Eigenvalues and Eigenvectors §5.2 Diagonalization

Satya Mandal, KU

Summer 2017

Goals

Suppose A is square matrix of order n.

- Provide necessary and sufficient condition when there is an invertible matrix P such that $P^{-1} A P$ is a diagonal matrix.

Definitions

- Two square matrices A, B are said to be similar, if there is an invertible matrix P, such that $A=P^{-1} B P$.
- A square matrix A said to be diagonalizable, if there is an invertible matrix P, such that $P^{-1} A P$ is a diagonal matrix. That means, if A is similar to a diagonal matrix, we say that A is diagonalizable.

Theorem 5.2.1

Suppose A, B are two similar matrices. Then, A and B have same eigenvalues.
Proof. Write $A=P^{-1} B P$. Then

$$
\begin{gathered}
|\lambda I-A|=\left|\lambda I-P^{-1} B P\right|=\left|\lambda\left(P^{-1} P\right)-P^{-1} B P\right|=\left|P^{-1}(\lambda I-B) P\right| \\
=\left|P^{-1}\right||\lambda I-B||P|=|P|^{-1}|\lambda I-B||P|=|\lambda I-B|
\end{gathered}
$$

So, A and B has same characteristic polynomials. So, they have same eigenvalues. The proof is complete.

Theorem 5.2.2: Diagonalizability

We ask, when a square matrix is diagonalizable?
Theorem 5.2.2 A square matrix A, of order n, is diagonalizable if and only if A has n linearly independent eigenvectors.
Proof.There are two statements to prove. First, suppose A is diagonalizable.

$$
\text { Then } P^{-1} A P=D, \quad \text { and hence } \quad A P=P D
$$

where P is an invertible matrix and D is a diagonal matrix.
Write, $D=\left(\begin{array}{rrrr}\lambda_{1} & 0 & \cdots & 0 \\ 0 & \lambda_{2} & \cdots & 0 \\ \cdots & \cdots & \cdots & \cdots \\ 0 & 0 & \cdots & \lambda_{n}\end{array}\right), P=\left(\begin{array}{llll}\mathbf{p}_{1} & \mathbf{p}_{2} & \cdots & \mathbf{p}_{\mathbf{n}}\end{array}\right)$

Continued

- Since $A P=P A$, we have

$$
\begin{gathered}
A\left(\begin{array}{llll}
\mathbf{p}_{\mathbf{1}} & \mathbf{p}_{2} & \cdots & \mathbf{p}_{\mathbf{n}}
\end{array}\right) \\
=\left(\begin{array}{llll}
\mathbf{p}_{1} & \mathbf{p}_{2} & \cdots & \mathbf{p}_{\mathbf{n}}
\end{array}\right)\left(\begin{array}{rrrr}
\lambda_{1} & 0 & \cdots & 0 \\
0 & \lambda_{2} & \cdots & 0 \\
\cdots & \cdots & \cdots & \cdots \\
0 & 0 & \cdots & \lambda_{n}
\end{array}\right) .
\end{gathered}
$$

Or
$\left(\begin{array}{llll}A \mathbf{p}_{1} & A \mathbf{p}_{2} & \cdots & A \mathbf{p}_{\mathbf{n}}\end{array}\right)=\left(\begin{array}{llll}\lambda_{1} \mathbf{p}_{1} & \lambda_{2} \mathbf{p}_{2} & \cdots & \lambda_{n} \mathbf{p}_{\mathbf{n}}\end{array}\right)$

Continued

- So,

$$
A \mathbf{p}_{\mathbf{i}}=\lambda_{i} \mathbf{p}_{\mathbf{i}} \quad \text { for } \quad i=1,2, \cdots, n
$$

Since P is invertible, $\mathbf{p}_{\mathbf{i}} \neq \mathbf{0}$ and hence $\mathbf{p}_{\mathbf{i}}$ is an eigenvector of A, for λ.

- Also, $\operatorname{rank}(P)=n$. So, its columns $\left\{\mathbf{p}_{1}, \mathbf{p}_{2}, \ldots, \mathbf{p}_{\mathbf{n}}\right\}$ are linearly independent.
- So, it is established that if A is diagonalizable, then A has n linearly independent eigenvectors.

