Chapter 7: Linear Transformations
 § 7.2 Properties of Homomorphisms

Satya Mandal, KU

Summer 2017

Goals

- In this section we discuss the fundamental properties of homomorphisms of vector spaces.
- Reminder: We remind ourselves that homomorphisms of vectors spaces are also called Linear Maps and Linear Transformations. We use these three expressions, inter changeably.

Lemma 7.2.1:The First Property

Property: Suppose V, W are two vector spaces and $T: V \longrightarrow W$ is a homomorphism. Then, $T\left(\mathbf{0}_{V}\right)=\mathbf{0}_{W}$, where $\mathbf{0}_{V}$ denotes the zero of V and $\mathbf{0}_{w}$ denotes the zero of W.
(Notations: When clear from the context, to denote zero of the respective vector space by $\mathbf{0}$; and drop the subscript V, W etc.)

Continued

Proof. We have $T(\mathbf{0})=T(\mathbf{0}+\mathbf{0})=T(\mathbf{0})+T(\mathbf{0})$. Add $-T(\mathbf{0})$ on both sides of the equation. We have

$$
T(\mathbf{0})-T(\mathbf{0})=(T(\mathbf{0})+T(\mathbf{0}))-T(\mathbf{0})
$$

$$
\text { So, } \quad \mathbf{0}_{w}=T(\mathbf{0})+(T(\mathbf{0}))-T(\mathbf{0})=T(\mathbf{0})+\mathbf{0}_{w}=T(\mathbf{0}) .
$$

Theorem 7.2.2:Equivalent Characterization

Theorem 7.2.2: Suppose V, W are two vector spaces and $T: V \longrightarrow W$ is a function (set theoretic). Then, T is a homomorphism (i. e. Linear map) if and only if

$$
\begin{equation*}
T(r \mathbf{u}+s \mathbf{v})=r T(\mathbf{u})+s T(\mathbf{v}) \quad \text { for all } \mathbf{u}, \mathbf{v} \in V r, s \in \mathbb{R} . \tag{1}
\end{equation*}
$$

Proof. Suppose the condition (1) holds. We will prove that T is a homomorphism. First, with $r=s=1$, it follows from condition (1)

$$
T(\mathbf{u}+\mathbf{v})=T(\mathbf{u})+T(\mathbf{v}) \text { for all } \mathbf{u}, \mathbf{v} \in V .
$$

Continued

Taking $s=0$, it follows from condition (1)

$$
T(r \mathbf{u})=T(r \mathbf{u}+0 \mathbf{v})=r T(\mathbf{u})+0 T(\mathbf{v})=r T(\mathbf{u})
$$

So, it is established that T is a homomorphism.
Conversely, suppose T is a homomorphism. We will prove that condition (1) holds. From the first, then second property of homomorphism, it follows

$$
T(r \mathbf{u}+s \mathbf{v})=T(r \mathbf{u})+T(s \mathbf{v})=r T(\mathbf{u})+s T(\mathbf{v})
$$

So, the equation (1) is established.

Corollary 7.2.3:Linearity, with finite sum

Suppose V, W are two vector spaces and $T: V \longrightarrow W$ is a homomorphism (i. e. Linear map). Let $\mathbf{u}_{1}, \ldots, \mathbf{u}_{n} \in V$ be n vectors and $c_{1}, \ldots, c_{n} \in \mathbb{R}$ be n scalars. Then,

$$
T\left(c_{1} \mathbf{u}_{1}+\cdots+c_{n} \mathbf{u}_{n}\right)=c_{1} T\left(\mathbf{u}_{1}\right)+\cdots+c_{n} T\left(\mathbf{u}_{n}\right) .
$$

Proof. (We use method of induction, to prove this.) The method has two steps.

