Vector Spaces §4.5 Basis and Dimension

Satya Mandal, KU

Summer 2017

- 4 回 2 - 4 □ 2 - 4 □

 $\begin{array}{c} \textbf{Preview}\\ \textbf{Basis}\\ \textbf{Finding basis and dimension of subspaces of } \mathbb{R}^n \end{array}$

Discuss two related important concepts:

- Define Basis of a Vectors Space V.
- ► Define Dimension dim(V) of a Vectors Space V.

(4月) イヨト イヨト

Definition:Linear Independence of infinite sets

In fact, we defined linear independence of finite sets S, only. Before we proceed, we define the same for infinite sets. Definition. Suppose V is a vector space and $S \subseteq V$ is a subset (possibly infinite). We say S is Linearly Independent, if any finite subset $\{\mathbf{v}_1, \mathbf{v}_2, \ldots, \mathbf{v}_n\} \subseteq S$ is linearly independent. That means, for any finite subset $\{\mathbf{v}_1, \mathbf{v}_2, \ldots, \mathbf{v}_n\} \subseteq S$ and scalars c_1, \ldots, c_n ,

$$c_1\mathbf{v}_1, +c_2\mathbf{v}_2+\cdots+c_n\mathbf{v}_n=\mathbf{0}\Longrightarrow c_1=c_2=\cdots=c_n=0.$$

More Examples: Dimension

Basis

Let V be a vector space (over \mathbb{R}). A set S of vectors in V is called a basis of V if

- 1. V = Span(S) and
- 2. *S* is linearly independent.
- In words, we say that S is a basis of V if S spans V and if S is linearly independent.
- First note, it would need a proof (i.e. it is a theorem) that any vector space has a basis.

(4月) (4日) (4日)

More Examples: Dimension

Continued

- ► The definition of basis does not require that *S* is a finite set.
 - However, we will only deal with situations when $S = {\mathbf{v_1}, \mathbf{v_2}, \dots, \mathbf{v_n}}$ is a finite set.
 - If V has a finite basis S = {v₁, v₂, ..., vₙ}, then we say that V is finite dimensional. Otherwise, we say that V is infinite dimensional.

- 4 同 6 4 日 6 4 日 6

More Examples: Dimension

Example 4.5.1a

The set $S = \{(1, 0, 0), (0, 1, 0), (0, 0, 1)\}$ is a basis of the 3-space \mathbb{R}^3 .

Proof. We have seen, in § 4.4 that S is spans \mathbb{R}^3 and it is linearly independent. We repeat the proof.

• Given any $(x, y, z) \in \mathbb{R}^3$ we have

$$(x, y, z) = x(1, 0, 0) + y(0, 1, 0) + z(0, 0, 1).$$

- So, for any $(x, y, z) \in \mathbb{R}^3$, $(x, y, z) \in span(S)$. So, $\mathbb{R}^3 = Span(S)$.
- Also, S us linearly independent; because

 $a(1,0,0)+b(0,1,0)+c(0,0,1)=(0,0,0) \Longrightarrow a=b=c=0.$

So, S is a basis of \mathbb{R}^3 .

More Examples: Dimension

Example 4.5.1b

Similarly, a basis of the n-space \mathbb{R}^n is given by the set

where,

$$S = \{\mathbf{e_1}, \mathbf{e_2}, \dots, \mathbf{e_n}\}$$

$$\begin{pmatrix} \mathbf{e_1} = (1, 0, 0, \dots, 0) \\ \mathbf{e_2} = (0, 1, 0, \dots, 0) \\ \mathbf{e_3} = (0, 0, 1, \dots, 0) \\ \dots \\ \mathbf{e_n} = (0, 0, 0, \dots, 1) \end{pmatrix}$$
(1)

This one is called the standard basis of \mathbb{R}^n .

