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Preview

Suppose A is square matrix of order n.

» Provide necessary and sufficient condition when there is
an invertible matrix P such that P"*AP is a diagonal
matrix.
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Diagonalization

Definitions

» Two square matrices A, B are said to be similar, if there
is an invertible matrix P, such that A= P~1BP.

» A square matrix A said to be diagonalizable, if there is an
invertible matrix P, such that P~*AP is a diagonal
matrix. That means, if A is similar to a diagonal matrix,
we say that A is diagonalizable.
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Diagonalization

Theorem 5.2.1

Suppose A, B are two similar matrices. Then, A and B have
same eigenvalues.
Proof. Write A= P~1BP. Then

IM—A| = [AM—=P'BP| = |\(P"*P)—P 'BP| = |P~*(\I-B)P|

=PI\ = BI|P| = [PI"Y|A1 = B[Pl = |xI - B]

So, A and B has same characteristic polynomials. So, they
have same eigenvalues. The proof is complete. [ ]
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Diagonalization

Theorem 5.2.2: Diagonalizability

We ask, when a square matrix is diagonalizable?

Theorem 5.2.2 A square matrix A, of order n, is diagonalizable
if and only if A has n linearly independent eigenvectors.
Proof.There are two statements to prove. First, suppose A is
diagonalizable.

Then P7'AP =D, and hence AP = PD

where P is an invertible matrix and D is a diagonal matrix.

A o --- 0
wiite, D= ° 2 O e (py gy o )
0 0 -+ A\,
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Diagonalization

Continued

» Since AP = PA, we have

A(p1 P2 - Pn)
A 0 -~ 0
0 M\ -~ 0
=(pv P2 - p)| P
0 0 --- A\,
Or

(Ap1 Ap2 -+ Apn ) =(AP1 AoP2 - AuPn )
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Diagonalization

Continued

» So,
Api:/\,-p; for i:1,2,---,n
Since P is invertible, p; # 0 and hence p; is an
eigenvector of A, for \.
» Also, rank(P) = n. So, its columns {p1,p2,...,Pn} are
linearly independent.

» So, it is established that if A is diagonalizable, then A has
n linearly independent eigenvectors.
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Diagonalization

Continued

» Now, we prove the converse. So, we assume A bas has n
linearly independent eigenvectors:

{p17 P2,..., pn}
» So,

Ap1 = A1P1, Ap2 = AaP2, -+, APn = AnPn  for some ;.
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Diagonalization

Continued
» Write,

M 0 - 0

P=(p1 P2 -~ pn)and D=| = 72 7

0 0 --- 2\,

» |t follows from the equations Ap; = \;p; that
AP =PD. So, P AP =D s diagonal.

The proof is complete. [ ]
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Diagonalization

Steps for Diagonalizing

Suppose A is a square matrix of order n.

» If A does not have n linearly independent eigenvectors,
then A is not diagonalizable.
» When possible, find n linearly independent eigenvectors

P1, P2, -, Pn for A with corresponding eigenvalues
AL, Aoy Ape
» Then, write
M O -0
0O M --- 0
P=(p1 P -+ pa)andD=| = 7F 7
0 0 - A\,

» We have D = P~AP is a diagonal matrix.
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Diagonalization

Corollary 4.4.3

Suppose V is a vectors space and xi, X, ..., X, be vectors in
V. Then, x1,X5,...,X, are linearly dependent if and only if
there is an integer m < n such that (1) x4, X2, ..., X, are
linearly dependent and (2) x,, € span(x1,Xa, ..., Xm_1).