Continued

- (Initialization Step:) When, $n=1$, we need to prove $T\left(c_{1} \mathbf{u}_{1}\right)=c_{1} T\left(\mathbf{u}_{1}\right)$. This follows from the second condition of the definition homomorphisms.
- (Induction Step:) We assume the the proposition is valid for fewer than $n-1$ summands and prove it for n summands.
By this assumption

$$
\begin{gathered}
T\left(c_{1} \mathbf{u}_{1}+\cdots+c_{n-1} \mathbf{u}_{n-1}\right)=c_{1} T\left(\mathbf{u}_{1}\right)+\cdots+c_{n-1} T\left(\mathbf{u}_{n-1}\right) . \\
\text { By } \mathrm{n}=1 \text { case }: \quad T\left(c_{n} \mathbf{u}_{n}\right)=c_{n} T\left(\mathbf{u}_{n}\right)
\end{gathered}
$$

Continued

- By first condition of the definition homomorphisms

$$
\begin{gathered}
T\left(c_{1} \mathbf{u}_{1}+\cdots+c_{n-1} \mathbf{u}_{n-1}+c_{n} \mathbf{u}_{n}\right) \\
=T\left(c_{1} \mathbf{u}_{1}+\cdots+c_{n-1} \mathbf{u}_{n-1}\right)+T\left(c_{n} \mathbf{u}_{n}\right) \\
=c_{1} T\left(\mathbf{u}_{1}\right)+\cdots+c_{n-1} T\left(\mathbf{u}_{n-1}\right)+c_{n} T\left(\mathbf{u}_{n}\right)
\end{gathered}
$$

The proof is complete.

Prelude.

A basis of a vector space V dictates most of the properties of V. The next theorem does exactly the same for Homomorphisms (i. e. linear maps) $T: V \longrightarrow W$.

Theorem 7.2.4:Bases and Linear Maps

Let V, W be two vector spaces. Let $\left\{\mathbf{v}_{1}, \ldots, \mathbf{v}_{m}\right\}$ be a basis of V and $\mathbf{w}_{1}, \ldots, \mathbf{w}_{m} \in W$ be m vectors in W. Then,

- (Existence): Then, there is a homomorphisms
$T: V \longrightarrow W$ such that

$$
\begin{equation*}
T\left(\mathbf{v}_{1}\right)=\mathbf{w}_{1}, T\left(\mathbf{v}_{2}\right)=\mathbf{w}_{2}, \cdots, T\left(\mathbf{v}_{m}\right)=\mathbf{w}_{m} . \tag{2}
\end{equation*}
$$

- (Uniqueness): The Equation(2) determines a unique homomorphisms $T: V \longrightarrow W$.

Continued

Proof.

- First, we define $T: V \longrightarrow W$. Let $\mathbf{x} \in V$. By property of bases, there are scalars $c_{1}, \ldots, c_{n} \in \mathbb{R}$, such that

$$
\mathbf{x}=c_{1} \mathbf{v}_{1}+c_{2} \mathbf{v}_{2}+\cdots+c_{n} \mathbf{v}_{m}
$$

Define $T(\mathbf{x})=c_{1} \mathbf{w}_{1}+c_{2} \mathbf{w}_{2}+\cdots+c_{n} \mathbf{w}_{m}$
Since, for a given $\mathbf{x} \in V, c_{1}, \ldots, c_{m}$ are unique (there were no choices involved), the right hand side depends only on \mathbf{x}. So, $T(\mathbf{x})$ is well defined.
(One needs to justify so called "well defined-ness", whenever something is defined.)

Continued

To complete the proof of existence, we need to show T is a homomorphism. Let $\mathbf{x} \in V$ be as above and $\mathbf{y} \in V$ be another vector. There are scalars $d_{1}, \ldots, d_{n} \in \mathbb{R}$, such that

$$
\left\{\begin{array}{l}
\mathbf{y}=d_{1} \mathbf{v}_{1}+\cdots+d_{m} \mathbf{v}_{m} . \text { By definition, } \\
T(\mathbf{y})=d_{1} \mathbf{w}_{1}+\cdots+d_{m} \mathbf{w}_{m} \\
\mathbf{x}+\mathbf{y}=\left(c_{1}+d_{1}\right) \mathbf{v}_{1}+\left(c_{2}+d_{2}\right) \mathbf{v}_{2}+\cdots+\left(c_{m}+d_{m}\right) \mathbf{v}_{m} \\
\text { ByDefinition, } T(\mathbf{x}+\mathbf{y})=\left(c_{1}+d_{1}\right) \mathbf{w}_{1}+\cdots+\left(c_{n}+d_{n}\right) \mathbf{w}_{n} \\
=\left(c_{1} \mathbf{w}_{1}++\cdots+c_{m} \mathbf{w}_{m}\right)+\left(d_{1} \mathbf{w}_{1}+\cdots+d_{m} \mathbf{w}_{m}\right) \\
=T(\mathbf{x})+T(\mathbf{y}) .
\end{array}\right.
$$

The first (the additive) property of homomorphism is checked.