イロト イポト イヨト イヨト

More Examples: Dimension

Example 4.5.2

The set $S = \{(1, -1, 0), (1, 1, 0), (1, 1, 1)\}$ is a basis of \mathbb{R}^3 . **Proof.**

First we prove Span(S) = ℝ³. Let (x, y, z) ∈ ℝ³. We need to find a, b, c such that

$$(x, y, z) = a(1, -1, 0) + b(1, 1, 0) + c(1, 1, 1)$$

So,

$$\left(\begin{array}{rrr}1 & 1 & 1\\ -1 & 1 & 1\\ 0 & 0 & 1\end{array}\right)\left(\begin{array}{r}a\\b\\c\end{array}\right) = \left(\begin{array}{r}x\\y\\z\end{array}\right).$$
 Notationally $A\mathbf{a} = \mathbf{v}$

イロト イポト イヨト イヨト

3

More Examples: Dimension

Continued

Using TI - 84,
$$\begin{vmatrix} 1 & 1 & 1 \\ -1 & 1 & 1 \\ 0 & 0 & 1 \end{vmatrix} = 2 \neq 0$$

So, the above system has a solution. Therefore $(x, y, z) \in span(S)$. So, $span(S) = \mathbb{R}^3$. **Remark.** We could so the same, by long calculation.

(4月) イヨト イヨト

• Now, we prove S is linearly independent. Let

$$a(1,-1,0) + b(1,1,0) + c(1,1,1) = (0,0,0).$$

In the matrix from, this equation is

$$A\begin{pmatrix}a\\b\\c\end{pmatrix} = \begin{pmatrix}0\\0\\0\end{pmatrix}$$
 where A is as above.

where A is as above. Since, $|A| = 2 \neq 0$,

$$\left(\begin{array}{c}a\\b\\c\end{array}\right) = \left(\begin{array}{c}0\\0\\0\end{array}\right)$$

So, S is linearly independent.

Since, span(S) = ℝ³ and S is linearly independent, S forms a bais of ℝ³.

More Examples: Dimension

Examples 4.5.3

▶ Let P₃ be a vector space of all polynomials of degree less of equal to 3. Then S = {1, x, x², x³} is a basis of P₃.
 Proof. Clearly span(S) = P₃. Also S is linearly independent, because

$$a1 + bx + cx^2 + dx^3 = 0 \implies a = b = c = d = 0.$$

(Why?)

More Examples: Dimension

Example 4.5.4

 \blacktriangleright Let $\mathbb{M}_{3,2}$ be the vector space of all 3×2 matrices. Let

$$\begin{aligned} A_{1,1} &= \begin{pmatrix} 1 & 0 \\ 0 & 0 \\ 0 & 0 \end{pmatrix}, A_{1,2} = \begin{pmatrix} 0 & 1 \\ 0 & 0 \\ 0 & 0 \end{pmatrix}, A_{2,1} = \begin{pmatrix} 0 & 0 \\ 1 & 0 \\ 0 & 0 \end{pmatrix}, \\ A_{2,2} &= \begin{pmatrix} 0 & 0 \\ 0 & 1 \\ 0 & 0 \end{pmatrix}, A_{3,1} = \begin{pmatrix} 0 & 0 \\ 0 & 0 \\ 1 & 0 \end{pmatrix}, A_{3,2} = \begin{pmatrix} 0 & 0 \\ 0 & 0 \\ 0 & 1 \end{pmatrix}, \end{aligned}$$

Then,

$$A = \{A_{11}, A_{12}, A_{2,1}, A_{2,2}, A_{3,1}, A_{3,2}\}$$

is a basis of $\mathbb{M}_{3,2}$.

・ロン ・回と ・ヨン・

æ

More Examples: Dimension

Theorem 4.5.1

Theorem 4.5.1(Uniqueness of basis representation): Let V be a vector space and $S = {\mathbf{v}_1, \mathbf{v}_2, \dots, \mathbf{v}_n}$ be a basis of V. Then, any vector $\mathbf{v} \in V$ can be written in one and only one way as linear combination of vectors in S. **Proof.** Suppose $\mathbf{v} \in V$. Since Span(S) = V

$$\mathbf{v} = a_1 \mathbf{v}_1 + a_2 \mathbf{v}_2 + \cdots + a_n \mathbf{v}_n$$
 where $a_i \in \mathbb{R}$.