Continued

- Now, we prove the converse. So, we assume A bas has n linearly independent eigenvectors:

$$
\left\{\mathbf{p}_{1}, \mathbf{p}_{2}, \ldots, \mathbf{p}_{\mathbf{n}}\right\}
$$

- So,

$$
A \mathbf{p}_{1}=\lambda_{1} \mathbf{p}_{1}, A \mathbf{p}_{2}=\lambda_{2} \mathbf{p}_{2}, \cdots, A \mathbf{p}_{\mathbf{n}}=\lambda_{n} \mathbf{p}_{\mathbf{n}} \quad \text { for some } \quad \lambda_{i}
$$

Continued

- Write,

$$
P=\left(\begin{array}{llll}
\mathbf{p}_{1} & \mathbf{p}_{2} & \cdots & \mathbf{p}_{\mathbf{n}}
\end{array}\right) \text { and } D=\left(\begin{array}{rrrr}
\lambda_{1} & 0 & \cdots & 0 \\
0 & \lambda_{2} & \cdots & 0 \\
\cdots & \cdots & \cdots & \cdots \\
0 & 0 & \cdots & \lambda_{n}
\end{array}\right)
$$

- It follows from the equations $A \mathbf{p}_{\mathbf{i}}=\lambda_{i} \mathbf{p}_{\mathbf{i}}$ that

$$
A P=P D . \quad \text { So }, \quad P^{-1} A P=D \quad \text { is diagonal. }
$$

The proof is complete.

Steps for Diagonalizing

Suppose A is a square matrix of order n.

- If A does not have n linearly independent eigenvectors, then A is not diagonalizable.
- When possible, find n linearly independent eigenvectors $\mathbf{p}_{\mathbf{1}}, \mathbf{p}_{\mathbf{2}}, \cdots, \mathbf{p}_{\mathbf{n}}$ for A with corresponding eigenvalues $\lambda_{1}, \lambda_{2}, \ldots, \lambda_{n}$.
- Then, write

$$
P=\left(\begin{array}{llll}
\mathbf{p}_{\mathbf{1}} & \mathbf{p}_{\mathbf{2}} & \cdots & \mathbf{p}_{\mathbf{n}}
\end{array}\right) \text { and } D=\left(\begin{array}{rrrr}
\lambda_{1} & 0 & \cdots & 0 \\
0 & \lambda_{2} & \cdots & 0 \\
\cdots & \cdots & \cdots & \cdots \\
0 & 0 & \cdots & \lambda_{n}
\end{array}\right)
$$

- We have $D=P^{-1} A P$ is a diagonal matrix.

Corollary 4.4.3

Suppose V is a vectors space and $\mathbf{x}_{1}, \mathbf{x}_{2}, \ldots, \mathbf{x}_{n}$ be vectors in V. Then, $\mathbf{x}_{1}, \mathbf{x}_{2}, \ldots, \mathbf{x}_{n}$ are linearly dependent if and only if there is an integer $m \leq n$ such that (1) $\mathbf{x}_{1}, \mathbf{x}_{2}, \ldots, \mathbf{x}_{m}$ are linearly dependent and (2) $\mathbf{x}_{m} \in \operatorname{span}\left(\mathbf{x}_{1}, \mathbf{x}_{2}, \ldots, \mathbf{x}_{m-1}\right)$.
Proof.Suppose $\mathbf{x}_{1}, \mathbf{x}_{2}, \ldots, \mathbf{x}_{n}$ are linearly dependent. By Theorem 4.4.2, one of these vectors is a linear combination of the rest. By relabeling, we can assume \mathbf{x}_{n} is a linear combination of $\mathbf{x}_{1}, \mathbf{x}_{2}, \ldots, \mathbf{x}_{n-1}$. Let

$$
m=\min \left\{k: \mathbf{x}_{k} \in \operatorname{span}\left(\mathbf{x}_{1}, \mathbf{x}_{2}, \ldots, \mathbf{x}_{k-1}\right)\right\}
$$

Continued

If $\mathbf{x}_{1}, \mathbf{x}_{2}, \ldots, \mathbf{x}_{m-1}$ are linearly dependent, then we could apply Theorem 4.4.2 again, which would lead to a contradiction, that m is minimum. So, $\mathbf{x}_{1}, \mathbf{x}_{2}, \ldots, \mathbf{x}_{m-1}$ are linearly independent. This establishes one way implication.
Conversely, suppose there is an $m \leq n$ such that (1) and (2) holds. Then,

$$
\mathbf{x}_{m}=c_{1} \mathbf{x}_{1}+\cdots+c_{m-1} \mathbf{x}_{m-1} \quad \text { for some } c_{1}, \ldots, c_{m-1} \in \mathbb{R}
$$