Continued

Now, we prove the T satisfies the second condition:

- Let $\mathbf{x} \in V$ be as above and $r \in \mathbb{R}$ be a scalars. Then,

$$
\left\{\begin{array}{l}
r \mathbf{x}=\left(r c_{1}\right) \mathbf{v}_{1}+\cdots+\left(r c_{n}\right) \mathbf{v}_{m} \\
\text { By Definition, } T(r \mathbf{x})=\left(r c_{1}\right) \mathbf{w}_{1}+\cdots+\left(r c_{m}\right) \mathbf{w}_{m} \\
=\left(r c_{1}\right) \mathbf{w}_{1}++\cdots+\left(r c_{m}\right) \mathbf{w}_{m}=r\left(c_{1} \mathbf{w}_{1}++\cdots+c_{m} \mathbf{w}_{m}\right) \\
=r T(\mathbf{x})
\end{array}\right.
$$

The second property of homomorphism is checked. So, it is established that T is a homomorphism (i. e. Existence part).

Continued

Now we prove uniqueness part. Let $T_{1}, T_{2}: V \longrightarrow W$ be two homomorphism, satisfying Equation (2), meaning

$$
\left\{\begin{array}{llll}
T_{1}\left(\mathbf{v}_{1}\right)=\mathbf{w}_{1} & T_{1}\left(\mathbf{v}_{2}\right)=\mathbf{w}_{2}, & \cdots, & T_{1}\left(\mathbf{v}_{m}\right)=\mathbf{w}_{m} \\
T_{2}\left(\mathbf{v}_{1}\right)=\mathbf{w}_{1} & T_{2}\left(\mathbf{v}_{2}\right)=\mathbf{w}_{2}, & \cdots, & T_{2}\left(\mathbf{v}_{m}\right)=\mathbf{w}_{m}
\end{array}\right.
$$

For all $\mathbf{x} \in V$, we need to prove $T_{1}(\mathbf{x})=T_{2}(\mathbf{x})$. As before $\mathbf{x} \in V$, we can write

$$
\mathbf{x}=c_{1} \mathbf{v}_{1}+c_{2} \mathbf{v}_{2}+\cdots+c_{m} \mathbf{v}_{m} \quad \text { for some } c_{1}, \ldots, c_{m} \in \mathbb{R}
$$

Continued

Since $T_{1}, T_{2}: V \longrightarrow W$ are homomorphism,

$$
\left\{\begin{array}{l}
T_{1}(\mathbf{x})=T_{1}\left(\mathbf{v}_{1}\right)+c_{2} T_{1}\left(\mathbf{v}_{2}\right)+\cdots+c_{m} T_{1}\left(\mathbf{v}_{m}\right) \\
=c_{1} \mathbf{w}_{1}+c_{2} \mathbf{w}_{2}+\cdots+c_{m} \mathbf{w}_{m} \\
\text { Likewise, } \\
T_{2}(\mathbf{x})=T_{2}\left(\mathbf{v}_{1}\right)+c_{2} T_{2}\left(\mathbf{v}_{2}\right)+\cdots+c_{m} T_{2}\left(\mathbf{v}_{m}\right) \\
=c_{1} \mathbf{w}_{1}+c_{2} \mathbf{w}_{2}+\cdots+c_{m} \mathbf{w}_{m}
\end{array}\right.
$$

So, $T_{1}(\mathbf{x})=T_{2}(\mathbf{x})$. This completes the proof of Part 2 (uniqueness part).

Example 7.2.1

$$
\mathbf{e}_{1}=\left(\begin{array}{l}
1 \tag{3}\\
0 \\
0
\end{array}\right), \mathbf{e}_{2}=\left(\begin{array}{l}
0 \\
1 \\
0
\end{array}\right), \mathbf{e}_{3}=\left(\begin{array}{l}
0 \\
0 \\
1
\end{array}\right) \in \mathbb{R}^{3}
$$

be the standard basis of \mathbb{R}^{3}. Let

$$
\mathbf{v}_{1}=\left(\begin{array}{l}
1 \\
1 \\
1
\end{array}\right), \mathbf{v}_{2}=\left(\begin{array}{c}
-1 \\
1 \\
1
\end{array}\right), \mathbf{v}_{3}=\left(\begin{array}{c}
0 \\
-1 \\
1
\end{array}\right) \in \mathbb{R}^{3}
$$