Now suppose there are two ways:

$$\mathbf{v} = a_1 \mathbf{v_1} + a_2 \mathbf{v_2} + \dots + a_n \mathbf{v_n}$$
 and $\mathbf{v} = b_1 \mathbf{v_1} + b_2 \mathbf{v_2} + \dots + b_n \mathbf{v_n}$

We will prove $a_1 = b_1, a_2 = b_2, ..., a_n = b_n$.

Subtracting
$$\mathbf{0} = (a_1 - b_1)\mathbf{v_1} + (a_2 - b_2)\mathbf{v_2} + \cdots + (a_n - b_n)\mathbf{v_n}$$

Since, S is linearly independent, $a_1 - b_1 = 0, a_2 - b_2 = 0, \dots, a_n - b_n = 0$ or $a_1 = b_1, a_2 = b_2, \dots, a_n = b_n$. The proof is complete.

▲圖 ▶ ▲ 国 ▶ ▲ 国 ▶

More Examples: Dimension

Theorem 4.5.2

Theorem 4.5.2 (Bases and cardinalities) Let V be a vector space and $S = {\mathbf{v}_1, \mathbf{v}_2, ..., \mathbf{v}_n}$ be a basis of V, containing n vectors. Then any set containing more than n vectors in V is linearly dependent.

Proof.Let $T = {\mathbf{u_1}, \mathbf{u_2}, \dots, \mathbf{u_m}}$ be set of *m* vectors in *V* with m > n. For simplicity, assume n = 3 and m = 4. So, $S = {\mathbf{v_1}, \mathbf{v_2}, \mathbf{v_3}}$ and $T = {\mathbf{u_1}, \mathbf{u_2}, \mathbf{u_3}, \mathbf{u_4}}$. To prove that *T* is dependent, we will have to find scalars a_1, a_2, a_3, a_4 , not all zeros, such that not all zero,

$$a_1\mathbf{u}_1 + a_2\mathbf{u}_2 + a_3\mathbf{u}_3 + a_4\mathbf{u}_4 = \mathbf{0}$$
 Equation - 1

Subsequently, we will show that Equation-I has non-trivial solution.

Continued

Since S is a basis we can write

 $\begin{array}{rclrcrcrcrc} {\bf u}_1 = & c_{11} {\bf v}_1 & + c_{12} {\bf v}_2 & + c_{13} {\bf v}_3 \\ {\bf u}_2 = & c_{21} {\bf v}_1 & + c_{22} {\bf v}_2 & + c_{23} {\bf v}_3 \\ {\bf u}_3 = & c_{31} {\bf v}_1 & + c_{32} {\bf v}_2 & + c_{33} {\bf v}_3 \\ {\bf u}_4 = & c_{41} {\bf v}_1 & + c_{42} {\bf v}_2 & + c_{43} {\bf v}_3 \end{array}$

More Examples: Dimension

We substitute these in Equation-I and re-group:

Since $S = {\mathbf{v_1}, \mathbf{v_2}, \mathbf{v_3}}$ is linearly independent, the coefficients of $\mathbf{v_1}, \mathbf{v_2}, \mathbf{v_3}$ are zero. So, we have (in the next frame):

Continued

 $c_{11}a_1 + c_{21}a_2 + c_{31}a_3 + c_{41}a_4 = 0$ $c_{12}a_1 + c_{22}a_2 + c_{32}a_3 + c_{42}a_4 = 0$ $c_{13}a_1 + c_{23}a_2 + c_{33}a_3 + c_{43}a_4 = 0$

More Examples: Dimension

In matrix notation:

$$\begin{pmatrix} c_{11} & c_{21} & c_{31} & c_{41} \\ c_{12} & c_{22} & c_{32} & c_{42} \\ c_{13} & c_{23} & c_{33} & c_{43} \end{pmatrix} \begin{pmatrix} a_1 \\ a_2 \\ a_3 \\ a_4 \end{pmatrix} = \begin{pmatrix} 0 \\ 0 \\ 0 \end{pmatrix}$$

イロン イボン イヨン イヨン 三日

This is a system of three homogeneous linear equations in four variables. (less equations than number of variable. So, the system has non-trivial (infinitely many) solutions. So, there are a_1, a_2, a_3, a_4 , not all zeros, so that Equation-I is valid. So, $T = \{\mathbf{u_1}, \mathbf{u_2}, \mathbf{u_3}, \mathbf{u_4}\}$ is linearly dependent. The proof is complete.