So,

$$
c_{1} \mathbf{x}_{1}+\cdots+c_{m-1} \mathbf{x}_{m-1}+(-1) \mathbf{x}_{m}=\mathbf{0}
$$

which is a nontrivial linear combination. So, $\mathbf{x}_{1}, \mathbf{x}_{2}, \ldots, \mathbf{x}_{m}, \ldots, \mathbf{x}_{n}$ are linearly dependent.

Theorem 5.2.3: With Distinct Eigenvalues

Let A be a square matrix A, of order n. Suppose A has n distinct eigenvalues. Then

- the corresponding eigenvectors are linearly independent
- and A is diagonalizable.

Proof.

- The second statement follows from the first, by theorem 5.2.2. So, we prove the first statement only.
- Let $\lambda_{1}, \lambda_{2}, \ldots, \lambda_{n}$ be distinct eigenvalues of A.
- So, for $i=1,2, \ldots, n$ we have
$A \mathbf{x}_{\mathbf{i}}=\lambda_{i} \mathbf{x}_{\mathbf{i}} \quad$ where $\quad \mathbf{x}_{\mathbf{i}} \neq 0 \quad$ are eigenvectors.

Continued

- We need to prove that $\mathbf{x}_{1}, \mathbf{x}_{2}, \ldots, \mathbf{x}_{n}$ are linearly independent. We prove by contra-positive argument.
- So, assume they are linearly dependent.
- By Corollary 4.4.3 there is an $m<n$ such that $\mathbf{x}_{\mathbf{1}}, \mathbf{x}_{2}, \ldots, \mathbf{x}_{\mathbf{m}}$ are mutually linearly independent and $\mathbf{x}_{\mathbf{m}+\mathbf{1}}$ is in can be written as a linear combination of $\left\{\mathbf{x}_{1}, \mathbf{x}_{\mathbf{2}}, \ldots, \mathbf{x}_{\mathbf{m}}\right\}$. So,

$$
\begin{equation*}
\mathbf{x}_{\mathbf{m}+\mathbf{1}}=c_{1} \mathbf{x}_{\mathbf{1}}+c_{2} \mathbf{x}_{\mathbf{2}}+\cdots+c_{m} \mathbf{x}_{\mathbf{m}} \tag{1}
\end{equation*}
$$

Here, at least one $c_{i} \neq 0$. Re-labeling $\mathbf{x}_{\mathbf{i}}$, if needed, we can assume $c_{1} \neq 0$.

Continued

- Multiply (1) by A on the left:

$$
\begin{equation*}
A \mathbf{x}_{\mathbf{m}+\mathbf{1}}=c_{1} A \mathbf{x}_{\mathbf{1}}+c_{2} A \mathbf{x}_{\mathbf{2}}+\cdots+c_{m} A \mathbf{x}_{\mathbf{m}} \tag{2}
\end{equation*}
$$

Now, use $A \mathbf{x}_{\mathbf{i}}=\lambda_{i} \mathbf{x}_{\mathbf{i}}$:

$$
\begin{equation*}
\lambda_{m+1} \mathbf{x}_{\mathbf{m}+\mathbf{1}}=\lambda_{1} c_{1} \mathbf{x}_{\mathbf{1}}+\lambda_{2} c_{2} \mathbf{x}_{\mathbf{2}}+\cdots+\lambda_{m} c_{m} \mathbf{x}_{\mathbf{m}} \tag{3}
\end{equation*}
$$

- Also, multiply (1) by λ_{m+1}, we have

$$
\begin{equation*}
\lambda_{m+1} \mathbf{x}_{\mathbf{m}+\mathbf{1}}=\lambda_{m+1} c_{1} \mathbf{x}_{\mathbf{1}}+\lambda_{m+1} c_{2} \mathbf{x}_{\mathbf{2}}+\cdots+\lambda_{m+1} c_{m} \mathbf{x}_{\mathbf{m}} \tag{4}
\end{equation*}
$$

