# Inner Product Spaces §6.2 Inner product spaces 

Satya Mandal, KU

Summer 2017

## Goals

- Concept of length, distance, and angle in $\mathbb{R}^{2}$ or $\mathbb{R}^{n}$ is extended to abstract vector spaces $V$. Such a vector space will be called an Inner Product Space.
- An Inner Product Space $V$ comes with an inner product that is like dot product in $\mathbb{R}^{n}$.
- The Euclidean space $\mathbb{R}^{n}$ is only one example of such Inner Product Spaces.


## Inner Product

Definition Suppose $V$ is a vector space.

- An inner product on $V$ is a function

$$
\langle *, *\rangle: V \times V \rightarrow \mathbb{R} \quad \text { that associates }
$$

to each ordered pair $(\mathbf{u}, \mathbf{v})$ of vectors a real number
$\langle\mathbf{u}, \mathbf{v}\rangle$, such that for all $\mathbf{u}, \mathbf{v}, \mathbf{w}$ in $V$ and scalar $c$, we have

$$
\begin{aligned}
& \text { 1. }\langle\mathbf{u}, \mathbf{v}\rangle=\langle\mathbf{v}, \mathbf{u}\rangle . \\
& \text { 2. }\langle\mathbf{u}, \mathbf{v}+\mathbf{w}\rangle=\langle\mathbf{u}, \mathbf{v}\rangle+\langle\mathbf{u}, \mathbf{w}\rangle . \\
& \text { 3. } c\langle\mathbf{u}, \mathbf{v}\rangle=\langle c \mathbf{u}, \mathbf{v}\rangle \text {. } \\
& \text { 4. }\langle\mathbf{v}, \mathbf{v}\rangle \geq 0 \text { and } v=0 \Longleftrightarrow\langle\mathbf{v}, \mathbf{v}\rangle=0 \text {. }
\end{aligned}
$$

- The vector space $V$ with such an inner product is called an inner product space.


## Theorem 6.2.1: Properties

Let $V$ be an inner product space. Let $\mathbf{u}, \mathbf{v} \in V$ be two vectors and $c$ be a scalar, Then,

1. $\langle\mathbf{0}, \mathbf{v}\rangle=0$
2. $\langle\mathbf{u}+\mathbf{v}, \mathbf{w}\rangle=\langle\mathbf{u}, \mathbf{w}\rangle+\langle\mathbf{v}, \mathbf{w}\rangle$
3. $\langle\mathbf{u}, c \mathbf{v}\rangle=c\langle\mathbf{u}, \mathbf{v}\rangle$

Proof. We would have to use the properties in the definition.

1. Use (3): $\langle\mathbf{0}, \mathbf{v}\rangle=\langle 0 \mathbf{0}, \mathbf{v}\rangle=0\langle\mathbf{0}, \mathbf{v}\rangle=0$.
2. Use commutativity (1) and (2):

$$
\langle\mathbf{u}+\mathbf{v}, \mathbf{w}\rangle=\langle\mathbf{w}, \mathbf{u}+\mathbf{v}\rangle=\langle\mathbf{w}, \mathbf{u}\rangle+\langle\mathbf{w}, \mathbf{v}\rangle=\langle\mathbf{u}, \mathbf{w}\rangle+\langle\mathbf{v}, \mathbf{w}\rangle
$$

3. Use (1) and (3): $\langle\mathbf{u}, c \mathbf{v}\rangle=\langle c \mathbf{v}, \mathbf{u}\rangle=c\langle\mathbf{v}, \mathbf{u}\rangle=c\langle\mathbf{u}, \mathbf{v}\rangle$

The proofs are complete.

## Definitions

Definitions Let $V$ be an inner product space and $\mathbf{u}, \mathbf{v} \in V$.

1. The length or norm of $\mathbf{v}$ is defined as

$$
\|\mathbf{v}\|=\sqrt{\langle\mathbf{v}, \mathbf{v}\rangle} .
$$

2. The distance between $\mathbf{u}, \mathbf{v} \in V$ is defined as

$$
d(\mathbf{u}, \mathbf{v})=\|\mathbf{u}-\mathbf{v}\|
$$

3. The angle $\theta$ vectors $\mathbf{u}, \mathbf{v} \in V$ is defined by the formula:

$$
\cos \theta=\frac{\langle\mathbf{u}, \mathbf{v}\rangle}{\|\mathbf{u}\|\|\mathbf{v}\|} \quad 0 \leq \theta \leq \pi
$$

A version of Cauchy-Swartz inequality, to be given later, would assert that right side is between -1 and 1 .