More Examples: Dimension

Theorem 4.5.3

Suppose V is a vector space. If V has a basis with n elements then all bases have n elements.

Proof. Suppose
$$S = \{\mathbf{v}_1, \mathbf{v}_2, \dots, \mathbf{v}_n\}$$
 and $T = \{\mathbf{v}_1, \mathbf{v}_2, \dots, \mathbf{v}_n\}$ and

 $T = {\mathbf{u_1}, \mathbf{u_2}, \dots, \mathbf{u_m}}$ are two bases of V.

Since, the basis S has n elements, and T is linealry

independent, by the theorem above m cannot be bigger than n. So, $m \leq n$.

By switching the roles of S and T, we have $n \leq m$. So,

m = n. The proof is complete.

- 4 同 6 4 日 6 4 日 6

More Examples: Dimension

Dimension of Vector Spaces

Definition. Let V be a vector space. Suppose V has a basis $S = {\mathbf{v_1}, \mathbf{v_2}, \dots, \mathbf{v_n}}$ consisting of *n* vectors. Then, we say *n* is the dimension of V and write

 $\dim(V)=n.$

If V consists of the zero vector only, then the dimension of V is defined to be zero.

More Examples: Dimension

Examples 4.5.5

We have

- From above example dim $(\mathbb{R}^n) = n$.
- From above example dim(P₃) = 4. Similalry, dim(P_n) = n + 1.
- From above example dim(M_{3,2}) = 6. Similarly, dim(M_{n,m}) = mn.

・ロト ・回ト ・ヨト ・ヨト

3

Corollary 4.5.4: Dimensions of Subspaces

Corollary 4.5.4: Let V be a vector space and W be a subspace of V. Then

 $\dim(W) \leq \dim(V).$

Proof. For simplicity, assume dim $V = n < \infty$. We give a proof by contrapositive argument. Suppose dim $W > n = \dim V$. Then, there is a basis $\mathbf{w}_1, \ldots, \mathbf{w}_n.\mathbf{w}_{n+1}, \cdots$ of W. In particular, $\mathbf{w}_1, \ldots, \mathbf{w}_n.\mathbf{w}_{n+1}$ is linearly independent. Since dim V = n, by Theorem 4.5.2, $\mathbf{w}_1, \ldots, \mathbf{w}_n.\mathbf{w}_{n+1}$ is linearly dependent. This is a contradiction. So, dim $W \leq \dim V$. This completes the proof.

イロト イポト イヨト イヨト

More Examples: Dimension

Example 4.5.6

Let
$$W = \{(x, y, 2x + 3y) : x, y \in \mathbb{R}\}$$

Then, W is a subspace of \mathbb{R}^3 and dim(W) = 2. **Proof.**Note $\mathbf{0} = (0, 0, 0) \in W$, and W is closed under addition and scalar multiplication. So, W is a subspace of \mathbb{R}^3 . Given $(x, y, 2x + 3y) \in W$, we have

$$(x, y, 2x + 3y) = x(1, 0, 2) + y(0, 1, 3)$$

This shows $span(\{(1,0,2), (0,1,3)\}) = W$. Also $\{(1,0,2), (0,1,3)\}$ is linearly independent. So, $\{(1,0,2), (0,1,3)\}$ is a basis of W and dim(W) = 2.

A (1) > < 3</p>

Example 4.5.7

Let

►

$$S = \{(1, 3, -2, 13), (-1, 2, -3, 12), (2, 1, 1, 1)\}$$

More Examples: Dimension

and W = span(S). Prove dim(W) = 2.

