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Goals

We imitate the concept of length and angle between two
vectors in R2,R3 to define the same in the n−space Rn. Main
topics are:

I Length of vectors in Rn.

I Dot product of vectors in Rn (It comes from angles
between two vectors).

I Cauchy Swartz Inequality in Rn.

I Triangular Inequality in Rn, like that of triangles.
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I We discussed, two parallel arrows, with equal length,
represented the Same Vector v.

I In particular, there is one arrow, representing v, starting
at the origin.
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Continued

I Such arrows, starting at the origin, are identified with
points (x , y) in R2. So, we write v = (v1, v2).

I The length of the vector v = (v1, v2) is given by

‖v‖ =
√
v 2
1 + v 2

2 .

I Also, the angle θ between two such vectors v = (v1, v2)
and u = (u1, u2) is given by

cos θ =
v1u1 + v2u2
‖v‖ ‖u‖

I Subsequently, we imitate these two formulas.
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Length on Rn

Definition. Let v = (v1, v2, . . . , vn) be a vector in Rn.

I The length or magnitude or norm of v is defined as

‖v‖ =
√

v 2
1 + v 2

2 + · · ·+ v 2
n .

I So, ‖v‖ = 0⇐⇒ v = 0.

I We say v is a unit vector if ‖v‖ = 1.
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Theorem 6.1.1: Length in Rn

Let v = (v1, v2, . . . , vn) be a vector in Rn and c ∈ R be a
scalar. Then ‖cv‖ = |c | ‖v‖.
Proof.

I We have cv = (cv1, cv2, . . . , cvn).

I Therefore, ‖cv‖ =√
(cv1)2 + (cv2)2 + · · ·+ (cvn)2

=
√

c2 (v 2
1 + v 2

2 + · · ·+ v 2
n ) = |c | ‖v‖ .

The proof is complete.
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Theorem 6.1.2: Length in Rn

Let v = (v1, v2, . . . , vn) be a non-zero vector in Rn. Then,

u =
v

‖ v ‖

has length 1. We say, u is the unit vector in the direction
of v.
Proof. (First, note that the statement of the theorem would
not make sense. unless v is nonzero.) Now,

‖u‖ =

∥∥∥∥ 1

‖v‖
v

∥∥∥∥ =

∣∣∣∣ 1

‖v‖

∣∣∣∣ ‖v‖ = 1.

The proof is complete.
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Comments

I Example. The standard basis vectors e1 = (1, 0, 0),
e2 = (0, 1, 0), e2 = (0, 0, 1) ∈ R3 are unit vectors in R3.

I Example. Similarly, recall the standard basis of Rn
e1 = (1, 0, 0, . . . , 0)
e2 = (0, 1, 0, . . . , 0)
e3 = (0, 0, 1, . . . , 0)

· · ·
en = (0, 0, 0, . . . , 1)

(1)

Here, each ei is a unit vectors in Rn.
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Continued: Direction

I For a nonzero vector v and scalar c > 0 cv points to the
same direction as v and −cv point to direction opposite
to v.
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Distance

Let u = (u1, u2, . . . , un), v = (v1, v2, . . . , vn) be two vectors in
Rn. Then, the distance between u and v is defined as

d(u, v) = ‖u− v‖ =
√

(u1 − v1)2 + (u2 − v2)2 + · · ·+ (un − vn)2.

it is easy to see:

1. d(u, v) ≥ 0.

2. d(u, v) = d(v,u).

3. d(u, v) = 0 if and only if u = v.
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Example 6.1.1

Let u = (1, 2, 2), v = (−3, 1,−2).

1. Compute ‖ u ‖, ‖ v ‖, ‖ u + v ‖. Solution:

‖ u ‖=
√

12 + 22 + 22 =
√

9 = 3.

‖ v ‖=
√

(−3)2 + 12 + (−2)2 =
√

14.

‖ u + v ‖=
√

(1− 3)+(2 + 1)2 + (2− 2)2 =
√

13.

2. Compute distance d(u, v). Solution:

d(u, v) =
√

(1 + 3)2 + (2− 1)2 + (2 + 2)2 =
√

33
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Example 6.1.2

Let u = (−1,
√

10, 3, 4).