## Theorem(s) 6.2.2

Let $V$ be an inner product space and $\mathbf{u}, \mathbf{v} \in V$. Then,

1. Cauchy-Schwartz Inequality: $|\langle\mathbf{u}, \mathbf{v}\rangle| \leq\|\mathbf{u}\|\|\mathbf{v}\|$.
2. Triangle Inequality: $\|\mathbf{u}+\mathbf{v}\| \leq\|\mathbf{u}\|+\|\mathbf{v}\|$.
3. (Definition) We say that $\mathbf{u}, \mathbf{v}$ are (mutually) orthogonal or perpendicular, if

$$
\langle\mathbf{u}, \mathbf{v}\rangle=0 . \quad \text { We write } \quad \mathbf{u} \perp \mathbf{v} .
$$

4. Pythagorean Theorem. If $\mathbf{u}, \mathbf{v}$ are orthogonal, then

$$
\|\mathbf{u}+\mathbf{v}\|^{2}=\|\mathbf{u}\|^{2}+\|\mathbf{v}\|^{2}
$$

Proof. Exactly similar to the corresponding theorems in $\S 6.1$ for $\mathbb{R}^{n}$.

## Orthogonal Projection

Definition. Let $V$ be an inner product space. Suppose $\mathbf{v} \in V$ is a non-zero vector. Then, for $\mathbf{u} \in V$ define Orthogonal Projection of $\mathbf{u}$ on to $\mathbf{v}$ : $\operatorname{proj}_{\mathbf{v}}(\mathbf{u})=\frac{\langle\mathbf{v}, \mathbf{u}\rangle}{\|\mathbf{v}\|^{2}} \mathbf{v}$


## Theorem 6.2.3

Let $V$ be an inner product space. Suppose $\mathbf{v} \in V$ is a non-zero vector. Then, $\left(\mathbf{u}-\operatorname{proj}_{\mathbf{v}}(\mathbf{u})\right) \perp \operatorname{proj}_{\mathbf{v}}(\mathbf{u})$. Proof.

$$
\begin{gathered}
\left\langle\mathbf{u}-\operatorname{proj}_{\mathbf{v}}(\mathbf{u}), \operatorname{proj}_{\mathbf{v}}(\mathbf{u})\right\rangle=\left\langle\mathbf{u}-\left(\frac{\langle\mathbf{v}, \mathbf{u}\rangle}{\|\mathbf{v}\|^{2}} \mathbf{v}\right), \frac{\langle\mathbf{v}, \mathbf{u}\rangle}{\|\mathbf{v}\|^{2}} \mathbf{v}\right\rangle \\
=\left\langle\mathbf{u}, \frac{\langle\mathbf{v}, \mathbf{u}\rangle}{\|\mathbf{v}\|^{2}} \mathbf{v}\right\rangle-\left\langle\left(\frac{\langle\mathbf{v}, \mathbf{u}\rangle}{\|\mathbf{v}\|^{2}} \mathbf{v}\right), \frac{\langle\mathbf{v}, \mathbf{u}\rangle}{\|\mathbf{v}\|^{2}} \mathbf{v}\right\rangle \\
=\frac{\langle\mathbf{v}, \mathbf{u}\rangle^{2}}{\|\mathbf{v}\|^{2}}-\frac{\langle\mathbf{v}, \mathbf{u}\rangle^{2}}{\|\mathbf{v}\|^{4}}\langle\mathbf{v}, \mathbf{v}\rangle=0
\end{gathered}
$$

The proof is complete.

## Examples 6.2.1

- Remark. If $\mathbf{v}=(1,0)$ (or on $x$-axis) and $\mathbf{u}=(x, y)$, then $\operatorname{proj}_{\mathbf{v}} \mathbf{u}=(x, 0)$.
- (1) The Obvious Example: With dot product as the inner product, the Euclidean $n$-space $\mathbb{R}^{n}$ is an inner product space.