Continued

- Subtract (3) from (4):

$$
\left(\lambda_{m+1}-\lambda_{1}\right) c_{1} \mathbf{x}_{1}+\left(\lambda_{m+1}-\lambda_{2}\right) c_{2} \mathbf{x}_{2}+\cdots+\left(\lambda_{m+1}-\lambda_{m}\right) c_{m} \mathbf{x}_{\mathbf{m}}=\mathbf{0}
$$

- Since these vectors are linearly independent, and hence

$$
\left(\lambda_{m+1}-\lambda_{i}\right) c_{i}=0 \quad \text { for } \quad i=1,2, \cdots, m
$$

- Since $c_{1} \neq 0$ we get $\lambda_{m+1}-\lambda_{1}=0$ or $\lambda_{m+1}=\lambda_{1}$. This contradicts that $\lambda_{i} \mathrm{~s}$ are distinct. So, we conclude that $\mathbf{x}_{1}, \mathbf{x}_{2}, \ldots, \mathbf{x}_{\mathbf{n}}$ are linearly independent. The proof is complete.

Example 5.2.2

$$
\text { Let } \quad A=\left(\begin{array}{rrr}
2 & 3 & 1 \\
0 & -1 & 2 \\
0 & 0 & 3
\end{array}\right) \quad \text { and } \quad P=\left(\begin{array}{rrr}
1 & 1 & 5 \\
0 & -1 & 1 \\
0 & 0 & 2
\end{array}\right) \text {. }
$$

Verify that A is diagonalizable, by computing $P^{-1} A P$.
Solution: We do it in a two steps.

1. Use TI to compute

$$
P^{-1}=\left(\begin{array}{rrr}
1 & 1 & -3 \\
0 & -1 & .5 \\
0 & 0 & .5
\end{array}\right) \text {. So, } \quad P^{-1} A P=\left(\begin{array}{rrr}
2 & 0 & 0 \\
0 & -1 & 0 \\
0 & 0 & 3
\end{array}\right) \text {. }
$$

So, it is verified that $P^{-1} A P$ is a diagonal matrix.

Example 5.2.3

$$
\text { Let } \quad A=\left(\begin{array}{rr}
3 & 1 \\
-9 & -3
\end{array}\right) \text {. }
$$

Show that A is not diagonalizable.
Solution: Use Theorem 5.2.2 and show that A does not have 2 linearly independent eigenvectors. To do this, we have find and count the dimensions of all the eigenspaces $E(\lambda)$. We do it in a few steps.

- First, find all the eigenvalues. To do this, we solve

$$
\operatorname{det}(\lambda I-A)=\left|\begin{array}{rr}
\lambda-3 & -1 \\
9 & \lambda+3
\end{array}\right|=\lambda^{2}=0 .
$$

So, $\lambda=0$ is the only eigenvalue of A.

Continued

- Now we compute the eigenspace $E(0)$ of the eigenvalue $\lambda=0$. We have $E(0)$ is solution space of

$$
(0 I-A)\binom{x}{y}=\binom{0}{0} \text { or }\left(\begin{array}{rr}
-3 & -1 \\
9 & 3
\end{array}\right)\binom{x}{y}=\binom{0}{0}
$$

Using Tl (or by hand), a parametric solution of this system is given by $x=-.5 t \quad y=t$.

$$
\text { So } E(0)=\{(t,-3 t): t \in \mathbb{R}\}=\mathbb{R} 1,-3)
$$

So, the (sum of) dimension(s) of the eigenspace(s)

$$
=\operatorname{dim} E(0)=1<2
$$

Therefore A is not diagonizable.

Example 5.2.3

$$
\text { Let } \quad A=\left(\begin{array}{rrr}
1 & 1 & 1 \\
0 & -3 & 1 \\
0 & 0 & -3
\end{array}\right) \text {. }
$$

Show that A is not diagonalizable.
Solution: Use Theorem 5.2.2 and show that A does not have 3 linearly independent eigenvectors.

- To find the eigenvalues, we solve

$$
\operatorname{det}(\lambda I-A)=\left|\begin{array}{rrr}
\lambda-1 & -1 & -1 \\
0 & \lambda+3 & -1 \\
0 & 0 & \lambda+3
\end{array}\right|=(\lambda-1)(\lambda+3)^{2}=0 .
$$

So, $\lambda=1,-3$ are the only eigenvalues of A.