Proof.Suppose x1, X%z, ..., X, are linearly dependent. By
Theorem 4.4.2, one of these vectors is a linear combination of
the rest. By relabeling, we can assume x,, is a linear
combination of x1,X5,...,X,_1. Let

m = min{k : X, € span(xy,Xo,..., X, 1)}
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Diagonalization

Continued

If X1,X5,...,X,_1 are linearly dependent, then we could apply
Theorem 4.4.2 again, which would lead to a contradiction,
that m is minimum. So, X1, X»,...,X,_1 are linearly
independent. This establishes one way implication.
Conversely, suppose there is an m < n such that (1) and (2)

holds. Then,
Xm = C1X1+ -+ Cp_1Xm—1 for some c¢p,...,cm_1 €R
So,

Xy + 4 Cmo1Xmo1 + (=1)xn =0

which is a nontrivial linear combination. So,
X1,X2,...,Xm, ..., X, are linearly dependent. [ |
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Diagonalization

Theorem 5.2.3: With Distinct Eigenvalues

Let A be a square matrix A, of order n. Suppose A has n
distinct eigenvalues. Then

» the corresponding eigenvectors are linearly independent
» and A is diagonalizable.
Proof.

» The second statement follows from the first, by theorem
5.2.2. So, we prove the first statement only.

» Let A, Ao, ..., A\, be distinct eigenvalues of A.
» So, for i =1,2,...,n we have

Ax; = \;x; where x;# 0 are eigenvectors.
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Diagonalization

Continued

» We need to prove that xi,X», ..., X, are linearly
independent. We prove by contra-positive argument.
» So, assume they are linearly dependent.
» By Corollary 4.4.3 there is an m < n such that

X1,X2, - ..,Xm are mutually linearly independent and
Xm.1 IS in can be written as a linear combination of
{x1,X2,...,Xm}. So,

Xm4+1 = C1X1 + C©X2 + - + C;mXm (1)

Here, at least one ¢; # 0. Re-labeling x;, if needed, we
can assume c¢; # 0.
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Diagonalization

Continued

» Multiply (1) by A on the left:
AXmi1 = aAX1 + GAXy + - - - + CnAXm (2)
Now, use Ax; = \;x;,:
Ami1Xmi1 = A1€1X1 + AaGoXa + -+ - + ApnCmXm (3)
» Also, multiply (1) by A\,11, we have

Ami1Xmi1 = Ami16X1+ Ami16X2 4+ + Ami1CmXm (4)
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Diagonalization

Continued

» Subtract (3) from (4):
(Amr1i—A1)axi+(Amer—A2)oxo+ 4+ (Ami1—Am) CmXm = 0.
» Since these vectors are linearly independent, and hence
(Ams1 — A)e =0 for i=1,2,---,m.
» Since ¢; # 0 we get A1 — Ay =0 or A\pip = A1 This
contradicts that \;s are distinct. So, we conclude that

X1, X2, . .., X, are linearly independent. The proof is
complete. n
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Examples

Example 5.2.2
2 31 1 1 5
let A= 0 -1 2 and P=10 -1 1
0 0 3 0 0 2

Verify that A is diagonalizable, by computing P~ AP.
Solution: We do it in a two steps.
1. Use Tl to compute

1 1 -3 2 00
Pl=|0 -1 5 ].5, P!AP=|0 -1 0
0 0 5 0 03

So, it is verified that P~ AP is a diagonal matrix.
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Examples

Example 5.2.3

3 1
Let A<_9 _3).

Show that A is not diagonalizable.

Solution: Use Theorem 5.2.2 and show that A does not have
2 linearly independent eigenvectors. To do this, we have find
and count the dimensions of all the eigenspaces E(\). We do
it in a few steps.

» First, find all the eigenvalues. To do this, we solve

A—3 -1
9 A+3

So, A = 0 is the only eigenvalue of A.

det(A — A) =

’:v:o.
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Examples

Continued

» Now we compute the eigenspace E(0) of the eigenvalue
A = 0. We have E(0) is solution space of

on(3)=(0) (5 3)(5)=(0)
Using Tl (or by hand), a parametric solution of this
system is given by x = —.bt y =1t.
So E(0)={(t,—3t):t e R} =R1,-3).
So, the (sum of) dimension(s) of the eigenspace(s)
= dimE(0) =1 < 2.

Therefore A is not diagonizable.
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Examples

Example 5.2.3
1 1 1
let A=|0 -3 1
0 0 -3

Show that A is not diagonalizable.
Solution: Use Theorem 5.2.2 and show that A does not have
3 linearly independent eigenvectors.

