
Preview
Inner Product Spaces

Examples

Inner Product Spaces

§6.2 Inner product spaces

Satya Mandal, KU

Summer 2017

Satya Mandal, KU Inner Product Spaces §6.2 Inner product spaces



Preview
Inner Product Spaces

Examples

Goals

I Concept of length, distance, and angle in R2 or Rn is
extended to abstract vector spaces V . Such a vector
space will be called an Inner Product Space.

I An Inner Product Space V comes with an inner product
that is like dot product in Rn.

I The Euclidean space Rn is only one example of such Inner
Product Spaces.
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Inner Product

Definition Suppose V is a vector space.

I An inner product on V is a function

〈∗, ∗〉 : V × V → R that associates

to each ordered pair (u, v) of vectors a real number
〈u, v〉, such that for all u, v,w in V and scalar c , we have

1. 〈u, v〉 = 〈v,u〉.
2. 〈u, v +w〉 = 〈u, v〉+ 〈u,w〉.
3. c〈u, v〉 = 〈cu, v〉.
4. 〈v, v〉 ≥ 0 and v = 0⇐⇒ 〈v, v〉 = 0.

I The vector space V with such an inner product is called
an inner product space.
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Theorem 6.2.1: Properties

Let V be an inner product space. Let u, v ∈ V be two vectors
and c be a scalar, Then,

1. 〈0, v〉 = 0

2. 〈u + v,w〉 = 〈u,w〉+ 〈v,w〉
3. 〈u, cv〉 = c〈u, v〉

Proof. We would have to use the properties in the definition.

1. Use (3): 〈0, v〉 = 〈00, v〉 = 0〈0, v〉 = 0.

2. Use commutativity (1) and (2):
〈u+v,w〉 = 〈w,u+v〉 = 〈w,u〉+〈w, v〉 = 〈u,w〉+〈v,w〉

3. Use (1) and (3): 〈u, cv〉 = 〈cv,u〉 = c〈v,u〉 = c〈u, v〉
The proofs are complete.
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Definitions

Definitions Let V be an inner product space and u, v ∈ V .

1. The length or norm of v is defined as

‖v‖ =
√
〈v, v〉.

2. The distance between u, v ∈ V is defined as

d(u, v) = ‖u− v‖

3. The angle θ vectors u, v ∈ V is defined by the formula:

cos θ =
〈u, v〉
‖u‖ ‖v‖

0 ≤ θ ≤ π.

A version of Cauchy-Swartz inequality, to be given later,
would assert that right side is between -1 and 1.
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Theorem(s) 6.2.2

Let V be an inner product space and u, v ∈ V . Then,

1. Cauchy-Schwartz Inequality: |〈u, v〉| ≤ ‖u‖ ‖v‖ .
2. Triangle Inequality: ‖u + v‖ ≤ ‖u‖+ ‖v‖ .
3. (Definition) We say that u, v are (mutually) orthogonal or

perpendicular, if

〈u, v〉 = 0. We write u ⊥ v.

4. Pythagorean Theorem. If u, v are orthogonal, then

‖u + v‖2 = ‖u‖2 + ‖v‖2 .

Proof. Exactly similar to the corresponding theorems in §6.1
for Rn.
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Orthogonal Projection

Definition. Let V be an inner product space. Suppose v ∈ V
is a non-zero vector. Then, for u ∈ V define Orthogonal
Projection of u on to v: projv(u) = 〈v,u〉

‖v‖2 v

•

projv(u)−u

��
v

//•

u

??

projvu
// • •
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Theorem 6.2.3

Let V be an inner product space. Suppose v ∈ V is a
non-zero vector. Then, (u− projv(u)) ⊥ projv(u).
Proof.

〈u− projv(u), projv(u)〉 =

〈
u−

(
〈v,u〉
‖v‖2

v

)
,
〈v,u〉
‖v‖2

v

〉

=

〈
u,
〈v,u〉
‖v‖2

v

〉
−
〈(
〈v,u〉
‖v‖2

v

)
,
〈v,u〉
‖v‖2

v

〉
=
〈v,u〉2

‖v‖2
− 〈v,u〉

2

‖v‖4
〈v, v〉 = 0

The proof is complete.
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Examples 6.2.1

I Remark. If v = (1, 0) (or on x−axis) and u = (x , y),
then projvu = (x , 0).