Then, $\mathbf{v}_{1}, \mathbf{v}_{2}, \mathbf{v}_{3}$ forms a basis of \mathbb{R}^{3} (we do not prove this)

Continued

Let $T: \mathbb{R}^{3} \longrightarrow \mathbb{R}^{2}$ be the homomorphism defined by
$T\left(\mathbf{v}_{1}\right)=\binom{1}{1}, \quad T\left(\mathbf{v}_{2}\right)=\binom{-1}{1}, \quad T\left(\mathbf{v}_{3}\right)=\binom{0}{-1}$,
Compute $T\left(\mathbf{e}_{1}\right), T\left(\mathbf{e}_{2}\right), T\left(\mathbf{e}_{3}\right)$. More generally, compute
$T\left(\begin{array}{l}a \\ b \\ c\end{array}\right)$.

Continued

Solution: We will write $\mathbf{e}_{1}, \mathbf{e}_{2}, \mathbf{e}_{3}$, as linear combination of $\mathbf{v}_{1}, \mathbf{v}_{2}, \mathbf{v}_{3}$. First, write $\mathbf{e}_{1}=\alpha \mathbf{v}_{1}+\beta \mathbf{v}_{2}+\gamma \mathbf{v}_{3}$. In matrix form:

$$
\begin{gathered}
\mathbf{e}_{1}=\left(\begin{array}{lll}
\mathbf{v}_{1} & \mathbf{v}_{2} & \mathbf{v}_{3}
\end{array}\right)\left(\begin{array}{l}
\alpha \\
\beta \\
\gamma
\end{array}\right)=\left(\begin{array}{ccc}
1 & -1 & 0 \\
1 & 1 & -1 \\
1 & 1 & 1
\end{array}\right)\left(\begin{array}{l}
\alpha \\
\beta \\
\gamma
\end{array}\right) \\
A=\left(\begin{array}{ccc}
1 & -1 & 0 \\
1 & 1 & -1 \\
1 & 1 & 1
\end{array}\right) \quad A^{-1}=\frac{1}{4}\left(\begin{array}{ccc}
2 & 1 & 1 \\
-2 & 1 & 1 \\
0 & -2 & 2
\end{array}\right)
\end{gathered}
$$

Continued

$$
\begin{gathered}
\left(\begin{array}{l}
\alpha \\
\beta \\
\gamma
\end{array}\right)=A^{-1} \mathbf{e}_{1}=\frac{1}{4}\left(\begin{array}{ccc}
2 & 1 & 1 \\
-2 & 1 & 1 \\
0 & -2 & 2
\end{array}\right)\left(\begin{array}{l}
1 \\
0 \\
0
\end{array}\right)=\left(\begin{array}{c}
1 / 2 \\
-1 / 2 \\
0
\end{array}\right) \\
\text { So, } \mathbf{e}_{1}=\left(\begin{array}{lll}
\mathbf{v}_{1} & \mathbf{v}_{2} & \mathbf{v}_{3}
\end{array}\right)\left(\begin{array}{c}
.5 \\
-.5 \\
0
\end{array}\right)=.5\left(\mathbf{v}_{1}-\mathbf{v}_{2}\right) \\
\text { So } T\left(\mathbf{e}_{1}\right)=.5\left(T\left(\mathbf{v}_{1}\right)-T\left(\mathbf{v}_{2}\right)\right)=\binom{1}{0}
\end{gathered}
$$

Continued

Now compute $T\left(\mathbf{e}_{2}\right)$. As before, write $\mathbf{e}_{2}=\alpha \mathbf{v}_{1}+\beta \mathbf{v}_{2}+\gamma \mathbf{v}_{3}$

