n−space Rn is given by the set

S = {e1, e2, . . . , en}

where,


e1 = (1, 0, 0, . . . , 0)
e2 = (0, 1, 0, . . . , 0)
e3 = (0, 0, 1, . . . , 0)

· · ·
en = (0, 0, 0, . . . , 1)

(1)

This one is called the standard basis of Rn.
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Example 4.5.2

The set S = {(1,−1, 0), (1, 1, 0), (1, 1, 1)} is a basis of R3.

Proof.
I First we prove Span(S) = R3. Let (x , y , z) ∈ R3. We

need to find a, b, c such that

(x , y , z) = a(1,−1, 0) + b(1, 1, 0) + c(1, 1, 1)

So, 1 1 1
−1 1 1
0 0 1

 a
b
c

 =

 x
y
z

 . Notationally Aa = v
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Continued

Using TI− 84,

∣∣∣∣∣∣
1 1 1
−1 1 1
0 0 1

∣∣∣∣∣∣ = 2 6= 0

So, the above system has a solution.
Therefore (x , y , z) ∈ span(S). So, span(S) = R3.
Remark. We could so the same, by long calculation.
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I Now, we prove S is linearly independent. Let

a(1,−1, 0) + b(1, 1, 0) + c(1, 1, 1) = (0, 0, 0).

In the matrix from, this equation is

A

 a
b
c

 =

 0
0
0

 where A is as above.

where A is as above. Since, |A| = 2 6= 0, a
b
c

 =

 0
0
0


So, S is linearly independent.

I Since, span(S) = R3 and S is linearly independent, S
forms a bais of R3.
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Examples 4.5.3

I Let P3 be a vector space of all polynomials of degree less
of equal to 3. Then S = {1, x , x2, x3} is a basis of P3.
Proof. Clearly span(S) = P3. Also S is linearly
independent, because

a1 + bx + cx2 + dx3 = 0 =⇒ a = b = c = d = 0.

(Why?)
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Example 4.5.4

I Let M3,2 be the vector space of all 3× 2 matrices. Let

A1,1 =

 1 0
0 0
0 0

 ,A1,2 =

 0 1
0 0
0 0

 ,A2,1 =

 0 0
1 0
0 0

 ,

A2,2 =

 0 0
0 1
0 0

 ,A3,1 =

 0 0
0 0
1 0

 ,A3,2 =

 0 0
0 0
0 1


Then,

A = {A11,A12,A2,1,A2,2,A3,1,A3,2}

is a basis of M3,2.
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Theorem 4.5.1

Theorem 4.5.1(Uniqueness of basis representation): Let V
be a vector space and S = {v1, v2, . . . , vn} be a basis of V .
Then, any vector v ∈ V can be written in one and only one
way as linear combination of vectors in S .
Proof. Suppose v ∈ V . Since Span(S) = V

v = a1v1 + a2v2 + · · ·+ anvn where ai ∈ R.
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Now suppose there are two ways:

v = a1v1 +a2v2 +· · ·+anvn and v = b1v1 +b2v2 +· · ·+bnvn

We will prove a1 = b1, a2 = b2, . . . , an = bn.

Subtracting 0 = (a1−b1)v1 + (a2−b2)v2 + · · ·+ (an−bn)vn

Since, S is linearly independent,
a1 − b1 = 0, a2 − b2 = 0, . . . , an − bn = 0 or
a1 = b1, a2 = b2, . . . , an = bn. The proof is complete.
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Theorem 4.5.2

Theorem 4.5.2 (Bases and cardinalities) Let V be a vector
space and S = {v1, v2, . . . , vn} be a basis of V , containing n
vectors. Then any set containing more than n vectors in V is
linearly dependent.
Proof.Let T = {u1,u2, . . . ,um} be set of m vectors in V
with m > n. For simplicity, assume n = 3 and m = 4. So,
S = {v1, v2, v3} and T = {u1,u2,u3,u4}. To prove that T is
dependent, we will have to find scalars a1, a2, a3, a4, not all
zeros, such that not all zero,

a1u1 + a2u2 + a3u3 + a4u4 = 0 Equation − I

Subsequently, we will show that Equation-I has non-trivial
solution.
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Continued

Since S is a basis we can write

u1 = c11v1 +c12v2 +c13v3

u2 = c21v1 +c22v2 +c23v3

u3 = c31v1 +c32v2 +c33v3

u4 = c41v1 +c42v2 +c43v3

We substitute these in Equation-I and re-group:

(c11a1 +c21a2 +c31a3 +c41a4)v1

+(c12a1 +c22a2 +c32a3 +c42a4)v2

+(c13a1 +c23a2 +c33a3 +c43a4)v3 = 0

Since S = {v1, v2, v3} is linearly independent, the coeffients of
v1, v2, v3 are zero. So, we have (in the next frame):
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Continued

c11a1 +c21a2 +c31a3 +c41a4 = 0
c12a1 +c22a2 +c32a3 +c42a4 = 0
c13a1 +c23a2 +c33a3 +c43a4 = 0

In matrix notation: c11 c21 c31 c41
c12 c22 c32 c42
c13 c23 c33 c43




a1
a2
a3
a4

 =

 0
0
0


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This is a system of three homogeneous linear equations in four
variables. (less equations than number of variable. So, the
system has non-trivial (infinitely many) solutions. So, there
are a1, a2, a3, a4, not all zeros, so that Equation-I is valid. So,
T = {u1,u2,u3,u4} is linearly dependent. The proof is
complete.
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Theorem 4.5.3

Suppose V is a vector space. If V has a basis with n elements
then all bases have n elements.
Proof. Suppose S = {v1, v2, . . . , vn} and
T = {u1,u2, . . . ,um} are two bases of V .
Since, the basis S has n elements, and T is linealry
independent, by the theorem above m cannot be bigger than
n. So, m ≤ n.
By switching the roles of S and T , we have n ≤ m. So,
m = n. The proof is complete.
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Dimension of Vector Spaces

Definition. Let V be a vector space. Suppose V has a basis
S = {v1, v2, . . . , vn} consisting of n vectors. Then, we say n is
the dimension of V and write

dim(V ) = n.

If V consists of the zero vector only, then the dimension of V
is defined to be zero.
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Examples 4.5.5

We have

I From above example dim(Rn) = n.

I From above example dim(P3) = 4. Similalry,
dim(Pn) = n + 1.

I From above example dim(M3,2) = 6. Similarly,
dim(Mn,m) = mn.
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Corollary 4.5.4: Dimensions of Subspaces

Corollary 4.5.4: Let V be a vector space and W be a subspace
of V . Then

dim(W ) ≤ dim(V ).

Proof. For simplicity, assume dimV = n <∞. We give a
proof by contrapositive argument.
Suppose dimW > n = dimV . Then, there is a basis
w1, . . . ,wn.wn+1, · · · of W . In particular, w1, . . . ,wn.wn+1 is
linearly independent. Since dimV = n, by Theorem 4.5.2,
w1, . . . ,wn.wn+1 is linearly dependent. This is a contradiction.
So, dimW ≤ dimV . This completes the proof.
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Example 4.5.6

Let W = {(x , y , 2x + 3y) : x , y ∈ R}

Then, W is a subspace of R3 and dim(W ) = 2.
Proof.Note 0 = (0, 0, 0) ∈ W , and W is closed under
addition and scalar multiplication. So, W is a subspace of R3.
Given (x , y , 2x + 3y) ∈ W , we have

(x , y , 2x + 3y) = x(1, 0, 2) + y(0, 1, 3)

This shows span({(1, 0, 2), (0, 1, 3)}) = W . Also
{(1, 0, 2), (0, 1, 3)} is linearly independent. So,
{(1, 0, 2), (0, 1, 3)} is a basis of W and dim(W ) = 2.
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Example 4.5.7

Let

S = {(1, 3,−2, 13), (−1, 2,−3, 12), (2, 1, 1, 1)}

and W = span(S). Prove dim(W ) = 2.

I Proof. Denote the three vectors in S by v1, v2, v3.
I Then v3 = v1 − v2. Write T = {v1, v2}.
I It follows, any linear combination of vectors in S is also a

linear combination of vectors in T .
I

So, W = span(S) = span(T ).

I Also T is linearly independent. So, T is a basis and
dim(W ) = 2.
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Theorem 4.5.5

(Basis Tests): Let V be a vector space and dim(V ) = n.

I If S = {v1, v2, . . . , vn} is a linearly independent set in V
(consisting of n vectors), then S is a basis of V .