- Proof. Denote the three vectors in S by v₁, v₂, v₃.
- Then $\mathbf{v_3} = \mathbf{v_1} \mathbf{v_2}$. Write $T = {\mathbf{v_1}, \mathbf{v_2}}$.
- It follows, any linear combination of vectors in S is also a linear combination of vectors in T.

$$So, W = span(S) = span(T).$$

► Also T is linearly independent. So, T is a basis and dim(W) = 2.

Theorem 4.5.5

(Basis Tests): Let V be a vector space and $\dim(V) = n$.

If S = {v₁, v₂,..., v_n} is a linearly independent set in V (consisting of n vectors), then S is a basis of V.

• If $S = {\mathbf{v}_1, \mathbf{v}_2, \dots, \mathbf{v}_n}$ spans V, then S is a basis of V

Proof. To prove the first one, we need to prove spanS = W. We use contrapositive argument. Assume $V \neq span(S)$. Then, there is a vector $\mathbf{v}_{n+1} \in V$, such that $\mathbf{v}_{n+1} \notin span(S)$. Then, it follows $\{\mathbf{v}_1, \mathbf{v}_2, \dots, \mathbf{v}_n, \mathbf{v}_{n+1}\}$ is linearly independent. On the other hand, by Theorem 4.5.2, $\{\mathbf{v}_1, \mathbf{v}_2, \dots, \mathbf{v}_n, \mathbf{v}_{n+1}\}$ is linearly dependent. This is a contradiction. So, span(S) = Vand S is a basis of V.

소리가 소문가 소문가 소문가

More Examples: Dimension

Continued

Now we prove the second statement. We again use contrapositive argument. So, assume S is not linearly independent. By Theorem 4.4.2, at least one of the vectors in S is linear combination of the rest. Without loss of generality, we can assume \mathbf{v}_n is linear combination of $S_1 := \{v_1, v_2, \dots, v_{n-1}\}$. So, $v_n \in span(S_1)$. From this it follows, $V = span(S) = span(S_1)$. Now, if S_1 is not linearly independent, this process can continue and we can find a subset $T \subseteq S$, $S \neq T$, such that span(T) = V. So, T would be a basis of V. Since number of elements in T is less than n, this would contradict that dim V = n. This completes the proof.

・ロン ・回と ・ヨン ・ヨン

More Examples: Dimension

Corollary 4.5.6

Let V be a vector space and dim $(V) = n < \infty$

- Suppose S = {v₁, v₂, ..., v_m} ⊆ S is a linearly independent set in V (consisting of m vectors). Then, m ≤ n and S extends to a basis {v₁, v₂, ..., v_m, v_{m+1}, ..., v_n} of V.
- Suppose a set S = {v₁, v₂, ..., v_m} ⊆ S (consisting of m vectors), spans V. Then, m ≥ n and there is a subset T ⊆ S, such that T is a basis of V

Proof. Similar to the proof of Theorem 4.5.5.

イロト イポト イヨト イヨト

More Examples: Dimension

Corollary 4.5.7

Let V be a vector space and Suppose $S = {\mathbf{v}_1, \mathbf{v}_2, \dots, \mathbf{v}_m} \subseteq S$ is a subset of V. Then,

 $\dim(S) \leq m$

Proof. Corollary 4.5.6, there is a subset $T \subseteq S$ that is a basis of span(S). Since, So,

 $dim(span(S)) = (number of elements in T) \le m$

More Examples: Dimension

Example 4.5.8

- ▶ (Example) Let S = {(13,7), (-26, -14)}. Give a reason, why S is not a basis for ℝ²?
 Answer: S is linearly dependent. This is immediate because the first vector is a multiple of the second.
- (Example)

Let
$$S = \{(5,3,1), (-2,3,1), (7,-8,11), (\sqrt{2},2,\sqrt{2})\}$$

Give a reason, why S is not a basis for \mathbb{R}^3 where **Answer:** Here dim $(\mathbb{R}^3) = 3$. So, any basis would have 3 vectors, while S has four.