$$
\begin{gathered}
\text { So }\left(\begin{array}{l}
\alpha \\
\beta \\
\gamma
\end{array}\right)=A^{-1} \mathbf{e}_{2}=\frac{1}{4}\left(\begin{array}{ccc}
2 & 1 & 1 \\
-2 & 1 & 1 \\
0 & -2 & 2
\end{array}\right)\left(\begin{array}{l}
0 \\
1 \\
0
\end{array}\right)=\left(\begin{array}{c}
.25 \\
.25 \\
-.5
\end{array}\right) \\
\text { So, } \mathbf{e}_{2}=\left(\begin{array}{lll}
\mathbf{v}_{1} & \mathbf{v}_{2} & \mathbf{v}_{3}
\end{array}\right)\left(\begin{array}{c}
.25 \\
.25 \\
-.5
\end{array}\right)=.25 \mathbf{v}_{1}+.25 \mathbf{v}_{2}-.5 \mathbf{v}_{3} \\
\text { So } T\left(\mathbf{e}_{2}\right)=.25\left(T\left(\mathbf{v}_{1}\right)+.25 T\left(\mathbf{v}_{2}\right)\right)-.5 T\left(\mathbf{v}_{3}\right) \\
=.25\binom{1}{1}+.25\binom{-1}{1}-.5\binom{0}{-1}=\binom{0}{1}
\end{gathered}
$$

Continued

Now compute $T\left(\mathbf{e}_{3}\right)$. As before, write $\mathbf{e}_{3}=\alpha \mathbf{v}_{1}+\beta \mathbf{v}_{2}+\gamma \mathbf{v}_{3}$

$$
\begin{gathered}
\text { So }\left(\begin{array}{c}
\alpha \\
\beta \\
\gamma
\end{array}\right)=A^{-1} \mathbf{e}_{3}=\frac{1}{4}\left(\begin{array}{ccc}
2 & 1 & 1 \\
-2 & 1 & 1 \\
0 & -2 & 2
\end{array}\right)\left(\begin{array}{l}
0 \\
0 \\
1
\end{array}\right)=\left(\begin{array}{c}
.25 \\
.25 \\
.5
\end{array}\right) \\
\text { So, } \left.\mathbf{e}_{3}=\left(\begin{array}{lll}
\mathbf{v}_{1} & \mathbf{v}_{2} & \mathbf{v}_{3}
\end{array}\right)\left(\begin{array}{c}
.25 \\
.25 \\
-.5
\end{array}\right)=.25 \mathbf{v}_{1}+.25 \mathbf{v}_{2}\right)+5 \mathbf{v}_{3} \\
\text { So } T\left(\mathbf{e}_{3}\right)=.25\left(T\left(\mathbf{v}_{1}\right)+.25 T\left(\mathbf{v}_{2}\right)\right)+.5 T\left(\mathbf{v}_{3}\right) \\
=.25\binom{1}{1}+.25\binom{-1}{1}+.5\binom{0}{-1}=\binom{0}{0}
\end{gathered}
$$

Examples

Continued

Finally,

$$
\left(\begin{array}{l}
a \\
b \\
c
\end{array}\right)=a \mathbf{e}_{1}+b \mathbf{e}_{2}+c \mathbf{e}_{3}
$$

So,

$$
\begin{aligned}
& T\left(\begin{array}{l}
a \\
b \\
c
\end{array}\right)=a T\left(\mathbf{e}_{1}\right)+b T\left(\mathbf{e}_{2}\right)+c T\left(\mathbf{e}_{3}\right) \\
= & a\binom{1}{0}+b\binom{0}{1}+c\binom{0}{0}=\binom{a}{b}
\end{aligned}
$$

Example 7.2.2

Let $\mathbf{e}_{1}, \mathbf{e}_{2}, \mathbf{e}_{3} \in \mathbb{R}^{3}$ be the standard basis of \mathbb{R}^{3}, as in (3) and Let

$$
\mathbf{v}_{1}=\left(\begin{array}{l}
1 \\
1 \\
1
\end{array}\right), \mathbf{v}_{2}=\left(\begin{array}{c}
-1 \\
1 \\
1
\end{array}\right), \mathbf{v}_{3}=\left(\begin{array}{c}
0 \\
-1 \\
1
\end{array}\right) \in \mathbb{R}^{3}
$$