I (1) The Obvious Example: With dot product as the
inner product, the Euclidean n−space Rn is an inner
product space.
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Examples 6.2.2: Integration

Integration is a great way to define inner product.
Let V = C [a, b] be the vector space of all continuous functions
f : [a, b]→ R. For f , g ∈ C [a, b], define inner product

〈f , g〉 =

∫ b

a

f (x)g(x)dx .

It is easy to check that 〈f , g〉 satisfies the properties of inner
product spaces. Namely,

1. 〈f , g〉 = 〈g , f 〉, for all f , g ∈ C [a, b].

2. 〈f , g + h〉 = 〈f , g〉+ 〈f , h〉, for all f , g , h ∈ C [a, b].

3. c〈f , g〉 = 〈cf , g〉, for all f , g ∈ C [a, b] and c ∈ R.
4. 〈f , f 〉 ≥ 0 for all f ∈ C [a, b] and f = 0⇔ 〈f , f 〉 = 0.
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Continued

Accordingly, for f ∈ C [a, b], we can define length (or norm)

‖f ‖ =
√
〈f , f 〉 =

√∫ b

a

f (x)2dx .

This ’length’ of continuous functions would have all the
properties that you expect ”length” or ”magnitude” to have.
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Examples 6.2.2A: Double Integration

Let D ⊆ R2 be any connected region. Let V = C (D) be the
vector space of all bounded continuous functions
f (x , y) : D → R. For f , g ∈ V define inner product

〈f , g〉 =

∫ ∫
D

f (x , y)g(x , y)dxdy .

As in Example 6.2.2, it is easy to check that 〈f , g〉 satisfies
the properties of inner product spaces.
In this case, length or norm of f ∈ V is given by

‖f ‖ =
√
〈f , f 〉 =

√∫ ∫
D

f (x , y)2dxdy .
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In particular:

I Example a: If D = [a, b]× [c , d ], then

〈f , g〉 =

∫ d

c

∫ b

a

f (x , y)g(x , y)dxdy .

I Example b: If D is the unit disc:
D = {(x , y) : x2 + y 2 ≤ 1}, then for f , g ∈ C (D) is:

〈f , g〉 =

∫ ∫
D

f (x , y)g(x , y)dxdy .

=

∫ 1

−1

∫ √1−y2

−
√

1−y2

f (x , y)g(x , y)dxdy
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By Integration
Orthogonal Projections

Example 6.2.3

In R2, define an inner product (as above): for
u = (u1, u2), v = (v1, v2) define 〈u, v〉 = 2(u1v1 + u2v2). It is
easy to check that this is an Inner Product on R2 (we skip the
proof.)
Let u = (1, 3), v = (2,−2).

I (1) Compute 〈u, v〉. Solution:

〈u, v〉 = 2(u1v1 + u2v2) = 2(2− 6) = −8

I (2) Compute ‖u‖ . Solution:

‖u‖ =
√
〈u,u〉 =

√
2(u1u1 + u2u2) =

√
2(1 + 9) =

√
20.
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Continued

I (3) Compute ‖v‖ . Solution:

‖v‖ =
√
〈v, v〉 =

√
2(4 + 4) = 4

I (4) Compute d(u, v). Solution:

d(u, v) = ‖u− v‖ = ‖(−1, 5)‖

=
√

2(1 + 25) =
√

52.
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By Integration
Orthogonal Projections

Example 6.2.4

Let V = C [0, 1] with inner product

〈f , g〉 =

∫ 1

0

f (x)g(x)dx for f , g ,∈ V .

Let f (x) = 2x and g(x) = x2 + x + 1.

