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Set Theoretic Maps
Definitions and Examples Homomorphisms of Vector Spaces
Examples

Non-Examples

» Given two vector spaces V, W, we study the maps (i. e.
functions) T : V — W that respects the vector space
structures.

» Before we proceed, in the next frame, we give a table of
objects you have been familiar with, and the
corresponding newer objects (or concepts) we did in this
course.
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Familiar vs. Newer

’ Familiar vs. Newer ‘

| Familiar objects \ Newer Concepts |
R" Vector Spaces
Lines, planes and hyper planes | Subspaces of vectors spaces
Matrices Linear Maps

We discuss Linear Maps in this chapter.
Linear Maps would also be called Linear Transformations.
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Definition of Set Theoretic Maps

» Given two sets X, Y, a function f from X to Y is a rule
or a formula that associate, to each element x € X, a
unique element f(x) € Y.

» We write f : X — Y is a function from X to Y.

» Such functions are also called set theocratic maps, or
simply maps.

» X is called the domain of f and Y is called the codomain
of f.
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Bijections

For future reference, we include the following definitions:
Suppose f : X — Y is a function from X to Y.

» We say f is a one-to-one map, if for x;, x> € X,
f(x1) = f(x2) => x1 = x2. One-to-one maps are also
called injective maps.

» We say f is a onto map, if each y € Y, thereisa x € X
such that f(x) = y. Such "onto” maps are also called
surjective maps.

» We say f is a Bijective map, if T is both injective and
surjective.
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Composition

Definition: Let f : X — Y, and g : Y — Z be two maps.
The composition gof : X — Z is the map, defined by

(gof )(x) = g(f(x)), for all x € X. We also use the notation
gf for gof. Diagramatically,

Xty

PN

Z

Definition: Given a set X, define Ix : X — X, by Ix(x) = x
for all x € X. This map Ix the called the identity map, of X.
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Inverse of a Map

Definition: Let f : X — Y beamap. Amapg: Y — X
is called the inverse of f, if gf = Ix and fg = Iy. That means,

VxeX gf(x)=x, and VyeY fg(y)=y.

Diagrammatically, following two diagrams commute:

X—fovy y £.Xx
\ lg and \ Lf
IX IY

X Y

We have the following lemma on relationships between
invertible maps and bijections.
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Lemma 7.1.1: Inverse and Bijections

We have the following lemma of inverses.

Lemma: Let f : X —> Y be a map. Then, f has an inverse,
if and only if f is bijective.

Proof. : (=>): Suppose f has an inverse g. Then fg = Iy ad
gf = Ix. Suppose f(x1) = f(x2). Then,

x = g(f(x)) = g(f(e)) = x

So, f is one-to-one. Now, for y € Y, we have y = f(g(y)).
So, f is an onto map. So, f is bijective.
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Continued

(<=): Suppose f is bijective. Difine g: Y — X, by
VyeY let g(y)=x if f(x)=y.

Then, g is well defined. Also, by definition fg = Iy and
gf = Ix. So, g is inverse of f. The proof is complete. [ |

Satya Mandal, KU Chapter 7: Linear Transformations §7.1 Definitions and Introd



Set Theoretic Maps

Definitions and Examples Homomorphisms of Vector Spaces
Examples
Non-Examples

Prelude

» Recall, a vector space V over R is a set, with additional
structures, namely the addition + and the scalar
multiplication, that satisfy certain conditions (ten of
them) .

» Let V, W be two vector spaces over R. A set theoretic
map T : V — W is called a homomorphism, if T
respects the vector space structures on V and W. We
make this more precise in the next frame.
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Definition

Let V, W be two vector spaces over Rand T : V — W be a
set theocratic map. We say, T is a homomorphism if, for all
vectors u,v € V and scalars r € R, the following conditions
are satisfied:

{ T(u+v)=T(u)+ T(v) (1)

» Such homomorphisms of vector spaces are also called
Linear maps or Linear Transformations.
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Examples 7.1.1:Projection

We would consider elements of R”, as column vectors.
» Let p; : R® — R be the projection to the first
X1
coordinate. That means p; | x» | = x;. Then p; is a
X3
homomorphism.
» Likewise, for integers 1 </ < n, the projection
pi : R"” — R to the i*"-coordinate is a homomorphism.
» Further, the map T : R® — R? given by

X1

T| x | = ( il ) is @ homomorphism. This is the
X3 2

projection of the 3-space to the xy-plane.
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Continued

Proof. We only prove the last one. Let

u %1
u=|[ wn |,v=|[ v | €R3 Then,
us V3
U+ vy U 4 v
T T _ 1t v
(u+v) ot e (uz+v2)

U3—|—V3

w110 = () () = (413
So, T(u+v)= T(u)+ T(v).
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Continued

Also, for a scalar ¢ € R, we have

rin r
T(ruy)=T | rn, | = ( er )
rus 2
Also, rT(u) = r( t ) = ( th )
u» ruyp
So, T(ru)=rT(u)

