Chapter 5: Eigenvalues and Eigenvectors §5.1 Eigenvalues and Eigenvectors

Satya Mandal, KU

Summer 2017

Goals

Suppose A is square matrix of order n.

- Eigenvalues of A will be defined.
- Eigenvectors of A, corresponding to each eigenvalue, will be defined.
- Eigenspaces of A, corresponding to each eigenvalue, will be defined.

Definitions

Definition Suppose A is square matrix of order n. A scalar λ (real of complex) is said to an eigenvalue of A, if
there is an $\mathbf{x} \in \mathbb{C}^{n}, \mathbf{x} \neq \mathbf{0}$ such that $(\lambda I-A) \mathbf{x}=\mathbf{0}$.
Such an $\mathbf{x} \in \mathbb{C}^{n}$ is called an eigenvector of A, corresponding to λ. (Note, the zero vector $\mathbf{0}$ is not considered an eigenvector.)

- So, an eigenvalue of λ, can be a real or a complex.
- Complex eigenvalues are often avoided in this course, while it is useful in the DE course.
- Remark. "eigen" is a German word, meaning "characteristic".

Theorem 5.1.1

Theorem 5.1.1: Let A be a square matrix of order n. Let λ be a number (real or complex) Then, λ is an eigenvalue of A if and only if $|\lambda I-A|=0$.
Proof. First, consider the case, when $\lambda \in \mathbb{R}$ is real.

- Assume $|\lambda I-A|=0$. Then, it follows that the system $(\lambda I-A) \mathbf{x}=\mathbf{0}$ has a nontrivial (i.e. nonzero) solution $\mathbf{x} \in \mathbb{R}^{n}$. So, λ is an eigenvalue.
- Conversely, assume that λ is an eigenvalue of A. By definition, $(\lambda I-A) \mathbf{x}=\mathbf{0}$, for some $\mathbf{x} \in \mathbb{C}^{n}$. with $\mathbf{x} \neq \mathbf{0}$. We can write $\mathbf{x}=\mathbf{u}+i \mathbf{v}$. Since λ is real, it follows $(\lambda I-A) \mathbf{u}=(\lambda I-A) \mathbf{v}=\mathbf{0}$. Since, either $\mathbf{u} \neq 0$ or $\mathbf{v} \neq 0$, the system $(\lambda I-A) \mathbf{x}=\mathbf{0}$ has a nonzero real solution. It follows, $|\lambda I-A|=0$.

Continued

- This completes the proof of the theorem, in this case.
- When λ is a complex number, the proof follows from exactly the same theory. (We have been shy to deal with complex numbers.)

Eigenspaces: Definition

Definition: Suppose A is a square matrix, of order n. Let λ be an eigenvalue of A.
The Eigenspace $E(\lambda)$, of A corresponding to λ, is defined to be set of all solutions

$$
E(\lambda)=\left\{\begin{array}{lr}
\left\{\mathbf{x} \in \mathbb{R}^{n}:(\lambda I-A) \mathbf{x}=\mathbf{0}\right\} & \text { if } \lambda \text { is real } \\
\left\{\mathbf{x} \in \mathbb{C}^{n}:(\lambda I-A) \mathbf{x}=\mathbf{0}\right\} & \text { if } \lambda \text { is complex }
\end{array}\right.
$$

Note, $E(\lambda)$ consisits of all the eigen vectors of λ and $\mathbf{0}$.

Eigenspaces: Theorem 5.1.2

Suppose A is a square matrix, of order n. Let λ be an eigenvalue of A.
If λ is real, then $E(\lambda)$ is a subspace of \mathbb{R}^{n}.
If λ is complex, then $E(\lambda)$ is a subspace of \mathbb{C}^{n}.
Proof. Assume λ is real. $E(\lambda)$ is the null space of the homogeneous system $(\lambda I-A) \mathbf{x}=\mathbf{0}$. Then, by Theorem 4.6.4 $4 E(\lambda)$ is a subspace.
When λ is complex, we avoided the theory. However, proof is similar. The proof is complete.

The Characteristic Equation

Definition. Let A be a square matrix of order n.

- Definition: Then the equation

$$
|\lambda I-A|=0
$$

is called the characteristic equation of A.

- Definition: Expanding the determinant $|\lambda I-A|$, it follows

$$
|\lambda I-A|=\lambda^{n}+c_{n-1} \lambda^{n-1}+\cdots+c_{1} \lambda+c_{0}
$$

which is a polynomial in λ, of degree n. This polynomial is called the characteristic polynomial of A.