Continued

- We have $E(1)$ is solution space of

$$
\begin{aligned}
&(I-A)\left(\begin{array}{l}
x \\
y \\
z
\end{array}\right)=\left(\begin{array}{l}
0 \\
0 \\
0
\end{array}\right) \\
& \operatorname{Or} \quad\left(\begin{array}{rrr}
0 & -1 & -1 \\
0 & 4 & -1 \\
0 & 0 & 4
\end{array}\right)\left(\begin{array}{l}
x \\
y \\
z
\end{array}\right)=\left(\begin{array}{l}
0 \\
0 \\
0
\end{array}\right)
\end{aligned}
$$

(As an alternative approach, avoid solving this system.) The (column) rank of the coefficient matrix is 2 . So, $\operatorname{dim}(E(1))=$ nullity $=3-$ rank $=3-2=1$.

Continued

- Now we compute the dimension $\operatorname{dim} E(-3) . E(-3)$ is the solution space of

$$
\begin{gathered}
(-3 I-A)\left(\begin{array}{c}
x \\
y \\
z
\end{array}\right)=\left(\begin{array}{l}
0 \\
0 \\
0
\end{array}\right) \text { or } \\
\left(\begin{array}{rrr}
-4 & -1 & -1 \\
0 & 0 & -1 \\
0 & 0 & 0
\end{array}\right)\left(\begin{array}{l}
x \\
y \\
z
\end{array}\right)=\left(\begin{array}{l}
0 \\
0 \\
0
\end{array}\right)
\end{gathered}
$$

The rank of the coefficient matrix is 2 (use TI, if you need). So,

$$
\operatorname{dim}(E(-3))=\text { nullity }=3-r a n k=3-2=1
$$

Continued

- So, the sum of dimensions of the eigenspaces

$$
=\operatorname{dim} E(1)+\operatorname{dim} E(-3)=2<3 .
$$

Therefore A is not diagonalizable.

Example 5.2.4

$$
\text { Let } A=\left(\begin{array}{rrr}
17 & 113 & -2 \\
0 & \sqrt{2} & 1 \\
0 & 0 & \pi
\end{array}\right) \quad \text { Find its eigenvalues }
$$

and determine (use Theorem 5.2.3), if A is diagonalizable. If yes, write down a an invertible matrix P so that $P^{-1} A P$ is a diagonal matrix.
Solution: To find eigenvalues solve

$$
\begin{gathered}
\operatorname{det}(\lambda I-A)=\left|\begin{array}{rrr}
\lambda-17 & -113 & 2 \\
0 & \lambda-\sqrt{2} & -1 \\
0 & 0 & \lambda-\pi
\end{array}\right| \\
=(\lambda-17)(\lambda-\sqrt{2})(\lambda-\pi)=0 .
\end{gathered}
$$

Continued

So, A has three distinct eigenvalues $\lambda=17, \sqrt{2}, \pi$. Since A is a 3×3 matrix, by Theorem 5.2.3, A is diagonalizable. We will proceed to compute the matrix P, by computing bases of $E(17), E(\sqrt{(2)})$ and $E(\pi)$.

Continued

To compute $E(17)$, we solve: $\left(17 I_{3}-A\right) \mathbf{x}=\mathbf{0}$, which is

$$
\left(\begin{array}{ccc}
0 & -113 & 2 \\
0 & 17-\sqrt{2} & -1 \\
0 & 0 & 17-\pi
\end{array}\right)\left(\begin{array}{l}
x \\
y \\
z
\end{array}\right)=\left(\begin{array}{l}
0 \\
0 \\
0
\end{array}\right)
$$

So, $z=y=0$ and $x=t$, for any $t \in \mathbb{R}$. So,

$$
E(17)=\left\{\left(\begin{array}{l}
t \\
0 \\
0
\end{array}\right): t \in \mathbb{R}\right\}
$$

Continued

with $t=1$ a basis of $E(17)$ is $\left\{\left(\begin{array}{l}1 \\ 0 \\ 0\end{array}\right)\right\}$