» To find the eigenvalues, we solve
A—1 -1 -1
det(A—A) = 0 A+3 -1 |=(OA-1(+3)*=0.
0 0 A+3

So, A =1, —3 are the only eigenvalues of A.
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Examples

Continued

» We have E(1) is solution space of

X 0
(I-Afy]={0
z 0
0 -1 -1 X 0
Or 0 4 -1 y |=1(20
0O 0 4 z 0

(As an alternative approach, avoid solving this system.)
The (column) rank of the coefficient matrix is 2. So,
dim(E(1)) = nullity =3 —rank =3 —2 = 1.
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Examples

Continued

» Now we compute the dimension dim E(—3). E(—3) is the
solution space of

X 0
(=3=A) | vy |=10 or
z 0
-4 -1 -1 X 0
0 0 -1 y |=1020
0 0 O z 0
The rank of the coefficient matrix is 2 (use TI, if you

need). So,
dim(E(—3)) = nullity =3 — rank =3 -2 = 1.
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Examples

Continued

» So, the sum of dimensions of the eigenspaces
=dimE(1) +dimE(-3) =2 < 3.

Therefore A is not diagonalizable.
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Explicit Diagonalization

Example 5.2.4
17 113 -2
Let A= 0 v2 1 Find its eigenvalues
0 0

and determine (use Theorem 5.2.3), if A is diagonalizable. If
yes, write down a an invertible matrix P so that P"1AP is a
diagonal matrix.

Solution: To find eigenvalues solve

A—17 113 2
det(\ — A) = 0 A—v2 -1
0 0 A\—7

= (A =17)(A = V2)(A—7) =0.
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Explicit Diagonalization

Continued

So, A has three distinct eigenvalues \ = 17, \/§, 7. Since A is
a 3 x 3 matrix, by Theorem 5.2.3 , A is diagonalizable.

We will proceed to compute the matrix P, by computing bases
of E(17), E(1/(2)) and E(r n
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Explicit Diagonalization

Continued

To compute E(17), we solve: (1755 — A)x = 0, which is

0 —113 2 X 0
0 17—-+v2 -1 y =10
0 0 17— z 0

So,z=y=0and x=t, forany t € R. So,

t
E(17) = 0 |:teR
0
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Explicit Diagonalization

Continued

with t = 1 a basis of E(17) is 0
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Explicit Diagonalization

Continued

To compute E(\/§) we solve: (\/5/3 — A)x =0, which is

V217 —113 2 x 0
0 0 -1 y |=120
0 0 V2-n z 0
So,z=0and x=tand y = ‘?ﬁ”tfor any t € R. So,
t
E(V2) = ‘?103171“ teR
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Explicit Diagonalization

Continued

113
with t = 113 a basis of E(v/2) is V2 —17
0
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Explicit Diagonalization

Continued

To compute E(7), we solve: (wl — A)x = 0, which is

T—17 —113 2 X 0
0 T—v2 -1 y |=120
0 0 0 z 0
z=t
_ 1 _
Y=t = st
113 2 11342227

N

X=7217Y 7 7104 T i (n—v2)

11342v2-27 "
(m— 17)(# V2)
E(r) = ﬂ_ﬂt teR
t
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Explicit Diagonalization

Continued

With t = (7 — 17)(7 — v/2) a basis of E(7) is

113+ 22 — 27
T — 17

(x —17)(r — V2)
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Explicit Diagonalization

Continued

We form the matrix of the eigenvectors.

1 113 1134+ 22 — 27
P=1|0 v2-17 T —17
0 0 (r — 17) (7 — V2)

We check
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Explicit Diagonalization

Continued
We have
17 113 -2 1 113 113+ 22 — 2
AP = 0 V2 1 0 V2-17 T —17

0 0 = 0 0 (1 —17)(7 — V?2)

17 113v2  7(113 +2v2 —27)
=1 0 V2(vV2-17) m(m — 17)
0 0 7(m —17)(7 — V2)
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