Computing

- To compute the eigenvalues of A, solve the characteristic equation

$$
|\lambda I-A|=0
$$

So, we expect both real and complex eigen values.

- Given an eigenvalue λ_{i} to compute the eigenspace $E\left(\lambda_{i}\right)$, solve the linear system

$$
\left(\lambda_{i} I-A\right) \mathbf{x}=\mathbf{0} .
$$

Since λ_{i} is an eigenvalue, this is a singular system. Solve it by row reduction.

Theorem 5.1.3

Theorem 5.1.3 If A is a diagonal matrix, then its eigenvalues are the diagonal entries.
Proof. Let

$$
A=\left(\begin{array}{cccc}
a_{11} & 0 & \cdots & 0 \\
0 & a_{22} & \cdots & 0 \\
\cdots & \cdots & \cdots & \cdots \\
0 & 0 & \cdots & a_{n n}
\end{array}\right) \quad \text { be a diagonal matrix. }
$$

Then, characteristic equation:

$$
|\lambda I-A|=\left|\begin{array}{cccc}
\lambda-a_{11} & 0 & \cdots & 0 \\
0 & \lambda-a_{22} & \cdots & 0 \\
\cdots & \cdots & \cdots & \cdots \\
0 & 0 & \cdots & \lambda-a_{n n}
\end{array}\right|=0
$$

Continued

Which is

$$
\left(\lambda-a_{11}\right)\left(\lambda-a_{22}\right) \cdots\left(\lambda-a_{n n}\right)=0
$$

So, the eigenvalues are

$$
\lambda=a_{11}, a_{22}, \cdots, a_{n n}
$$

Theorem. If A is a triangular matrix, then its eigenvalues are the diagonal entries.
Proof. Similar to the above.

Example 5.1.1

$$
\text { Let } A=\left(\begin{array}{lll}
3 & 5 & -3 \\
6 & 2 & -3 \\
6 & 5 & -6
\end{array}\right) . \text { Verify that } \lambda_{1}=5 \text { is an }
$$

eigenvalue of A and $\mathbf{x}_{\mathbf{1}}=\left(\begin{array}{l}1 \\ 1 \\ 1\end{array}\right)$ is a corresponding eigenvector.

Continued

Solution: Because of Theorem 5.1.1, it would suffice to check $A \mathrm{x}_{1}=5 \mathrm{x}_{1}$, We have

$$
A \mathbf{x}_{1}=\left(\begin{array}{lll}
3 & 5 & -3 \\
6 & 2 & -3 \\
6 & 5 & -6
\end{array}\right)\left(\begin{array}{l}
1 \\
1 \\
1
\end{array}\right)=\left[\begin{array}{l}
5 \\
5 \\
5
\end{array}\right]=5\left[\begin{array}{l}
1 \\
1 \\
1
\end{array}\right]=5 \mathbf{x}_{1} .
$$

So, assertion is verified.

Continued

Verify that $\lambda_{2}=-3$ is a eigenvalue of A and $\mathbf{x}_{2}=\left(\begin{array}{r}-2 \\ 3 \\ 1\end{array}\right)$ is a corresponding eigenvector.
Solution: Because of Theorem 5.1.1, it would suffice to check $A \mathbf{x}_{2}=-3 \mathbf{x}_{2}$, We have

$$
\begin{gathered}
A \mathbf{x}_{2}=\left(\begin{array}{lll}
3 & 5 & -3 \\
6 & 2 & -3 \\
6 & 5 & -6
\end{array}\right)\left(\begin{array}{r}
-2 \\
3 \\
1
\end{array}\right)=\left(\begin{array}{r}
6 \\
-9 \\
-3
\end{array}\right) \\
=-3\left(\begin{array}{r}
-2 \\
3 \\
1
\end{array}\right)=-3 \mathbf{x}_{2}
\end{gathered}
$$

So, assertion is verified.

Continued

Verify that $\lambda_{3}=-3$ is a eigenvalue of A and $\mathbf{x}_{3}=\left(\begin{array}{r}3 \\ -3 \\ 1\end{array}\right)$ is a corresponding eigenvector.
Solution: Because of Theorem 5.1.1, it would suffice to check $A \mathbf{x}_{3}=-3 \mathbf{x}_{3}$, We have $A \mathbf{x}_{3}=$

$$
\left(\begin{array}{lll}
3 & 5 & -3 \\
6 & 2 & -3 \\
6 & 5 & -6
\end{array}\right)\left(\begin{array}{r}
3 \\
-3 \\
1
\end{array}\right)=\left(\begin{array}{r}
-9 \\
9 \\
-3
\end{array}\right)=-3\left(\begin{array}{r}
3 \\
-3 \\
1
\end{array}\right)=-3 \mathbf{x}_{3} .
$$

So, assertion is verified.

