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Goals

Suppose A is square matrix of order n.

I Provide necessary and sufficient condition when there is
an invertible matrix P such that P−1AP is a diagonal
matrix.
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Definitions

I Two square matrices A,B are said to be similar, if there
is an invertible matrix P , such that A = P−1BP .

I A square matrix A said to be diagonalizable, if there is an
invertible matrix P , such that P−1AP is a diagonal
matrix. That means, if A is similar to a diagonal matrix,
we say that A is diagonalizable.
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Theorem 5.2.1

Suppose A,B are two similar matrices. Then, A and B have
same eigenvalues.
Proof. Write A = P−1BP . Then

|λI−A| = |λI−P−1BP | = |λ(P−1P)−P−1BP | = |P−1(λI−B)P |

= |P−1||λI − B ||P | = |P |−1|λI − B ||P | = |λI − B |

So, A and B has same characteristic polynomials. So, they
have same eigenvalues. The proof is complete.
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Theorem 5.2.2: Diagonalizability

We ask, when a square matrix is diagonalizable?
Theorem 5.2.2 A square matrix A, of order n, is diagonalizable
if and only if A has n linearly independent eigenvectors.
Proof.There are two statements to prove. First, suppose A is
diagonalizable.

Then P−1AP = D, and hence AP = PD

where P is an invertible matrix and D is a diagonal matrix.

Write, D =


λ1 0 · · · 0

0 λ2 · · · 0
· · · · · · · · · · · ·

0 0 · · · λn

 , P =
(
p1 p2 · · · pn

)
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Continued

I Since AP = PA, we have

A
(
p1 p2 · · · pn

)

=
(
p1 p2 · · · pn

)
λ1 0 · · · 0

0 λ2 · · · 0
· · · · · · · · · · · ·

0 0 · · · λn

 .

Or(
Ap1 Ap2 · · · Apn

)
=
(
λ1p1 λ2p2 · · · λnpn

)
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Continued

I So,
Api = λipi for i = 1, 2, · · · , n

Since P is invertible, pi 6= 0 and hence pi is an
eigenvector of A, for λ.

I Also, rank(P) = n. So, its columns {p1,p2, . . . ,pn} are
linearly independent.

I So, it is established that if A is diagonalizable, then A has
n linearly independent eigenvectors.
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Continued

I Now, we prove the converse. So, we assume A bas has n
linearly independent eigenvectors:

{p1,p2, . . . ,pn}

I So,

Ap1 = λ1p1,Ap2 = λ2p2, · · · ,Apn = λnpn for some λi .
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Continued

I Write,

P =
(
p1 p2 · · · pn

)
and D =


λ1 0 · · · 0

0 λ2 · · · 0
· · · · · · · · · · · ·

0 0 · · · λn

 .

I It follows from the equations Api = λipi that

AP = PD. So, P−1AP = D is diagonal .

The proof is complete.
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Steps for Diagonalizing

Suppose A is a square matrix of order n.
I If A does not have n linearly independent eigenvectors,

then A is not diagonalizable.
I When possible, find n linearly independent eigenvectors

p1,p2, · · · ,pn for A with corresponding eigenvalues
λ1, λ2, . . . , λn.

I Then, write

P =
(
p1 p2 · · · pn

)
and D =


λ1 0 · · · 0

0 λ2 · · · 0
· · · · · · · · · · · ·

0 0 · · · λn


I We have D = P−1AP is a diagonal matrix.
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Corollary 4.4.3

Suppose V is a vectors space and x1, x2, . . . , xn be vectors in
V . Then, x1, x2, . . . , xn are linearly dependent if and only if
there is an integer m ≤ n such that (1) x1, x2, . . . , xm are
linearly dependent and (2) xm ∈ span(x1, x2, . . . , xm−1).

Proof.Suppose x1, x2, . . . , xn are linearly dependent. By
Theorem 4.4.2, one of these vectors is a linear combination of
the rest. By relabeling, we can assume xn is a linear
combination of x1, x2, . . . , xn−1. Let

m = min{k : xk ∈ span(x1, x2, . . . , xk−1)}
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If x1, x2, . . . , xm−1 are linearly dependent, then we could apply
Theorem 4.4.2 again, which would lead to a contradiction,
that m is minimum. So, x1, x2, . . . , xm−1 are linearly
independent. This establishes one way implication.
Conversely, suppose there is an m ≤ n such that (1) and (2)
holds. Then,

xm = c1x1 + · · ·+ cm−1xm−1 for some c1, . . . , cm−1 ∈ R

So,
c1x1 + · · ·+ cm−1xm−1 + (−1)xm = 0

which is a nontrivial linear combination. So,
x1, x2, . . . , xm, . . . , xn are linearly dependent.
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Theorem 5.2.3: With Distinct Eigenvalues

Let A be a square matrix A, of order n. Suppose A has n
distinct eigenvalues. Then

I the corresponding eigenvectors are linearly independent

I and A is diagonalizable.