Continued

To compute $E(\sqrt{2})$, we solve: $(\sqrt{2} / 3-A) \mathbf{x}=\mathbf{0}$, which is

$$
\left(\begin{array}{ccc}
\sqrt{2}-17 & -113 & 2 \\
0 & 0 & -1 \\
0 & 0 & \sqrt{2}-\pi
\end{array}\right)\left(\begin{array}{l}
x \\
y \\
z
\end{array}\right)=\left(\begin{array}{l}
0 \\
0 \\
0
\end{array}\right)
$$

So, $z=0$ and $x=t$ and $y=\frac{\sqrt{2}-17}{113} t$ for any $t \in \mathbb{R}$. So,

$$
E(\sqrt{2})=\left\{\left(\begin{array}{c}
t \\
\frac{\sqrt{2}-17}{113} t \\
0
\end{array}\right): t \in \mathbb{R}\right\}
$$

Continued

with $t=113$ a basis of $E(\sqrt{2})$ is $\left\{\left(\begin{array}{c}113 \\ \sqrt{2}-17 \\ 0\end{array}\right)\right\}$

Continued

To compute $E(\pi)$, we solve: $\left(\pi I_{3}-A\right) \mathbf{x}=\mathbf{0}$, which is

$$
\begin{gathered}
\left(\begin{array}{ccc}
\pi-17 & -113 & 2 \\
0 & \pi-\sqrt{2} & -1 \\
0 & 0 & 0
\end{array}\right)\left(\begin{array}{l}
x \\
y \\
z
\end{array}\right)=\left(\begin{array}{l}
0 \\
0 \\
0
\end{array}\right) \\
\left\{\begin{array}{l}
z=t \\
y=\frac{1}{\pi-\sqrt{2}} z=\frac{1}{\pi-\sqrt{2}} t \\
x=\frac{113}{\pi-17} y-\frac{2}{\pi-17} z=\frac{113+2 \sqrt{2}-2 \pi}{(\pi-17)(\pi-\sqrt{2})} t \\
E(\pi)=\left\{\left(\begin{array}{c}
\frac{113+2 \sqrt{2}-2 \pi}{(\pi-17)(\pi-\sqrt{2})} t \\
\frac{1}{\pi-\sqrt{2}} t \\
t
\end{array}\right): t \in \mathbb{R}\right\}
\end{array}\right.
\end{gathered}
$$

Continued

With $t=(\pi-17)(\pi-\sqrt{2})$ a basis of $E(\pi)$ is

$$
\left\{\left(\begin{array}{c}
113+2 \sqrt{2}-2 \pi \\
\pi-17 \\
(\pi-17)(\pi-\sqrt{2})
\end{array}\right)\right\}
$$

Continued

We form the matrix of the eigenvectors.

$$
P=\left(\begin{array}{ccc}
1 & 113 & 113+2 \sqrt{2}-2 \pi \\
0 & \sqrt{2}-17 & \pi-17 \\
0 & 0 & (\pi-17)(\pi-\sqrt{2})
\end{array}\right) .
$$

We check

$$
P^{-1} A P=\left(\begin{array}{ccc}
17 & 0 & 0 \\
0 & \sqrt{2} & 0 \\
0 & 0 & \pi
\end{array}\right) \quad \text { Or } \quad A P=P\left(\begin{array}{ccc}
17 & 0 & 0 \\
0 & \sqrt{2} & 0 \\
0 & 0 & \pi
\end{array}\right)
$$

Continued

We have

$$
\begin{gathered}
A P=\left(\begin{array}{rrr}
17 & 113 & -2 \\
0 & \sqrt{2} & 1 \\
0 & 0 & \pi
\end{array}\right)\left(\begin{array}{ccc}
1 & 113 & 113+2 \sqrt{2}-2 \pi \\
0 & \sqrt{2}-17 & \pi-17 \\
0 & 0 & (\pi-17)(\pi-\sqrt{2})
\end{array}\right) \\
=\left(\begin{array}{ccc}
17 & 113 \sqrt{2} & \pi(113+2 \sqrt{2}-2 \pi) \\
0 & \sqrt{2}(\sqrt{2}-17) & \pi(\pi-17) \\
0 & 0 & \pi(\pi-17)(\pi-\sqrt{2})
\end{array}\right) \\
=P\left(\begin{array}{ccc}
17 & 0 & 0 \\
0 & \sqrt{2} & 0 \\
0 & 0 & \pi
\end{array}\right)
\end{gathered}
$$