Remark: Continued

- Note, the matrix A has, at least, two distinct eigenvalues $\lambda=5, \lambda=-3$.
- Further, corresponding to $\lambda=-3$, we have exhibited two eigenvectors \mathbf{x}_{2} and \mathbf{x}_{3}, which are linearly independent (check).

Example 5.1.2

Let

$$
A=\left(\begin{array}{rrr}
-4 & -5 & 5 \\
-2 & -1 & -1 \\
-16 & -17 & 13
\end{array}\right) \quad \text { and } \quad \mathbf{x}=\left(\begin{array}{l}
1 \\
0 \\
1
\end{array}\right)
$$

Determine whether \mathbf{x} is an eigenvector of A.
Solution: We have
$A \mathbf{x}=\left(\begin{array}{rrr}-4 & -5 & 5 \\ -2 & -1 & -1 \\ -16 & -17 & 13\end{array}\right)\left(\begin{array}{l}1 \\ 0 \\ 1\end{array}\right)=\left(\begin{array}{r}1 \\ -3 \\ -3\end{array}\right) \neq \lambda\left(\begin{array}{l}1 \\ 0 \\ 1\end{array}\right)$
for all λ. So, \mathbf{x} is not an eigenvector of A.

Example 5.1.2b

Determine whether $\mathbf{x}=\left(\begin{array}{r}-5 \\ 7 \\ 3\end{array}\right)$ is an eigenvector of A.
Solution: We have
$A \mathbf{x}=\left(\begin{array}{rrr}-4 & -5 & 5 \\ -2 & -1 & -1 \\ -16 & -17 & 13\end{array}\right)\left(\begin{array}{r}-5 \\ 7 \\ 3\end{array}\right)=\left[\begin{array}{l}0 \\ 0 \\ 0\end{array}\right]=0\left[\begin{array}{r}-5 \\ 2 \\ 1\end{array}\right]=0 \mathbf{x}$.
So, \mathbf{x} is an eigenvector and corresponding eigenvalue is $\lambda=0$.

Example 5.1.2c

Determine whether $\mathbf{x}=\left(\begin{array}{l}0 \\ 0 \\ 0\end{array}\right)$ is an eigenvector of A.
Solution: No, $\mathbf{0}$ is, by definition, never an eigenvector.

Example 5.1.2d

Determine whether
$\mathbf{x}=(2 \sqrt{6}-3,-2 \sqrt{6}+6,3)^{T}=\left(\begin{array}{r}2 \sqrt{6}-3 \\ -4 \sqrt{6}+9 \\ -2 \sqrt{6}+9\end{array}\right)$ is an
eigenvector of A.
Solution: We have

$$
A \mathbf{x}=\left(\begin{array}{rrr}
-4 & -5 & 5 \\
-2 & -1 & -1 \\
-16 & -17 & 13
\end{array}\right)\left(\begin{array}{r}
2 \sqrt{6}-3 \\
-4 \sqrt{6}+9 \\
-2 \sqrt{6}+9
\end{array}\right)=\left(\begin{array}{r}
2 \sqrt{6}+12 \\
2 \sqrt{6}-12 \\
10 \sqrt{6}+12
\end{array}\right)
$$

$$
=(2 \sqrt{6}+4)\left(\begin{array}{r}
2 \sqrt{6}-3 \\
-4 \sqrt{6}+9 \\
-2 \sqrt{6}+9
\end{array}\right)=A \mathbf{x}
$$

So, \mathbf{x} is an eigenvector of A, for the eigenvalue $\lambda=2 \sqrt{6}+4$.

Example 5.1.3

Let

$$
A=\left(\begin{array}{ccc}
-5 & 0 & 0 \\
-1 & 7 & 0 \\
-1 & 1 & 3
\end{array}\right)
$$

(a) Find the characteristic equation of A, (b) Find all the eigenvalues of A, (c) Corresponding to each eigenvalue, compute the eigenspace.

Example 5.1.3: Solution

Solution: The characteristic polynomial is

$$
\operatorname{det}(\lambda I-A)=\left|\begin{array}{rrr}
\lambda+5 & 0 & 0 \\
1 & \lambda-7 & 0 \\
1 & -1 & \lambda-3
\end{array}\right|=(\lambda+5)(\lambda-7)(\lambda-3) .
$$

So, the characteristic equation is

$$
(\lambda+5)(\lambda-7)(\lambda-3)=0 .
$$

Therefore, the eigenvalues are $\lambda=-5,7,3$..