I (1) Compute 〈f , g〉. Solution: We have

〈f , g〉 =

∫ 1

0

f (x)g(x)dx =

∫ 1

0

2
(
x3 + x2 + x

)
dx

= 2

[
x4

4
+

x3

3
+

x2

2

]1
x=0

= 2

[
1

4
+

1

3
+

1

2

]
− 0 =

13

6
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Continued

I (2) Compute norm ‖f ‖ .
Solution: We have

‖f ‖ =
√
〈f , f 〉 =

√∫ 1

0

f (x)2dx =

√∫ 1

0

4x2dx

=

√
4

[
x3

3

]1
x=0

=

√
4

3
− 0 = 2

√
1

3
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Continued

I (3) Compute norm ‖g‖ . Solution: We have

‖g‖ =
√
〈g , g〉 =

√∫ 1

0

g(x)2dx =

√∫ 1

−1
(x2 + x + 1)2dx

=

√∫ 1

0

(x4 + 2x3 + 3x2 + 2x + 1) dx

=

√[
x5

5
+ 2

x4

4
+ 3

x3

3
+ 2

x2

2
+ x

]1
0
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Continued

=

√[
1

5
+ 2

1

4
+ 3

1

3
+ 2

1

2
+ 1

]
− 0 =

√
37

10
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Continued

I (4) Compute d(f , g).
Solution: We have d(f , g) = ‖f − g‖ =

√
〈f − g , f − g〉 =

√∫ 1

0

(−x2 + x − 1)2dx

=

√∫ 1

0

(x4 − 2x3 + 3x2 − 2x + 1) dx

=

√[
x5

5
− 2

x4

4
+ 3

x3

3
− 2

x2

2
+ x

]1
0
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Continued

=

√[
1

5
− 2

1

4
+ 3

1

3
− 2

1

2
+ 1

]
− 0 =

√
7

10
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By Integration
Orthogonal Projections

Example 6.2.4

Let V = C [−π, π] with inner product 〈f , g〉 as in Example
6.2.2 (by definite integral). Let f (x) = x3 and g(x) = x2 − 3.
Show that f and g are orthogonal.
Solution: We have to show that 〈f , g〉 = 0. We have 〈f , g〉 =∫ π

−π
f (x)g(x)dx =

∫ π

−π
x3(x2 − 3)dx =

∫ π

−π
(x5 − 3x3dx

=

[
x6

6
− x4

4

]π
−π

= 0.

So, f ⊥ g .
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Example 6.2.5

Exercise Let u = (
√

2,
√

2) and v = (3,−4).
I Compute projv(u) and proju(v)
I Solution. First 〈u, v〉 =

√
2 ∗ 3−

√
2 ∗ 4 = −

√
2,

‖u‖ =

√√
2
2

+
√

2
2

= 4, ‖v‖ =
√

32 + (−4)2 = 5

I

projv(u) =
〈v,u〉
‖v‖2

v = −
√

2(3,−4) =
(
−3
√

2, 4
√

2
)

I

proju(v) =
〈u, v〉
‖u‖2

u = −
√

2(
√

2,
√

2) = (−2,−2)
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Example 6.2.6

Let V = C [0, 1] with inner product

〈f , g〉 =

∫ 1

0

f (x)g(x)dx for f , g ,∈ V .

Let f (x) = 2x and g(x) = x2 + x + 1. Compute the
orthogonal projection of f onto g , and the orthogonal
projection of g onto f .
Solution From Example 6.2.4, where we worked these two
functions f , g , we have

〈f , g〉 =
13

6
, ‖f ‖ = 2

√
1

2
, ‖g‖ =

√
37

10
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Continued

projf (g) =
〈g , f 〉
‖f ‖2

f =
13
6

2
(2x) =

13

6
x

Also,

projg (f ) =
〈g , f 〉
‖g‖2

g =
13
6
37
10

(x2 + x + 1) =
130

222
(x2 + x + 1)
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Example 6.2.7

Let V = C [0, 1] with inner product 〈f , g〉 as in Example 6.2.2
(by definite integral). Let f (x) = x3 + x and g(x) = 2x + 1.
Compute the orthogonal projection of f onto g .
Solution Recall the definition: projv(u) = 〈v,u〉

‖v‖2 v So,

projg (f ) =
〈g , f 〉
‖g‖2

g

I First compute 〈g , f 〉 =∫ 1

0

(x3 + x)(2x + 1)dx

∫ 1

0

(2x4 + x3 + 2x2 + x)dx

Satya Mandal, KU Inner Product Spaces §6.2 Inner product spaces



Preview
Inner Product Spaces

Examples

By Integration
Orthogonal Projections

Continued

I

=

[
2
x5

5
+

x4

4
+ 2

x3

3
+

x2

2

]1
0

=
109

60

I So 〈g , f 〉 = 109
60
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Continued

I Now compute ‖g‖2 =∫ 1

0

(2x+1)2dx =

∫ 1

−1
(4x2+4x+1)dx =

[
4
x3

3
+ 4

x2

2
+ x

]1
0

=

(
4

1

3
+ 4

1

2
+ 1

)
− 0 =

13

3
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Continued

I So,

projg (f ) =
〈g , f 〉
‖g‖2

g =
109
60
13
3

(2x + 1) =
109

260
(2x + 1)
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