Then, $\mathbf{v}_{1}, \mathbf{v}_{2}, \mathbf{v}_{3}$ forms a basis of \mathbb{R}^{3} (we do not prove this) Let $T: \mathbb{R}^{3} \longrightarrow \mathbb{R}^{4}$ be the homomorphism defined by

$$
T\left(\mathbf{v}_{1}\right)=\left(\begin{array}{c}
-1 \\
-1 \\
-1 \\
3
\end{array}\right), \quad T\left(\mathbf{v}_{2}\right)=\left(\begin{array}{c}
1 \\
-1 \\
-1 \\
1
\end{array}\right), \quad T\left(\mathbf{v}_{3}\right)=\left(\begin{array}{c}
0 \\
1 \\
-1 \\
0
\end{array}\right),
$$

Continued

Compute $T\left(\mathbf{e}_{1}\right), T\left(\mathbf{e}_{2}\right), T\left(\mathbf{e}_{3}\right)$. More generally, compute $T\left(\begin{array}{l}a \\ b \\ c\end{array}\right)$.
Solution: Steps are very similar to the above problem. We will write $\mathbf{e}_{1}, \mathbf{e}_{2}, \mathbf{e}_{3}$, as linear combination of $\mathbf{v}_{1}, \mathbf{v}_{2}, \mathbf{v}_{3}$. First, write $\mathbf{e}_{1}=\alpha \mathbf{v}_{1}+\beta \mathbf{v}_{2}+\gamma \mathbf{v}_{3}$.

Examples

Exercise
Homomorphisms and Matrices
Null Space, Range, and Isomorphisms

Continued

In matrix form:

$$
\begin{gathered}
\mathbf{e}_{1}=\left(\begin{array}{lll}
\mathbf{v}_{1} & \mathbf{v}_{2} & \mathbf{v}_{3}
\end{array}\right)\left(\begin{array}{l}
\alpha \\
\beta \\
\gamma
\end{array}\right)=\left(\begin{array}{ccc}
1 & -1 & 0 \\
1 & 1 & -1 \\
1 & 1 & 1
\end{array}\right)\left(\begin{array}{l}
\alpha \\
\beta \\
\gamma
\end{array}\right) \\
A=\left(\begin{array}{ccc}
1 & -1 & 0 \\
1 & 1 & -1 \\
1 & 1 & 1
\end{array}\right) \quad A^{-1}=\frac{1}{4}\left(\begin{array}{ccc}
2 & 1 & 1 \\
-2 & 1 & 1 \\
0 & -2 & 2
\end{array}\right)
\end{gathered}
$$

Continued

$$
\begin{gathered}
\left(\begin{array}{l}
\alpha \\
\beta \\
\gamma
\end{array}\right)=A^{-1} \mathbf{e}_{1}=\frac{1}{4}\left(\begin{array}{ccc}
2 & 1 & 1 \\
-2 & 1 & 1 \\
0 & -2 & 2
\end{array}\right)\left(\begin{array}{l}
1 \\
0 \\
0
\end{array}\right)=\left(\begin{array}{c}
1 / 2 \\
-1 / 2 \\
0
\end{array}\right) \\
\text { So, } \mathbf{e}_{1}=\left(\begin{array}{lll}
\mathbf{v}_{1} & \mathbf{v}_{2} & \mathbf{v}_{3}
\end{array}\right)\left(\begin{array}{c}
.5 \\
-.5 \\
0
\end{array}\right)=.5\left(\mathbf{v}_{1}-\mathbf{v}_{2}\right)
\end{gathered}
$$

Examples

Exercise

Homomorphisms and Matrices
Null Space, Range, and Isomorphisms

Continued

$$
\begin{gathered}
\text { So } T\left(\mathbf{e}_{1}\right)=.5\left(T\left(\mathbf{v}_{1}\right)-T\left(\mathbf{v}_{2}\right)\right) \\
=.5\left(\begin{array}{c}
-1 \\
-1 \\
-1 \\
3
\end{array}\right)-.5\left(\begin{array}{c}
1 \\
-1 \\
-1 \\
1
\end{array}\right)=\left(\begin{array}{c}
-1 \\
0 \\
0 \\
1
\end{array}\right)
\end{gathered}
$$