1. Compute the unit vector in the direction of u. Solution:

First, ‖ u ‖=
√

(−1)2 + (
√

10)2 + 32 + 42 = 6. The unit

vector in the direction of u is

e =
u

‖ u ‖
=

(−1,
√

10, 3, 4)

6
=

(
−1

6
,

√
10

6
,

3

6
,

4

6

)
.

2. Compute the unit vector in the direction opposite of u.

Solution: Answer is −e =
(

1
6
, −
√
10

6
, −3

6
, −4

6

)
.
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Example 6.1.3

Let u = (cos θ, sin θ) ∈ R2, where −π ≤ θ ≤ π. (1) Compute
the length of u, (2) compute the vector v in the direction of u
and ‖ v ‖= 4, (3) compute the vector w in the direction of
opposite to u and same length.

Solution: (1) We have ‖ u ‖=
√

cos2 θ + sin2 θ = 1
(2) Length of v is four times that of u, and they have same
direction. So, v = 4u = 4(cos θ, sin θ).
(3) w = −u = −(cos θ, sin θ).
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Example 6.1.4

Let v be a vector in the same direction as

u = (−1, π, 1) and ‖v‖ = 4.

Compute v.
Solution: Write v = cu with c > 0. Given ‖v‖ = 4 So,

4= ‖v‖ = ‖cu‖ = |c | ‖u‖ = c
√

(−1)2 + π2 + 12 = c
√
π2 + 2

So, c = 4√
π2+2

and v = cu = 4√
π2+2

(−1, π, 1) .
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Example 6.1.5

Let v = (−1, 3,
√

2, π).

I (1) Find u such that u has same direction as v and
one-half its length.
Solution: In general,

‖ cv ‖= |c | ‖ v ‖ .

So, in this case,

u =
1

2
v =

1

2

(
−1, 3,

√
2, π
)

=

(
−1

2
,

3

2
,

1√
2
,
π

2

)
.
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Continued

I (2) Find u such that u has opposite direction as v and
one-fourth its length.
Solution: Since it has opposite direction

u = −1

4
v = −1

4

(
−1, 3,

√
2, π
)

=

(
1

4
,−3

4
,− 1

2
√

2
,−π

4

)
I (3) Find u such that u has opposite direction as v and

twice its length.
Solution: Since it has opposite direction

u = −2v = −2
(
−1, 3,

√
2, π
)

= (2,−6,−2
√

2,−2π).

Satya Mandal, KU Inner Product Spaces §6.1 Length and Dot Product in Rn



Preview
Length and Angle

Problems
Dot Product and Angles between two vectors

Angle Between Two Vectors
Problems

Example 6.1.6

Find the distance between

u = (−1, 2, 3, π) and v = (1, 0, 5, π + 2).

Solution: Distance

d(u, v) =‖ u− v ‖=‖ (−2, 2,−2,−2) ‖

=
√
−(2)2 + 22 + (−2)2 + (−2)2 = 4.
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Definition: Dot Product

Definition. Let

u = (u1, u2, . . . , un), v = (v1, v2, . . . , vn) ∈ Rn

be two vectors in Rn. The dot product of u and v is defined as

u · v = u1v1 + u2v2 + · · ·+ unvn.
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Theorem 6.1.3

Suppose u, v,w ∈ Rn are three vectors and c is a scalar. Then

1. (Commutativity): u · v = v · u.
2. (Distributivity): u · (v + w) = u · v + u ·w.
3. (Associativity): c(u · v) = (cu) · v = u · (cv).

4. (dot product and Norm): v · v =‖ v ‖2 .
5. We have v · v ≥ 0 and v · v⇐⇒ v = 0.

Proof. Follows from definition of dot product.

Remark. The vector space Rn together with (1) length, (2)
dot product is called the Euclidean n−Space.
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Theorem 6.1.4: Cauchy-Schwartz Inequality

Suppose u, v ∈ Rn are two vectors. Then,

|u · v| ≤ ‖u‖ ‖v‖ .

Proof.
I (Case 1.): Assume u = 0.

I Then, ‖u‖ = 0 and the Right Hand Side is zero.
I Also, the Left Hand Side = |u · v| = |0 · v| = 0
I So, both sides are zero and the inequality is valid.
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Continued

I (Case 2.): Assume u 6= 0. So, u · u = ‖u‖2 > 0. Then,
I Let t be any real number (variable) . We have

(tu+ v) · (tu+ v) = ‖(tu+ v)‖2 ≥ 0.