Therefore, both the conditions
homomorphism.
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Example 7.1.2:Use homogeneous linear Polynomials

We can use homogeneous linear polynomials to construct
examples of Linear maps. Here is one:
Define T : R® — R?, as follows

X
Ty | = ( X+2y+3z ) . Then, T is a homomorphism.
S X—y+z
x 1 2 3\ ([~
Remark. In matrix notations T | y | = < 1 -1 1 ) y

z
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Continued
u Vi
Proof. Letu=| w |.v=| w | € R3 Then,
us V3
i+ v
Tu+v)=T| tb+w
us + v3

_ < (Ul + Vl) + 2(U2 + V2) + 3(U3 + V3) )
(Ul + V1) — (U2 + V2) + (U3 + V3)

(U1+2U2+3U3) (V1+2V2+3V3)

— +

Uy — Uy + U3 Vi— Vo + W3
= T(u)+ T(v)

So, the first condition of (1) is checked.
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Continued

For a scalar r € R, we have

ruy
T(ru)y=T | ru
rus

_ rup+2rup +3rus , 4+ 2u, 4+ 3us
o ruy — rup + ruz N up — U + U3
= rT(u)

So, the second condition of (1) is checked. Therefore, T is a
homomorphism.
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Example 71.3:Use Matrices

The approach in Example 7.1.2 can be generalized, using
matrices.
Suppose A is a m x n-matrix. Define

T:R"—R™ by T(x)=Ax forallxeR"
Then, T is a linear transformation.

(This is probably the most relevant example, for us.)
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Continued

Proof. For u,v € R" and r € R, we have

{ T(u+v)=A(u+v)=Au+ Av= T(u) + T(v)
T(ru) = A(ru) = r(Au) = rT(u)

So, both the conditions of (1) are satisfied. Therefore, T is a
homomorphism.
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Example 7.1.4:Inclusions

Usual inclusion of vector spaces are homomorphisms. Here is
one:
Define T : R?> — R*, as follows

Then, T is a homomorphism.

\'
A~
< X
~
I
O O X

Proof. Exercise.
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Example 7.1.5:Matrices to Matrices

| commented that the vector space M,,..,(R) of all matrices of
size m X nis "same as" the vector space R™". But one can

construct some interesting example. Here is one:
Define T : Mo (R) — My 3(R), as follows

ai; anx O

T( ail  ap ) _ | a1 a2 0
dp1  doo 0 0 0

0O 0 O

Then, T is a homomorphism. Proof. Exercise. (Note the use
of 0s)
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Example 7.1.6:Matrices to Matrices

Here is another one:
Define T : Myy3(R) — M3, 3(R), as follows

di1 d12 413
dp1 d a2
T 3
d31 d32 433
dq1  d42 443

d11 di2 a3
= dp1 a2 a3
d31 d32 433

Then, T is a homomorphism. Proof. Exercise.
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Example 7.1.7:Trace of a Matrix

Here is another one:
Define T : M3,3(R) — R, as follows

di1 d12 413
Tl an ax ax = a1 + ax + ass
d31 d32 433

Then, T is a homomorphism. This example is called the
"trace” of the matrix. More generally, one can define the
"trace”

T:M,x,(R) — R by T(A) = Z aj = Z diagonal entries.
i=1

Proof. Exercise.
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Non-Example 7.1.8:Use Linear polynomials

We modify one of the above examples: Define T : R3 — R2,
as follows

n ; _<x+2y+3z+1)
> X—y+2z
Then, T is not a homomorphism.
Proof. The presence of the constant term 1 is the problem.
Now, one can give many proofs. For example,
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Continued

S -(3)
)-(3)

|
)0
(£))(:

So, second condition of (1) fails. So, T is not a
homomorphism.

2T

So T

N
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Non-Example 7.1.9:Use non-Linear polynomials

Define T : R? — R?, as follows

2 2
()=
y X=Yy
Then, T is not a homomorphism. Proof. In fact, both

conditions (1) would fail, because x? + y? is not linear. For
example,

T(2(5))=7(5)-(%1)
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Continued

x 2(x* +y?)
2T —
y 2(x —y)

T (2 ( ; )) #2T ( ; ) . 2nd condition of (1) fails.

Therefore,
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Non-Example L.1.10:Determinant

The determinant function det : M,»(R) — R is not a
homomorphism of vector spaces.

Proof. Let A = ( a b ) Then,
c d

det(2A) = det (2< i Z )) - det< gi 33 ) — 4(ad—bc)

2det(A) = 2det(( c d ) = 2(ad — bc)

So, det(2A) # 2det(A). So, the second condition of (1) fails.
So, det-function is not a homomorphism.
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Problems

Exercises 1

1. Let V be an inner product space and u € V, with u # 0.
For x € V, define T(x) = Projyx = (\l\‘:|(|>“' Prove that
T — T is a homomorphism.
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