Proof.

I The second statement follows from the first, by theorem
5.2.2. So, we prove the first statement only.

I Let λ1, λ2, . . . , λn be distinct eigenvalues of A.

I So, for i = 1, 2, . . . , n we have

Axi = λixi where xi 6= 0 are eigenvectors.
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Continued

I We need to prove that x1, x2, . . . , xn are linearly
independent. We prove by contra-positive argument.

I So, assume they are linearly dependent.
I By Corollary 4.4.3 there is an m < n such that

x1, x2, . . . , xm are mutually linearly independent and
xm+1 is in can be written as a linear combination of
{x1, x2, . . . , xm}. So,

xm+1 = c1x1 + c2x2 + · · ·+ cmxm (1)

Here, at least one ci 6= 0. Re-labeling xi, if needed, we
can assume c1 6= 0.
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Continued

I Multiply (1) by A on the left:

Axm+1 = c1Ax1 + c2Ax2 + · · ·+ cmAxm (2)

Now, use Axi = λixi,:

λm+1xm+1 = λ1c1x1 + λ2c2x2 + · · ·+ λmcmxm (3)

I Also, multiply (1) by λm+1, we have

λm+1xm+1 = λm+1c1x1+λm+1c2x2+ · · ·+λm+1cmxm (4)
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I Subtract (3) from (4):

(λm+1−λ1)c1x1+(λm+1−λ2)c2x2+· · ·+(λm+1−λm)cmxm = 0.

I Since these vectors are linearly independent, and hence

(λm+1 − λi)ci = 0 for i = 1, 2, · · · ,m.

I Since c1 6= 0 we get λm+1 − λ1 = 0 or λm+1 = λ1. This
contradicts that λis are distinct. So, we conclude that
x1, x2, . . . , xn are linearly independent. The proof is
complete.
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Example 5.2.2

Let A =

 2 3 1
0 −1 2
0 0 3

 and P =

 1 1 5
0 −1 1
0 0 2

 .

Verify that A is diagonalizable, by computing P−1AP .
Solution: We do it in a two steps.

1. Use TI to compute

P−1 =

 1 1 −3
0 −1 .5
0 0 .5

 . So, P−1AP =

 2 0 0
0 −1 0
0 0 3

 .

So, it is verified that P−1AP is a diagonal matrix.
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Example 5.2.3

Let A =

(
3 1
−9 −3

)
.

Show that A is not diagonalizable.
Solution: Use Theorem 5.2.2 and show that A does not have
2 linearly independent eigenvectors. To do this, we have find
and count the dimensions of all the eigenspaces E (λ). We do
it in a few steps.

I First, find all the eigenvalues. To do this, we solve

det(λI − A) =

∣∣∣∣ λ− 3 −1
9 λ + 3

∣∣∣∣ = λ2 = 0.

So, λ = 0 is the only eigenvalue of A.
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Continued

I Now we compute the eigenspace E (0) of the eigenvalue
λ = 0. We have E (0) is solution space of

(0I−A)

(
x
y

)
=

(
0
0

)
or

(
−3 −1

9 3

)(
x
y

)
=

(
0
0

)
Using TI (or by hand), a parametric solution of this
system is given by x = −.5t y = t.

So E (0) = {(t,−3t) : t ∈ R} = R1,−3).

So, the (sum of) dimension(s) of the eigenspace(s)

= dimE (0) = 1 < 2.

Therefore A is not diagonizable.
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Example 5.2.3

Let A =

 1 1 1
0 −3 1
0 0 −3

 .

Show that A is not diagonalizable.
Solution: Use Theorem 5.2.2 and show that A does not have
3 linearly independent eigenvectors.

I To find the eigenvalues, we solve

det(λI−A) =

∣∣∣∣∣∣
λ− 1 −1 −1

0 λ + 3 −1
0 0 λ + 3

∣∣∣∣∣∣ = (λ−1)(λ+3)2 = 0.