I Expanding:

t2(u · u) + 2t(u · v) + (v · v) ≥ 0.

I Write

a = u · u = ‖u‖2 > 0, b = 2(u · v), c = (v · v).
I The above inequality can be written as

f (t) = at2 + bt + c ≥ 0 for all t.
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Continued

I I From the graph of y = f (t), we can see that, f (t) = 0
either has no real root or has a single repeated root.

I By the Quadratic formula, we have

b2 − 4ac ≤ 0 or b2 ≤ 4ac.

I This means

4(u · v)2 ≤ 4(u · u)(v · v) = 4 ‖u‖2 ‖v‖2 .

I Taking square root, we have

| u · v | ≤ ‖u‖ ‖v‖ .

The proof is complete.
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Definition: Angle Between Two Vectors

Suppose u, v ∈ Rn are two nonzero vectors.

I Cauchy-Swartz Inequality ensures −1 ≤ u·v
‖u‖‖v‖ ≤ 1. So,

the following definition makes sense.

I Definition. The angle θ between u, v ∈ V is defined by
the equation:

cos θ =
u · v
‖u‖ ‖v‖

0 ≤ θ ≤ π.

I Definition We say that they are orthogonal, if u · v = 0.
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Theorem 6.1.5: Trianguler Inequality

Suppose u, v ∈ Rn are two vectors. Then,

‖u + v‖ ≤ ‖u‖+ ‖v‖ .

Proof. First,

‖u + v‖2 = (u + v) · (u + v) = u · u + 2(u · v) + v · v

= ‖u‖2 + 2(u · v) + ‖v‖2 ≤ ‖u‖2 + 2 |u · v|+ ‖v‖2 .
By Cauchy-Schwartz Inequality | u · v | ≤ ‖ u ‖‖ v ‖ . So,

‖ u + v ‖2≤‖ u ‖2 +2 ‖ u ‖‖ v ‖ + ‖ v ‖2= (‖ u ‖ + ‖ v ‖)2

The theorem is established by taking square root.
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Theorem 6.1.6: Pythagorean

Suppose u, v ∈ Rn are two orthogonal vectors. Then

‖u + v‖2 = ‖u‖2 + ‖v‖2 .

Proof.

‖u + v‖2 = (u+v)·(u+v) = u·u+2(u·v)+v·v = ‖u‖2+‖v‖2 .

The proof is complete.
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Example 6.1.7

Let u = (0, 1,−1, 1,−1) and v = (
√

5, 1,−3, 3,−1).

I (1) Find u · v.
Solution: We have

u · v = (0, 1,−1, 1,−1) · (
√

5, 1,−3, 3,−1)

= 0 + 1 + 3 + 3 + 1 = 8.

I (2) Compute u · u.
Solution: We have

u · u = (0, 1,−1, 1,−1) · (0, 1,−1, 1,−1) = 4
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Continued

I (3) Compute ‖ u ‖2 .
Solution: From (2), we have

‖ u ‖2= u · u = 4.

I (4) Compute (u · v)v.
Solution: From (1), we have

(u·v)v = 4v = 4(
√

5, 1,−3, 3,−1) = (4
√

5, 4,−12, 12,−4).
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Example 6.1.7

Let u, v be two vectors in Rn. It is given,

u · u = 9, u · v = −7, v · v = 16.

Find (3u− v) · (u− 3v).

Solution: We have

(3u−v)·(u−3v) = 3u·u−10u·v+3v·v = 3∗9−10∗(−7)+3∗16 = 5
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Example 6.1.8

Let u = (1,−
√

2, 1) and v = (2
√

2, 3,−2
√

2). Verify
Cauchy-Schwartz inequality.

Solution: We have

‖u‖ =

√
12 + (−

√
2)2 + 12 = 2 and

‖v‖ =

√
(2
√

2)2 + 32 + (−2
√

2)2 = 5.

Also u · v = 1 ∗ 2
√

2 + (−
√

2) ∗ (3),+1 ∗ (−2
√

2) = −3
√

2.

