Chapter 5: Eigenvalues and Eigenvectors §5.1 Eigenvalues and Eigenvectors

Satya Mandal, KU

Summer 2017

Satya Mandal, KU Chapter 5: Eigenvalues and Eigenvectors §5.1 Eigenvalues and

(本間) (本語) (本語)

Suppose A is square matrix of order n.

- Eigenvalues of *A* will be defined.
- Eigenvectors of *A*, corresponding to each eigenvalue, will be defined.
- Eigenspaces of A, corresponding to each eigenvalue, will be defined.

- 4 同 6 4 日 6 4 日 6

Definitions

Definition Suppose A is square matrix of order n. A scalar λ (real of complex) is said to an eigenvalue of A, if

there is an $\mathbf{x} \in \mathbb{C}^n$, $\mathbf{x} \neq \mathbf{0}$ such that $(\lambda I - A)\mathbf{x} = \mathbf{0}$.

Such an $\mathbf{x} \in \mathbb{C}^n$ is called an eigenvector of A, corresponding to λ . (*Note, the zero vector* **0** *is not considered an eigenvector*.)

- So, an eigenvalue of λ, can be a real or a complex.
- Complex eigenvalues are often avoided in this course, while it is useful in the DE course.
- Remark. "eigen" is a German word, meaning "characteristic".

Theorem 5.1.1

Theorem 5.1.1: Let A be a square matrix of order n. Let λ be a number (real or complex) Then, λ is an eigenvalue of A if and only if $|\lambda I - A| = 0$.

Proof. First, consider the case, when $\lambda \in \mathbb{R}$ is real.

- Assume |λI − A| = 0. Then, it follows that the system (λI − A)x = 0 has a nontrivial (i.e. nonzero) solution x ∈ ℝⁿ. So, λ is an eigenvalue.
- Conversely, assume that λ is an eigenvalue of A. By definition, (λI − A)x = 0, for some x ∈ Cⁿ. with x ≠ 0. We can write x = u + iv. Since λ is real, it follows (λI − A)u = (λI − A)v = 0. Since, either u ≠ 0 or v ≠ 0, the system (λI − A)x = 0 has a nonzero real solution. It follows, |λI − A| = 0.

Continued

- This completes the proof of the theorem, in this case.
- When λ is a complex number, the proof follows from exactly the same theory.(We have been shy to deal with complex numbers.)

イロト イポト イヨト イヨト

Eigenspaces: Definition

Definition: Suppose A is a square matrix, of order n. Let λ be an eigenvalue of A. The Eigenspace $E(\lambda)$, of A corresponding to λ , is defined to be set of all solutions

$$E(\lambda) = \begin{cases} \{ \mathbf{x} \in \mathbb{R}^n : (\lambda I - A)\mathbf{x} = \mathbf{0} \} & \text{if } \lambda \text{ is real} \\ \{ \mathbf{x} \in \mathbb{C}^n : (\lambda I - A)\mathbf{x} = \mathbf{0} \} & \text{if } \lambda \text{ is complex} \end{cases}$$

Note, $E(\lambda)$ consisits of all the eigen vectors of λ and **0**.

- 4 同 6 4 日 6 4 日 6

Eigenspaces: Theorem 5.1.2

Suppose A is a square matrix, of order n. Let λ be an eigenvalue of A. If λ is real, then $E(\lambda)$ is a subspace of \mathbb{R}^n . If λ is complex, then $E(\lambda)$ is a subspace of \mathbb{C}^n . **Proof.** Assume λ is real. $E(\lambda)$ is the null space of the homogeneous system $(\lambda I - A)\mathbf{x} = \mathbf{0}$. Then, by Theorem 4.6.4 4 $E(\lambda)$ is a subspace. When λ is complex, we avoided the theory. However, proof is

similar. The proof is complete.

- 4 同 6 4 日 6 4 日 6

The Characteristic Equation

Definition. Let A be a square matrix of order n.

Definition: Then the equation

$$|\lambda I - A| = 0$$

is called the characteristic equation of A.

▶ Definition: Expanding the determinant |λ*I* − *A*|, it follows

$$|\lambda I - A| = \lambda^n + c_{n-1}\lambda^{n-1} + \cdots + c_1\lambda + c_0,$$

which is a polynomial in λ , of degree *n*. This polynomial is called the characteristic polynomial of *A*.

▲ □ ► ▲ □ ►

• 3 > 1

Computing

 To compute the eigenvalues of A, solve the characteristic equation

$$\lambda I - A| = 0.$$

So, we expect both real and complex eigen values.