## Examples 6.2.2: Integration

Integration is a great way to define inner product.
Let $V=C[a, b]$ be the vector space of all continuous functions $f:[a, b] \rightarrow \mathbb{R}$. For $f, g \in C[a, b]$, define inner product

$$
\langle f, g\rangle=\int_{a}^{b} f(x) g(x) d x
$$

It is easy to check that $\langle f, g\rangle$ satisfies the properties of inner product spaces. Namely,

1. $\langle f, g\rangle=\langle g, f\rangle$, for all $f, g \in C[a, b]$.
2. $\langle f, g+h\rangle=\langle f, g\rangle+\langle f, h\rangle$, for all $f, g, h \in C[a, b]$.
3. $c\langle f, g\rangle=\langle c f, g\rangle$, for all $f, g \in C[a, b]$ and $c \in \mathbb{R}$.
4. $\langle f, f\rangle \geq 0$ for all $f \in C[a, b]$ and $f=0 \Leftrightarrow\langle f, f\rangle=0$.

## Continued

Accordingly, for $f \in C[a, b]$, we can define length (or norm)

$$
\|f\|=\sqrt{\langle f, f\rangle}=\sqrt{\int_{a}^{b} f(x)^{2} d x}
$$

This 'length' of continuous functions would have all the properties that you expect "length" or "magnitude" to have.

## Examples 6.2.2A: Double Integration

Let $D \subseteq \mathbb{R}^{2}$ be any connected region. Let $V=C(D)$ be the vector space of all bounded continuous functions $f(x, y): D \rightarrow \mathbb{R}$. For $f, g \in V$ define inner product

$$
\langle f, g\rangle=\iint_{D} f(x, y) g(x, y) d x d y
$$

As in Example 6.2.2, it is easy to check that $\langle f, g\rangle$ satisfies the properties of inner product spaces.
In this case, length or norm of $f \in V$ is given by

$$
\|f\|=\sqrt{\langle f, f\rangle}=\sqrt{\iint_{D} f(x, y)^{2} d x d y}
$$

## Continued

In particular:

- Example a: If $D=[a, b] \times[c, d]$, then

$$
\langle f, g\rangle=\int_{c}^{d} \int_{a}^{b} f(x, y) g(x, y) d x d y
$$

- Example b: If $D$ is the unit disc:
$D=\left\{(x, y): x^{2}+y^{2} \leq 1\right\}$, then for $f, g \in C(D)$ is:

$$
\begin{aligned}
& \langle f, g\rangle=\iint_{D} f(x, y) g(x, y) d x d y \\
& =\int_{-1}^{1} \int_{-\sqrt{1-y^{2}}}^{\sqrt{1-y^{2}}} f(x, y) g(x, y) d x d y
\end{aligned}
$$

## Example 6.2.3

In $\mathbb{R}^{2}$, define an inner product (as above): for
$\mathbf{u}=\left(u_{1}, u_{2}\right), \mathbf{v}=\left(v_{1}, v_{2}\right)$ define $\langle\mathbf{u}, \mathbf{v}\rangle=2\left(u_{1} v_{1}+u_{2} v_{2}\right)$. It is easy to check that this is an Inner Product on $\mathbb{R}^{2}$ (we skip the proof.)
Let $\mathbf{u}=(1,3), \quad \mathbf{v}=(2,-2)$.

- (1) Compute $\langle\mathbf{u}, \mathbf{v}\rangle$. Solution:

$$
\langle\mathbf{u}, \mathbf{v}\rangle=2\left(u_{1} v_{1}+u_{2} v_{2}\right)=2(2-6)=-8
$$

- (2) Compute $\|\mathbf{u}\|$. Solution:

$$
\|\mathbf{u}\|=\sqrt{\langle\mathbf{u}, \mathbf{u}\rangle}=\sqrt{2\left(u_{1} u_{1}+u_{2} u_{2}\right)}=\sqrt{2(1+9)}=\sqrt{20}
$$

## Continued

- (3) Compute $\|\mathbf{v}\|$. Solution:

$$
\|\mathbf{v}\|=\sqrt{\langle\mathbf{v}, \mathbf{v}\rangle}=\sqrt{2(4+4)}=4
$$

- (4) Compute $d(\mathbf{u}, \mathbf{v})$. Solution:

$$
\begin{gathered}
d(\mathbf{u}, \mathbf{v})=\|\mathbf{u}-\mathbf{v}\|=\|(-1,5)\| \\
=\sqrt{2(1+25)}=\sqrt{52} .
\end{gathered}
$$

## Example 6.2.4

Let $V=C[0,1]$ with inner product

$$
\langle f, g\rangle=\int_{0}^{1} f(x) g(x) d x \quad \text { for } \quad f, g, \in V .
$$

Let $f(x)=2 x$ and $g(x)=x^{2}+x+1$.