I If S = {v1, v2, . . . , vn} spans V , then S is a basis of V

Proof. To prove the first one, we need to prove spanS = W .
We use contrapositive argument. Assume V 6= span(S).
Then, there is a vector vn+1 ∈ V , such that vn+1 /∈ span(S).
Then, it follows {v1, v2, . . . , vn, vn+1} is linearly independent.
On the other hand, by Theorem 4.5.2, {v1, v2, . . . , vn, vn+1} is
linearly dependent. This is a contradiction. So, span(S) = V
and S is a basis of V .
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Continued

Now we prove the second statement. We again use
contrapositive argument. So, assume S is not linearly
independent. By Theorem 4.4.2, at least one of the vectors in
S is linear combination of the rest. Without loss of generality,
we can assume vn is linear combination of
S1 := {v1, v2, . . . , vn−1}. So, vn ∈ span(S1). From this it
follows, V = span(S) = span(S1). Now, if S1 is not linearly
independent, this process can continue and we can find a
subset T ⊆ S , S 6= T , such that span(T ) = V . So, T would
be a basis of V . Since number of elements in T is less than n,
this would contradict that dimV = n.
This completes the proof.
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Corollary 4.5.6

Let V be a vector space and dim(V ) = n <∞
I Suppose S = {v1, v2, . . . , vm} ⊆ S is a linearly

independent set in V (consisting of m vectors). Then,
m ≤ n and S extends to a basis
{v1, v2, . . . , vm, vm+1, · · · , vn} of V .

I Suppose a set S = {v1, v2, . . . , vm} ⊆ S (consisting of m
vectors), spans V . Then, m ≥ n and there is a subset
T ⊆ S , such that T is a basis of V

Proof. Similar to the proof of Theorem 4.5.5.
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Corollary 4.5.7

Let V be a vector space and Suppose
S = {v1, v2, . . . , vm} ⊆ S is a subset of V . Then,

dim(S) ≤ m

Proof. Corollary 4.5.6, there is a subset T ⊆ S that is a basis
of span(S). Since, So,

dim(span(S)) = (number of elements in T) ≤ m
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Example 4.5.8

I (Example) Let S = {(13, 7), (−26,−14)}. Give a reason,
why S is not a basis for R2?
Answer: S is linearly dependent. This is immediate
because the first vector is a multiple of the second.

I (Example)

Let S = {(5, 3, 1), (−2, 3, 1), (7,−8, 11), (
√

2, 2,
√

2)}

Give a reason, why S is not a basis for R3 where
Answer: Here dim(R3) = 3. So, any basis would have 3
vectors, while S has four.
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Examples 4.5.8: Continues

I Example. Let S = {1− x , 1− x2, 3x2 − 2x − 1}. Give a
reason, why S is not a basis for P2?
Answer: dimP2 = 3 and S has 3 elements. So, we have
to give different reason. In fact, S is linearly dependent:

3x2 − 2x − 1 = 2(1− x)− 3(1− x2)
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Examples 4.5.8: Continues

I Example.

Let S =

{[
1 0
0 1

]
,

[
1 0
1 1

]
,

[
1 1
0 1

]}
Give a reason, why S is not a basis for M22, where
Answer: dim(M22) = 4 and S has 3 elements.
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Example 4.5.9

Let S =

{[
1 0
0 1

]
,

[
1 0
1 1

]
,

[
1 1
0 1

]
,

[
1 1
1 0

]}
Does S form a basis for M22, where
Answer: dim(M22) = 4 and S has 4 elements. Further, S is
linearly independent. So, S is a basis of M22. To see they are
linearly independent: Let

a

[
1 0
0 1

]
+b

[
1 0
1 1

]
+c

[
1 1
0 1

]
+d

[
1 1
1 0

]
=

[
0 0
0 0

]
[
a + b + c + d c + d

b + d a + b + c

]
=

[
0 0
0 0

]
⇒ a = b = c = d = 0
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Basis of subspaces

Suppose V is subspace of Rn, spanned by a few given vectors.
To find a basis of V do the following:

I Form a matrix A with these vectors, as rows.

I Then, row space of A is V .

I A basis of the row space would be a basis of V , which
also gives the dimension.
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Example 4.5.10

Let S = {(3, 2, 2), (6, 5,−1), (1, 1,−1)}. Find a basis of
span(S), and dim(span(S)).
Solution. Form the matrix A, with these rows.

A =

 3 2 2
6 5 −1
1 1 −1


Solution: We try to reduce the matrix, to a matrix essentially
in Echelon form.
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Continued

Switch first and third rows: 1 1 −1
6 5 −1
3 2 2


Subtract 6 times 1st row, from 2nd and 3 times 1st row, from
3rd :  1 1 −1

0 −1 5
0 −1 5


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Continued

Subtract 2nd row from 3rd : 1 1 −1
0 −1 5
0 0 0


The matrix is essentially in row Echelon form. So,{

Basis of span(S) = {(1, 1,−1), (0,−1, 5)}
dim(span(S)) = 2

Satya Mandal, KU Vector Spaces §4.5 Basis and Dimension


	Preview
	Basis
	More Examples: Dimension

	Finding basis and dimension of subspaces of Rn