 Given an eigenvalue λ_i to compute the eigenspace E(λ_i), solve the linear system

$$(\lambda_i I - A)\mathbf{x} = \mathbf{0}.$$

Since λ_i is an eigenvalue, this is a singular system. Solve it by row reduction.

- 4 回 ト 4 ヨ ト 4 ヨ ト

Theorem 5.1.3

Theorem 5.1.3 If A is a diagonal matrix, then its eigenvalues are the diagonal entries.

Proof. Let

$$A = \begin{pmatrix} a_{11} & 0 & \cdots & 0 \\ 0 & a_{22} & \cdots & 0 \\ \cdots & \cdots & \cdots & \cdots \\ 0 & 0 & \cdots & a_{nn} \end{pmatrix} be a diagonal matrix.$$

Then, characteristic equation:

$$|\lambda I - A| = \begin{vmatrix} \lambda - a_{11} & 0 & \cdots & 0 \\ 0 & \lambda - a_{22} & \cdots & 0 \\ \cdots & \cdots & \cdots & \cdots \\ 0 & 0 & \cdots & \lambda - a_{nn} \end{vmatrix} = 0$$

э

Continued

Which is

$$(\lambda - a_{11})(\lambda - a_{22}) \cdots (\lambda - a_{nn}) = 0$$

So, the eigenvalues are

$$\lambda = a_{11}, a_{22}, \cdots, a_{nn}$$

Theorem. If A is a triangular matrix, then its eigenvalues are the diagonal entries. **Proof.** Similar to the above.

(4月) (4日) (4日)

Example 5.1.1

Let
$$A = \begin{pmatrix} 3 & 5 & -3 \\ 6 & 2 & -3 \\ 6 & 5 & -6 \end{pmatrix}$$
. Verify that $\lambda_1 = 5$ is an eigenvalue of A and $\mathbf{x_1} = \begin{pmatrix} 1 \\ 1 \\ 1 \end{pmatrix}$ is a corresponding eigenvector.

・ロン ・回 と ・ ヨン ・ モン

æ

Continued

Solution: Because of Theorem 5.1.1, it would suffice to check $A\mathbf{x_1} = 5\mathbf{x_1}$, We have

$$A\mathbf{x_1} = \begin{pmatrix} 3 & 5 & -3 \\ 6 & 2 & -3 \\ 6 & 5 & -6 \end{pmatrix} \begin{pmatrix} 1 \\ 1 \\ 1 \end{pmatrix} = \begin{bmatrix} 5 \\ 5 \\ 5 \end{bmatrix} = 5 \begin{bmatrix} 1 \\ 1 \\ 1 \end{bmatrix} = 5\mathbf{x_1}.$$

So, assertion is verified.

イロン イヨン イヨン イヨン

3

Continued

Verify that
$$\lambda_2 = -3$$
 is a eigenvalue of A and $\mathbf{x_2} = \begin{pmatrix} -2 \\ 3 \\ 1 \end{pmatrix}$ is

a corresponding eigenvector.

Solution: Because of Theorem 5.1.1, it would suffice to check $A\mathbf{x}_2 = -3\mathbf{x}_2$. We have

$$A\mathbf{x}_{2} = \begin{pmatrix} 3 & 5 & -3 \\ 6 & 2 & -3 \\ 6 & 5 & -6 \end{pmatrix} \begin{pmatrix} -2 \\ 3 \\ 1 \end{pmatrix} = \begin{pmatrix} 6 \\ -9 \\ -3 \end{pmatrix}$$
$$= -3 \begin{pmatrix} -2 \\ 3 \\ 1 \end{pmatrix} = -3\mathbf{x}_{2}.$$

So, assertion is verified.

Jac I

Continued

Verify that
$$\lambda_3 = -3$$
 is a eigenvalue of A and $\mathbf{x_3} = \begin{pmatrix} 3 \\ -3 \\ 1 \end{pmatrix}$ is

a corresponding eigenvector.

Solution: Because of Theorem 5.1.1, it would suffice to check $A\mathbf{x}_3 = -3\mathbf{x}_3$, We have $A\mathbf{x}_3 =$

$$\begin{pmatrix} 3 & 5 & -3 \\ 6 & 2 & -3 \\ 6 & 5 & -6 \end{pmatrix} \begin{pmatrix} 3 \\ -3 \\ 1 \end{pmatrix} = \begin{pmatrix} -9 \\ 9 \\ -3 \end{pmatrix} = -3 \begin{pmatrix} 3 \\ -3 \\ 1 \end{pmatrix} = -3\mathbf{x}_3.$$

So, assertion is verified.

イロト イポト イヨト イヨト

Remark: Continued

- Note, the matrix A has, at least, two distinct eigenvalues $\lambda = 5$, $\lambda = -3$.
- Further, corresponding to λ = −3, we have exhibited two eigenvectors x₂ and x₃, which are linearly independent (check).