Continued

To find an eigenvector corresponding to $\lambda=-5$, solve $(-5 I-A) \mathbf{x}=\mathbf{0}$ or

$$
\left(\begin{array}{rrr}
0 & 0 & 0 \\
1 & -12 & 0 \\
1 & -1 & -8
\end{array}\right)\left(\begin{array}{l}
x \\
y \\
z
\end{array}\right)=\left(\begin{array}{l}
0 \\
0 \\
0
\end{array}\right)
$$

Solving, we get

$$
x=t, \quad y=\frac{1}{12} t \quad z=\frac{1}{8} x-\frac{1}{8} y=\frac{11}{96} t
$$

Continued

So, the eigenspace of $\lambda=-5$ is

$$
\left\{\left(\begin{array}{c}
1 \\
\frac{1}{12} \\
\frac{11}{96}
\end{array}\right) t: t \in \mathbb{R}\right\} .
$$

In particular, with $t=1,\left(\begin{array}{c}1 \\ \frac{1}{12} \\ \frac{11}{96}\end{array}\right)$ is an eigenvector of A,
corresponding to the eigenvalue $\lambda=-5$.

Continued

To find an eigenvector corresponding to $\lambda=7$, wehave to solve $(7 I-A) \mathbf{x}=\mathbf{0}$ or

$$
\left(\begin{array}{rrr}
12 & 0 & 0 \\
1 & 0 & 0 \\
1 & -1 & 4
\end{array}\right)\left(\begin{array}{l}
x \\
y \\
z
\end{array}\right)=\left(\begin{array}{l}
0 \\
0 \\
0
\end{array}\right) .
$$

Solving, we get

$$
x=0 \quad y=t \quad z=\frac{1}{4}(y-x)=\frac{1}{4} t
$$

Continued

So, that eigenspace of $\lambda=7$ is

$$
\left\{\left(\begin{array}{c}
0 \\
1 \\
\frac{1}{4}
\end{array}\right) t: t \in \mathbb{R}\right\}
$$

In particular, with $t=1,\left(\begin{array}{c}0 \\ 1 \\ \frac{1}{4}\end{array}\right)$ is an eigenvector of A, for
eigenvalue $\lambda=7$.

Continued

To find an eigenvector corresponding to $\lambda=3$, wehave to solve $(3 I-A) \mathbf{x}=\mathbf{0}$ or

$$
\left(\begin{array}{rrr}
8 & 0 & 0 \\
1 & -4 & 0 \\
1 & -1 & 0
\end{array}\right)\left(\begin{array}{l}
x \\
y \\
z
\end{array}\right)=\left(\begin{array}{l}
0 \\
0 \\
0
\end{array}\right)
$$

Solving, we get

$$
x=0 \quad y=\frac{1}{4} x=0 \quad z=t
$$

So, that eigenspace of $\lambda=3$ is

$$
\left\{\left(\begin{array}{l}
0 \\
0 \\
1
\end{array}\right) t: t \in \mathbb{R}\right\}
$$

Example 5.1.4

Let

$$
A=\left(\begin{array}{rrr}
4 & 0 & 0 \\
-1 & 4 & 0 \\
-1 & -1 & 4
\end{array}\right)
$$

Find the dimension of the eigenspace corresponding to the eigenvalue $\lambda=4$.
Solution: The eigenspace $E(3)$ is the solution space of the system $(4 I-A) \mathbf{x}=\mathbf{x}$, or

$$
\left(\begin{array}{rrr}
4-4 & 0 & 0 \\
1 & 4-4 & 0 \\
1 & 1 & 4-4
\end{array}\right)\left(\begin{array}{c}
x \\
y \\
z
\end{array}\right)=\left(\begin{array}{l}
0 \\
0 \\
0
\end{array}\right)
$$

Continued

or

$$
\left(\begin{array}{lll}
0 & 0 & 0 \\
1 & 0 & 0 \\
1 & 1 & 0
\end{array}\right)\left(\begin{array}{l}
x \\
y \\
z
\end{array}\right)=\left(\begin{array}{l}
0 \\
0 \\
0
\end{array}\right)
$$

The coefficient matrix

$$
C=\left(\begin{array}{ccc}
0 & 0 & 0 \\
1 & 0 & 0 \\
1 & 1 & 0
\end{array}\right) \quad \text { has rank } 2
$$

Since $\operatorname{rank}(C)+\operatorname{nullity}(C)=3, \quad$ nullity $(C)=1$.
Therefore, $\operatorname{dim} E(3)=\operatorname{nullity}(C)=1$.