So, λ = 1,−3 are the only eigenvalues of A.
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Continued

I We have E (1) is solution space of

(I − A)

 x
y
z

 =

 0
0
0



Or

 0 −1 −1
0 4 −1
0 0 4

 x
y
z

 =

 0
0
0


(As an alternative approach, avoid solving this system.)
The (column) rank of the coefficient matrix is 2. So,
dim(E (1)) = nullity = 3− rank = 3− 2 = 1.
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Continued

I Now we compute the dimension dimE (−3). E (−3) is the
solution space of

(−3I − A)

 x
y
z

 =

 0
0
0

 or

 −4 −1 −1
0 0 −1
0 0 0

 x
y
z

 =

 0
0
0


The rank of the coefficient matrix is 2 (use TI, if you
need). So,

dim(E (−3)) = nullity = 3− rank = 3− 2 = 1.
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Continued

I So, the sum of dimensions of the eigenspaces

= dimE (1) + dimE (−3) = 2 < 3.

Therefore A is not diagonalizable.

Satya Mandal, KU Eigenvalues and Eigenvectors §5.2 Diagonalization



Preview
Diagonalization

Examples
Explicit Diagonalization

Example 5.2.4

Let A =

 17 113 −2

0
√

2 1
0 0 π

 Find its eigenvalues

and determine (use Theorem 5.2.3), if A is diagonalizable. If
yes, write down a an invertible matrix P so that P−1AP is a
diagonal matrix.
Solution: To find eigenvalues solve

det(λI − A) =

∣∣∣∣∣∣
λ− 17 −113 2

0 λ−
√

2 −1
0 0 λ− π

∣∣∣∣∣∣
= (λ− 17)(λ−

√
2)(λ− π) = 0.
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Continued

So, A has three distinct eigenvalues λ = 17,
√

2, π. Since A is
a 3× 3 matrix, by Theorem 5.2.3 , A is diagonalizable.
We will proceed to compute the matrix P , by computing bases
of E (17), E (

√
(2)) and E (π).
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Continued

To compute E (17), we solve: (17I3 − A)x = 0, which is 0 −113 2

0 17−
√

2 −1
0 0 17− π

 x
y
z

 =

 0
0
0


So, z = y = 0 and x = t, for any t ∈ R. So,

E (17) =


 t

0
0

 : t ∈ R


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Continued

with t = 1 a basis of E (17) is


 1

0
0



Satya Mandal, KU Eigenvalues and Eigenvectors §5.2 Diagonalization



Preview
Diagonalization

Examples
Explicit Diagonalization

Continued

To compute E (
√

2), we solve: (
√

2I3 − A)x = 0, which is √2− 17 −113 2
0 0 −1

0 0
√

2− π

 x
y
z

 =

 0
0
0


So, z = 0 and x = t and y =

√
2−17
113

t for any t ∈ R. So,

E (
√

2) =


 t√

2−17
113

t
0

 : t ∈ R


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Continued

with t = 113 a basis of E (
√

2) is


 113√

2− 17
0


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Continued

To compute E (π), we solve: (πI3 − A)x = 0, which is π − 17 −113 2

0 π −
√

2 −1
0 0 0

 x
y
z

 =

 0
0
0




z = t
y = 1

π−
√
2
z = 1

π−
√
2
t

x = 113
π−17y −

2
π−17z = 113+2

√
2−2π

(π−17)(π−
√
2)
t

E (π) =


 113+2

√
2−2π

(π−17)(π−
√
2)
t

1
π−
√
2
t

t

 : t ∈ R


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Continued

With t = (π − 17)(π −
√

2) a basis of E (π) is
 113 + 2

√
2− 2π

π − 17

(π − 17)(π −
√

2)


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Continued

We form the matrix of the eigenvectors.

P =

 1 113 113 + 2
√

2− 2π

0
√

2− 17 π − 17

0 0 (π − 17)(π −
√

2)

 .

We check

P−1AP =

 17 0 0

0
√

2 0
0 0 π

 Or AP = P

 17 0 0

0
√

2 0
0 0 π


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Continued

We have

AP =

 17 113 −2

0
√

2 1
0 0 π

 1 113 113 + 2
√

2− 2π

0
√

2− 17 π − 17

0 0 (π − 17)(π −
√

2)



=

 17 113
√

2 π(113 + 2
√

2− 2π)

0
√

2(
√

2− 17) π(π − 17)

0 0 π(π − 17)(π −
√

2)


= P

 17 0 0

0
√

2 0
0 0 π


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