・ロン ・回 と ・ ヨ と ・ ヨ と

Example 5.1.2

Let

$$A = \begin{pmatrix} -4 & -5 & 5\\ -2 & -1 & -1\\ -16 & -17 & 13 \end{pmatrix} \quad \text{and} \quad \mathbf{x} = \begin{pmatrix} 1\\ 0\\ 1 \end{pmatrix}$$

Determine whether **x** is an eigenvector of *A*. **Solution:** We have

$$A\mathbf{x} = \begin{pmatrix} -4 & -5 & 5\\ -2 & -1 & -1\\ -16 & -17 & 13 \end{pmatrix} \begin{pmatrix} 1\\ 0\\ 1 \end{pmatrix} = \begin{pmatrix} 1\\ -3\\ -3 \end{pmatrix} \neq \lambda \begin{pmatrix} 1\\ 0\\ 1 \end{pmatrix}$$

for all λ . So, **x** is not an eigenvector of A.

Jac I

Example 5.1.2b

Determine whether
$$\mathbf{x} = \begin{pmatrix} -5 \\ 7 \\ 3 \end{pmatrix}$$
 is an eigenvector of A .

$$A\mathbf{x} = \begin{pmatrix} -4 & -5 & 5\\ -2 & -1 & -1\\ -16 & -17 & 13 \end{pmatrix} \begin{pmatrix} -5\\ 7\\ 3 \end{pmatrix} = \begin{bmatrix} 0\\ 0\\ 0 \end{bmatrix} = 0 \begin{bmatrix} -5\\ 2\\ 1 \end{bmatrix} = 0\mathbf{x}.$$

So, **x** is an eigenvector and corresponding eigenvalue is $\lambda = 0$.

イロト イヨト イヨト イヨト

Example 5.1.2c

Determine whether $\mathbf{x} = \begin{pmatrix} 0 \\ 0 \\ 0 \end{pmatrix}$ is an eigenvector of A. **Solution:** No, **0** is, by definition, never an eigenvector.

・ 母 と ・ ヨ と ・ ヨ と

Example 5.1.2d

Determine whether

$$\mathbf{x} = (2\sqrt{6} - 3, -2\sqrt{6} + 6, 3)^{\mathsf{T}} = \left(egin{array}{c} 2\sqrt{6} - 3 \ -4\sqrt{6} + 9 \ -2\sqrt{6} + 9 \end{array}
ight)$$
 is an

eigenvector of A. Solution: We have

$$A\mathbf{x} = \begin{pmatrix} -4 & -5 & 5\\ -2 & -1 & -1\\ -16 & -17 & 13 \end{pmatrix} \begin{pmatrix} 2\sqrt{6} - 3\\ -4\sqrt{6} + 9\\ -2\sqrt{6} + 9 \end{pmatrix} = \begin{pmatrix} 2\sqrt{6} + 12\\ 2\sqrt{6} - 12\\ 10\sqrt{6} + 12 \end{pmatrix}$$

,

 $\overline{}$

イロン イヨン イヨン イヨン

æ

$$= (2\sqrt{6} + 4) \begin{pmatrix} 2\sqrt{6} - 3 \\ -4\sqrt{6} + 9 \\ -2\sqrt{6} + 9 \end{pmatrix} = A\mathbf{x}$$

So, **x** is an eigenvector of *A*, for the eigenvalue $\lambda = 2\sqrt{6} + 4$.

イロト イヨト イヨト イヨト

э

Example 5.1.3

Let

$$A=\left(egin{array}{ccc} -5 & 0 & 0 \ -1 & 7 & 0 \ -1 & 1 & 3 \end{array}
ight).$$

(a) Find the characteristic equation of A, (b) Find all the eigenvalues of A, (c) Corresponding to each eigenvalue, compute the eigenspace.

イロト イポト イヨト イヨト

Example 5.1.3: Solution

Solution: The characteristic polynomial is

$$\det(\lambda I - A) = egin{bmatrix} \lambda + 5 & 0 & 0 \ 1 & \lambda - 7 & 0 \ 1 & -1 & \lambda - 3 \end{bmatrix} = (\lambda + 5)(\lambda - 7)(\lambda - 3).$$

So, the characteristic equation is

$$(\lambda + 5)(\lambda - 7)(\lambda - 3) = 0.$$

Therefore, the eigenvalues are $\lambda = -5, 7, 3..$

(4月) (4日) (4日)