Continued

Now compute $T\left(\mathbf{e}_{2}\right)$. As before, write $\mathbf{e}_{2}=\alpha \mathbf{v}_{1}+\beta \mathbf{v}_{2}+\gamma \mathbf{v}_{3}$

$$
\begin{gathered}
\text { So }\left(\begin{array}{l}
\alpha \\
\beta \\
\gamma
\end{array}\right)=A^{-1} \mathbf{e}_{2}=\frac{1}{4}\left(\begin{array}{ccc}
2 & 1 & 1 \\
-2 & 1 & 1 \\
0 & -2 & 2
\end{array}\right)\left(\begin{array}{l}
0 \\
1 \\
0
\end{array}\right)=\left(\begin{array}{c}
.25 \\
.25 \\
-.5
\end{array}\right) \\
\text { So, } \mathbf{e}_{2}=\left(\begin{array}{lll}
\mathbf{v}_{1} & \mathbf{v}_{2} & \mathbf{v}_{3}
\end{array}\right)\left(\begin{array}{c}
.25 \\
.25 \\
-.5
\end{array}\right)=.25 \mathbf{v}_{1}+.25 \mathbf{v}_{2}-.5 \mathbf{v}_{3}
\end{gathered}
$$

Examples

Continued

$$
\begin{aligned}
& \text { So } T\left(\mathbf{e}_{2}\right)=.25\left(T\left(\mathbf{v}_{1}\right)+.25 T\left(\mathbf{v}_{2}\right)\right)-.5 T\left(\mathbf{v}_{3}\right) \\
& =.25\left(\begin{array}{c}
-1 \\
-1 \\
-1 \\
3
\end{array}\right)+.25\left(\begin{array}{c}
1 \\
-1 \\
-1 \\
1
\end{array}\right)-.5\left(\begin{array}{c}
0 \\
1 \\
-1 \\
0
\end{array}\right) \\
& =\left(\begin{array}{c}
0 \\
-1 \\
0 \\
1
\end{array}\right)
\end{aligned}
$$

Continued

Now compute $T\left(\mathbf{e}_{3}\right)$. As before, write $\mathbf{e}_{3}=\alpha \mathbf{v}_{1}+\beta \mathbf{v}_{2}+\gamma \mathbf{v}_{3}$

$$
\text { So }\left(\begin{array}{l}
\alpha \\
\beta \\
\gamma
\end{array}\right)=A^{-1} \mathbf{e}_{3}=\frac{1}{4}\left(\begin{array}{ccc}
2 & 1 & 1 \\
-2 & 1 & 1 \\
0 & -2 & 2
\end{array}\right)\left(\begin{array}{l}
0 \\
0 \\
1
\end{array}\right)=\left(\begin{array}{c}
.25 \\
.25 \\
.5
\end{array}\right)
$$

$$
\text { So, } \mathbf{e}_{3}=\left(\begin{array}{lll}
\mathbf{v}_{1} & \mathbf{v}_{2} & \mathbf{v}_{3}
\end{array}\right)\left(\begin{array}{c}
.25 \\
.25 \\
-.5
\end{array}\right)=.25 \mathbf{v}_{1}+.25 \mathbf{v}_{2}+5 \mathbf{v}_{3}
$$

Examples

Exercise
Homomorphisms and Matrices
Null Space, Range, and Isomorphisms

Continued

$$
\begin{gathered}
\text { So } T\left(\mathbf{e}_{3}\right)=.25 T\left(\mathbf{v}_{1}\right)+.25 T\left(\mathbf{v}_{2}\right)+.5 T\left(\mathbf{v}_{3}\right) \\
=.25\left(\begin{array}{c}
-1 \\
-1 \\
-1 \\
3
\end{array}\right)+.25\left(\begin{array}{c}
1 \\
-1 \\
-1 \\
1
\end{array}\right)+.5\left(\begin{array}{c}
0 \\
1 \\
-1 \\
0
\end{array}\right)=\left(\begin{array}{c}
0 \\
0 \\
-1 \\
1
\end{array}\right)
\end{gathered}
$$

Continued

$$
\begin{gathered}
\text { Finally, }\left(\begin{array}{l}
a \\
b \\
c
\end{array}\right)=a \mathbf{e}_{1}+b \mathbf{e}_{2}+c \mathbf{e}_{3} . \\
\text { So, } T\left(\begin{array}{l}
a \\
b \\
c
\end{array}\right)=a T\left(\mathbf{e}_{1}\right)+b T\left(\mathbf{e}_{2}\right)+c T\left(\mathbf{e}_{3}\right) \\
=a\left(\begin{array}{c}
-1 \\
0 \\
0 \\
1
\end{array}\right)+b\left(\begin{array}{c}
0 \\
-1 \\
0 \\
1
\end{array}\right)+c\left(\begin{array}{c}
0 \\
0 \\
-1 \\
1
\end{array}\right)=\left(\begin{array}{c}
-a \\
-b \\
-c \\
a+b+c
\end{array}\right)
\end{gathered}
$$