Therefore, it is verified that

|u · v| = |3
√

3| = 3
√

2 ≤ 2 ∗ 5 = ‖u‖ ‖v‖ .
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Example 6.1.9

Let u = (1,−
√

2, 1) and v = (2
√

2, 0,−2
√

2). Find the angle
θ between them.
Solution: The angle θ between u and v is defined by the
equation

cos θ =
u · v

‖ u ‖‖ v ‖
0 ≤ θ ≤ π.

I We have

‖u‖ =

√
12 + (−

√
2)2 + 12 = 2 and

‖ v ‖=
√

8 + 0 + 8 = 4
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Continued

I Also

u · v = 1 ∗
√

2 + (−
√

2 ∗ 0 + 1 ∗ (−2
√

2) = 0.

I So,

cos θ =
u · v

‖ u ‖‖ v ‖
= 0.

I Therefore,
θ = π/2.
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Example 6.1.10

Let u = (1,−3,−2,−7). Find all vectors that are orthogonal
to u.

Solution: Suppose v = (x1, x2, x3, x4) be orthogonal to u. By
definition, it means,

u · v = x1 − 3x2 − x3 − 7x4 = 0

A parametric solution to this system is

x2 = s, x3 = t, x4 = u, x1 = 3s + 2t + 7u

So, the set of vectors orthogonal to u, is given by

{v = (3s + 2t + 7u, s, t, u) : s, t, u ∈ R}
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Example 6.1.11

Let u = (π, 7, π) and v = (
√

3, 0,−
√

3) Determine, if are u, v
orthogonal to each other or not?

Solution: We need to check, if u · v = 0 or not. We have

u · v = π ∗ (
√

3) + 7 ∗ 0 + π ∗ (−
√

3) = 0

So, u, v are orthogonal to each other.
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Example 6.1.12

Let u = (π, 7, π) and v = (
√

3, 1,−
√

3) Determine if are u, v
orthogonal to each other or not?

Solution: We need to check, if u · v = 0 or not. We have

u · v = π ∗ (
√

3) + 7 ∗ 1 + π ∗ (−
√

3) = 7 6= 0.

So, u, v are not orthogonal to each other.
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Example 6.1.13

Let u = (
√

3,
√

3,
√

3), v = (−
√

3,−
√

3,−2
√

3). Verify,
triangle Inequality. Solution: We have

‖u‖ =

√
(
√

3)2 + (
√

3)2 + (
√

3)2 = 3,

‖v‖ =

√
(
√

3)2 + (−
√

3)2 + (−2
√

3)2 = 3
√

2

‖u + v‖ =
∥∥∥(0, 0,−

√
3)
∥∥∥ =

√
02 + 02 + (−

√
3)2 =

√
3.

To Check : ‖u + v‖2 = 3 ≤ ‖u‖2 + ‖v‖2 = 9 + 18.

So, the triangle inequality is verified.
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Example 6.1.14

Let u = (1,−1), v = (2, 2). Verify Pythagorean Theorem.
Solution:

I We have u · v = 1 ∗ 2− 1 ∗ 2 = 0. So, u, v are orthogonal
to each other and Pythagorean Theorem must hold.

I

‖ u ‖=
√

12 + (−1)2 =
√

2, ‖ v ‖=
√

22 + 22 = 2
√

2

‖ u + v ‖=‖ (3, 1) ‖=
√

32+2 =
√

10.

I We need to check,

‖ u + v ‖2= 10 =‖ u ‖2 + ‖ v ‖2= 2 + 8

I So, the Pythagorian Theorem is verified.
Satya Mandal, KU Inner Product Spaces §6.1 Length and Dot Product in Rn



Preview
Length and Angle

Problems
Dot Product and Angles between two vectors

Angle Between Two Vectors
Problems

Example 6.1.15

Let u = (a, b), v = (b,−a). Verify Pythagorean Theorem.
Solution:

I We have u · v = ab − ba = 0. So, u, v are orthogonal to
each other and Pythagorean Theorem must hold.

I

‖ u ‖=
√
a2 + b2, ‖ v ‖=

√
b2 + a2

‖ u + v ‖=‖ (a + b, b − a) ‖

=
√

(a + b)2 + (b − a)2 =
√

2(a2 + b2)
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Continued

I We need to check,

‖ u+v ‖2= 2(a2+b2) =‖ u ‖2 + ‖ v ‖2= (a2+b2)+(b2+a2)

I So, the Pythagorean Theorem is verified.
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