Continued

To find an eigenvector corresponding to $\lambda = -5$, solve $(-5I - A)\mathbf{x} = \mathbf{0}$ or

$$\left(\begin{array}{rrr} 0 & 0 & 0 \\ 1 & -12 & 0 \\ 1 & -1 & -8 \end{array}\right) \left(\begin{array}{r} x \\ y \\ z \end{array}\right) = \left(\begin{array}{r} 0 \\ 0 \\ 0 \end{array}\right).$$

Solving, we get

$$x = t$$
, $y = \frac{1}{12}t$ $z = \frac{1}{8}x - \frac{1}{8}y = \frac{11}{96}t$

(ロ) (同) (E) (E) (E)

Continued

So, the eigenspace of $\lambda = -5$ is

$$\left\{ \left(egin{array}{c} 1 \ rac{1}{12} \ rac{11}{96} \end{array}
ight) t: t \in \mathbb{R}
ight\}$$

`

In particular, with
$$t = 1$$
, $\begin{pmatrix} 1\\ \frac{1}{12}\\ \frac{11}{96} \end{pmatrix}$ is an eigenvector of A , corresponding to the eigenvalue $\lambda = -5$.

,

▲□→ ▲圖→ ▲厘→ ▲厘→

3

Continued

To find an eigenvector corresponding to $\lambda = 7$, we have to solve $(7I - A)\mathbf{x} = \mathbf{0}$ or

$$\left(\begin{array}{rrrr} 12 & 0 & 0 \\ 1 & 0 & 0 \\ 1 & -1 & 4 \end{array}\right) \left(\begin{array}{r} x \\ y \\ z \end{array}\right) = \left(\begin{array}{r} 0 \\ 0 \\ 0 \end{array}\right).$$

Solving, we get

$$x = 0$$
 $y = t$ $z = \frac{1}{4}(y - x) = \frac{1}{4}t.$

(ロ) (同) (E) (E) (E)

.

Continued

So, that eigenspace of $\lambda = 7$ is

$$\left\{ \begin{pmatrix} 0\\1\\\frac{1}{4} \end{pmatrix} t : t \in \mathbb{R} \right\}.$$

In particular, with $t = 1$, $\begin{pmatrix} 0\\1\\\frac{1}{4} \end{pmatrix}$ is an eigenvector of A , for eigenvalue $\lambda = 7$.

、

イロン 不同と 不同と 不同と

æ

Continued

To find an eigenvector corresponding to $\lambda = 3$, we have to solve $(3I - A)\mathbf{x} = \mathbf{0}$ or

$$\begin{pmatrix} 8 & 0 & 0 \\ 1 & -4 & 0 \\ 1 & -1 & 0 \end{pmatrix} \begin{pmatrix} x \\ y \\ z \end{pmatrix} = \begin{pmatrix} 0 \\ 0 \\ 0 \end{pmatrix}$$

Solving, we get

$$x=0 \qquad y=\frac{1}{4}x=0 \qquad z=t.$$

So, that eigenspace of $\lambda=3$ is

$$\left\{ \left(egin{array}{c} 0 \ 0 \ 1 \end{array}
ight) t: t \in \mathbb{R}
ight\}.$$

Satya Mandal, KU Chapter 5: Eigenvalues and Eigenvectors §5.1 Eigenvalues and

Example 5.1.4

Let

$$A = \left(egin{array}{ccc} 4 & 0 & 0 \ -1 & 4 & 0 \ -1 & -1 & 4 \end{array}
ight).$$

Find the dimension of the eigenspace corresponding to the eigenvalue $\lambda = 4$.

Solution: The eigenspace E(3) is the solution space of the system $(4I - A)\mathbf{x} = \mathbf{x}$, or

$$\left(\begin{array}{rrrr} 4-4 & 0 & 0 \\ 1 & 4-4 & 0 \\ 1 & 1 & 4-4 \end{array}\right) \left(\begin{array}{r} x \\ y \\ z \end{array}\right) = \left(\begin{array}{r} 0 \\ 0 \\ 0 \end{array}\right)$$

イロト イポト イヨト イヨト

Continued

or

$$\left(\begin{array}{rrr} 0 & 0 & 0 \\ 1 & 0 & 0 \\ 1 & 1 & 0 \end{array}\right) \left(\begin{array}{r} x \\ y \\ z \end{array}\right) = \left(\begin{array}{r} 0 \\ 0 \\ 0 \end{array}\right)$$

The coefficient matrix

$$C = \begin{pmatrix} 0 & 0 & 0 \\ 1 & 0 & 0 \\ 1 & 1 & 0 \end{pmatrix} \text{ has rank 2.}$$

Since rank(C) + nullity(C) = 3, nullity(C) = 1. Therefore, dim E(3) = nullity(C) = 1.

イロン イヨン イヨン イヨン

3