- (1) Compute $\langle f, g\rangle$. Solution: We have

$$
\begin{gathered}
\langle f, g\rangle=\int_{0}^{1} f(x) g(x) d x=\int_{0}^{1} 2\left(x^{3}+x^{2}+x\right) d x \\
=2\left[\frac{x^{4}}{4}+\frac{x^{3}}{3}+\frac{x^{2}}{2}\right]_{x=0}^{1}=2\left[\frac{1}{4}+\frac{1}{3}+\frac{1}{2}\right]-0=\frac{13}{6}
\end{gathered}
$$

## Continued

- (2) Compute norm $\|f\|$.


## Solution: We have

$$
\begin{aligned}
\|f\| & =\sqrt{\langle f, f\rangle}=\sqrt{\int_{0}^{1} f(x)^{2} d x}=\sqrt{\int_{0}^{1} 4 x^{2} d x} \\
& =\sqrt{4\left[\frac{x^{3}}{3}\right]_{x=0}^{1}}=\sqrt{\frac{4}{3}-0}=2 \sqrt{\frac{1}{3}}
\end{aligned}
$$

## Continued

- (3) Compute norm $\|g\|$. Solution: We have

$$
\left.\begin{array}{rl}
\|g\|= & \sqrt{\langle g, g\rangle}
\end{array}=\sqrt{\int_{0}^{1} g(x)^{2} d x}=\sqrt{\int_{-1}^{1}\left(x^{2}+x+1\right)^{2} d x}\right) ~=\sqrt{\int_{0}^{1}\left(x^{4}+2 x^{3}+3 x^{2}+2 x+1\right) d x}
$$

## Continued

$$
=\sqrt{\left[\frac{1}{5}+2 \frac{1}{4}+3 \frac{1}{3}+2 \frac{1}{2}+1\right]-0}=\sqrt{\frac{37}{10}}
$$

## Continued

- (4) Compute $d(f, g)$.

Solution: We have $d(f, g)=\|f-g\|=$

$$
\begin{gathered}
\sqrt{\langle f-g, f-g\rangle}=\sqrt{\int_{0}^{1}\left(-x^{2}+x-1\right)^{2} d x} \\
=\sqrt{\int_{0}^{1}\left(x^{4}-2 x^{3}+3 x^{2}-2 x+1\right) d x} \\
=\sqrt{\left[\frac{x^{5}}{5}-2 \frac{x^{4}}{4}+3 \frac{x^{3}}{3}-2 \frac{x^{2}}{2}+x\right]_{0}^{1}}
\end{gathered}
$$

## Continued

$$
=\sqrt{\left[\frac{1}{5}-2 \frac{1}{4}+3 \frac{1}{3}-2 \frac{1}{2}+1\right]-0}=\sqrt{\frac{7}{10}}
$$

## Example 6.2.4

Let $V=C[-\pi, \pi]$ with inner product $\langle f, g\rangle$ as in Example 6.2.2 (by definite integral). Let $f(x)=x^{3}$ and $g(x)=x^{2}-3$. Show that $f$ and $g$ are orthogonal.
Solution: We have to show that $\langle f, g\rangle=0$. We have $\langle f, g\rangle=$

$$
\begin{aligned}
\int_{-\pi}^{\pi} f(x) g(x) d x & =\int_{-\pi}^{\pi} x^{3}\left(x^{2}-3\right) d x=\int_{-\pi}^{\pi}\left(x^{5}-3 x^{3} d x\right. \\
& =\left[\frac{x^{6}}{6}-\frac{x^{4}}{4}\right]_{-\pi}^{\pi}=0
\end{aligned}
$$

So, $f \perp g$.

## Example 6.2.5

Exercise Let $\mathbf{u}=(\sqrt{2}, \sqrt{2})$ and $\mathbf{v}=(3,-4)$.