・ロン ・回と ・ヨン・

More Examples: Dimension

Examples 4.5.8: Continues

► Example. Let S = {1 - x, 1 - x², 3x² - 2x - 1}. Give a reason, why S is not a basis for P₂?
 Answer: dim P₂ = 3 and S has 3 elements. So, we have to give different reason. In fact, S is linearly dependent:

$$3x^2 - 2x - 1 = 2(1 - x) - 3(1 - x^2)$$

More Examples: Dimension

Examples 4.5.8: Continues

Example.

Let
$$S = \left\{ \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix}, \begin{bmatrix} 1 & 0 \\ 1 & 1 \end{bmatrix}, \begin{bmatrix} 1 & 1 \\ 0 & 1 \end{bmatrix} \right\}$$

Give a reason, why S is not a basis for \mathbb{M}_{22} , where **Answer:** dim $(\mathbb{M}_{22}) = 4$ and S has 3 elements.

More Examples: Dimension

Example 4.5.9

Let
$$S = \left\{ \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix}, \begin{bmatrix} 1 & 0 \\ 1 & 1 \end{bmatrix}, \begin{bmatrix} 1 & 1 \\ 0 & 1 \end{bmatrix}, \begin{bmatrix} 1 & 1 \\ 1 & 0 \end{bmatrix} \right\}$$

Does S form a basis for \mathbb{M}_{22} , where **Answer:** dim $(\mathbb{M}_{22}) = 4$ and S has 4 elements. Further, S is linearly independent. So, S is a basis of \mathbb{M}_{22} . To see they are linearly independent: Let

$$a\begin{bmatrix}1&0\\0&1\end{bmatrix}+b\begin{bmatrix}1&0\\1&1\end{bmatrix}+c\begin{bmatrix}1&1\\0&1\end{bmatrix}+d\begin{bmatrix}1&1\\1&0\end{bmatrix}=\begin{bmatrix}0&0\\0&0\end{bmatrix}$$
$$\begin{bmatrix}a+b+c+d&c+d\\b+d&a+b+c\end{bmatrix}=\begin{bmatrix}0&0\\0&0\end{bmatrix}\Rightarrow a=b=c=d=0$$

Basis of subspaces

Suppose V is subspace of \mathbb{R}^n , spanned by a few given vectors. To find a basis of V do the following:

- ► Form a matrix A with these vectors, as rows.
- Then, row space of A is V.
- ► A basis of the row space would be a basis of *V*, which also gives the dimension.

(4月) (4日) (4日)

Example 4.5.10

Let $S = \{(3,2,2), (6,5,-1), (1,1,-1)\}$. Find a basis of span(S), and dim(span(S)). Solution. Form the matrix A, with these rows.

$$A = \left(\begin{array}{rrrr} 3 & 2 & 2 \\ 6 & 5 & -1 \\ 1 & 1 & -1 \end{array}\right)$$

Solution: We try to reduce the matrix, to a matrix essentially in Echelon form.

Continued

Switch first and third rows:

$$\left(\begin{array}{rrrr} 1 & 1 & -1 \\ 6 & 5 & -1 \\ 3 & 2 & 2 \end{array}\right)$$

Subtract 6 times 1^{st} row, from 2^{nd} and 3 times 1^{st} row, from 3^{rd} :

$$\left(egin{array}{cccc} 1 & 1 & -1 \ 0 & -1 & 5 \ 0 & -1 & 5 \end{array}
ight)$$

向下 イヨト イヨト

Continued

Subtract 2nd row from 3rd:

$$\left(egin{array}{cccc} 1 & 1 & -1 \ 0 & -1 & 5 \ 0 & 0 & 0 \end{array}
ight)$$

The matrix is essentially in row Echelon form. So,

$$\begin{cases} Basis of span(S) = \{(1, 1, -1), (0, -1, 5)\} \\ dim(span(S)) = 2 \end{cases}$$

・ロト ・回ト ・ヨト ・ヨト

æ