- Compute $\operatorname{proj}_{\mathbf{v}}(\mathbf{u})$ and $\operatorname{proj}_{\mathbf{u}}(\mathbf{v})$
- Solution. First $\langle\mathbf{u}, \mathbf{v}\rangle=\sqrt{2} * 3-\sqrt{2} * 4=-\sqrt{2}$,

$$
\|\mathbf{u}\|=\sqrt{\sqrt{2}^{2}+\sqrt{2}^{2}}=4, \quad\|\mathbf{v}\|=\sqrt{3^{2}+(-4)^{2}}=5
$$

$$
\operatorname{proj}_{\mathbf{v}}(\mathbf{u})=\frac{\langle\mathbf{v}, \mathbf{u}\rangle}{\|\mathbf{v}\|^{2}} \mathbf{v}=-\sqrt{2}(3,-4)=(-3 \sqrt{2}, 4 \sqrt{2})
$$

$$
\operatorname{proj}_{\mathbf{u}}(\mathbf{v})=\frac{\langle\mathbf{u}, \mathbf{v}\rangle}{\|\mathbf{u}\|^{2}} \mathbf{u}=-\sqrt{2}(\sqrt{2}, \sqrt{2})=(-2,-2)
$$

## Example 6.2.6

Let $V=C[0,1]$ with inner product

$$
\langle f, g\rangle=\int_{0}^{1} f(x) g(x) d x \quad \text { for } \quad f, g, \in V
$$

Let $f(x)=2 x$ and $g(x)=x^{2}+x+1$. Compute the orthogonal projection of $f$ onto $g$, and the orthogonal projection of $g$ onto $f$.
Solution From Example 6.2.4, where we worked these two functions $f, g$, we have

$$
\langle f, g\rangle=\frac{13}{6}, \quad\|f\|=2 \sqrt{\frac{1}{2}},\|g\|=\sqrt{\frac{37}{10}}
$$

## Continued

$$
\operatorname{proj}_{f}(g)=\frac{\langle g, f\rangle}{\|f\|^{2}} f=\frac{\frac{13}{6}}{2}(2 x)=\frac{13}{6} x
$$

Also,

$$
\operatorname{proj}_{g}(f)=\frac{\langle g, f\rangle}{\|g\|^{2}} g=\frac{\frac{13}{6}}{\frac{37}{10}}\left(x^{2}+x+1\right)=\frac{130}{222}\left(x^{2}+x+1\right)
$$

## Example 6.2.7

Let $V=C[0,1]$ with inner product $\langle f, g\rangle$ as in Example 6.2.2 (by definite integral). Let $f(x)=x^{3}+x$ and $g(x)=2 x+1$.
Compute the orthogonal projection of $f$ onto $g$.
Solution Recall the definition: $\operatorname{proj}_{\mathbf{v}}(\mathbf{u})=\frac{\langle\mathbf{v}, \mathbf{u}\rangle}{\|\mathbf{v}\|^{v}} \mathbf{v}$ So,

$$
\operatorname{proj}_{g}(f)=\frac{\langle g, f\rangle}{\|g\|^{2}} g
$$

- First compute $\langle g, f\rangle=$

$$
\int_{0}^{1}\left(x^{3}+x\right)(2 x+1) d x \int_{0}^{1}\left(2 x^{4}+x^{3}+2 x^{2}+x\right) d x
$$

## Continued

$$
=\left[2 \frac{x^{5}}{5}+\frac{x^{4}}{4}+2 \frac{x^{3}}{3}+\frac{x^{2}}{2}\right]_{0}^{1}=\frac{109}{60}
$$

- So $\langle g, f\rangle=\frac{109}{60}$


## Continued

- Now compute $\|g\|^{2}=$

$$
\begin{aligned}
\int_{0}^{1}(2 x+1)^{2} d x & =\int_{-1}^{1}\left(4 x^{2}+4 x+1\right) d x=\left[4 \frac{x^{3}}{3}+4 \frac{x^{2}}{2}+x\right]_{0}^{1} \\
& =\left(4 \frac{1}{3}+4 \frac{1}{2}+1\right)-0=\frac{13}{3}
\end{aligned}
$$

## Continued

- So,

$$
\operatorname{proj}_{g}(f)=\frac{\langle g, f\rangle}{\|g\|^{2}} g=\frac{\frac{109}{60}}{\frac{13}{3}}(2 x+1)=\frac{109}{260}(2 x+1)
$$