Exercises 1

Let $\mathbf{e}_{1}, \mathbf{e}_{2}, \mathbf{e}_{3} \in \mathbb{R}^{3}$ be the standard basis of \mathbb{R}^{3}, as in (3)

$$
\text { and } \mathbf{v}_{1}=\left(\begin{array}{c}
\frac{1}{2} \\
-1 \\
1
\end{array}\right), \mathbf{v}_{2}=\left(\begin{array}{c}
1 \\
1 \\
\frac{1}{2}
\end{array}\right), \mathbf{v}_{3}=\left(\begin{array}{c}
1 \\
-\frac{1}{2} \\
-1
\end{array}\right) \in \mathbb{R}^{3}
$$

Then, $\mathbf{v}_{1}, \mathbf{v}_{2}, \mathbf{v}_{3}$ form a basis of \mathbb{R}^{3} (need not check). Let $T: \mathbb{R}^{3} \longrightarrow \mathbb{R}^{3}$ be be the homomorphism, defined by

$$
T\left(\mathbf{v}_{1}\right)=\mathbf{v}_{1}, \quad T\left(\mathbf{v}_{2}\right)=\mathbf{0}, \quad T\left(\mathbf{v}_{3}\right)=\mathbf{0} . \quad \text { Compute }
$$

$T\left(\mathbf{e}_{1}\right), T\left(\mathbf{e}_{2}\right), T\left(\mathbf{e}_{3}\right)$, and in particular $T\left(\begin{array}{l}a \\ b \\ c\end{array}\right)$.

Examples

Exercise

Homomorphisms and Matrices
Null Space, Range, and Isomorphisms

Exercise 2

Let $\mathbb{P}_{2}(\mathbb{R})$ be the vector space of all polynomials f with $\operatorname{deg}(f) \leq 2$. Then,
$\mathbf{p}_{1}(x)=1+x+x^{2}, \mathbf{p}_{2}(x)=x+x^{2}, \mathbf{p}_{3}(x)=x^{2}$ is a basis of $\mathbb{P}_{2}(\mathbb{R})$.
Define the homomorphism $T: \mathbb{P}_{2}(\mathbb{R}) \longrightarrow \mathbb{M}_{2}(\mathbb{R})$ by

$$
T\left(\mathbf{p}_{1}\right)=\left(\begin{array}{cc}
1 & 1 \\
1 & 0
\end{array}\right) \quad T\left(\mathbf{p}_{2}\right)=\left(\begin{array}{ll}
0 & 1 \\
1 & 0
\end{array}\right) \quad T\left(\mathbf{p}_{1}\right)=\left(\begin{array}{ll}
0 & 0 \\
1 & 0
\end{array}\right) .
$$

Compute $T(1), T(x), T\left(x^{2}\right)$ and in general $T\left(a+b x+c x^{2}\right)$.

Examples

Exercise
Homomorphisms and Matrices
Null Space, Range, and Isomorphisms

Preview

Recall, given a matrix $A \in \mathbb{M}_{m \times n}(\mathbb{R})$, there is a an homomorphism
$T: \mathbb{R}^{n} \longrightarrow \mathbb{R}^{m} \quad$ defined by $T(\mathbf{x})=A \mathbf{x} \quad \forall \mathbf{x} \in \mathbb{R}^{n}$.
We demonstrate that, any homomorphism $T: V \longrightarrow W$ of vectors spaces, with finite dimension, are determined by matrices.

Theorem 7.2.5:Matrices to Homomorphisms

Let V, W be two vector spaces.

- Let $\mathbf{v}_{1}, \mathbf{v}_{2}, \ldots, \mathbf{v}_{m} \in V$ be a basis of V and $\mathbf{w}_{1}, \mathbf{w}_{2}, \ldots, \mathbf{w}_{n} \in W$ be elements in W.
- Let

$$
A=\left(\begin{array}{cccc}
a_{11} & a_{12} & \cdots & a_{1 n} \\
a_{21} & a_{22} & \cdots & a_{2 n} \\
\cdots & \cdots & \cdots & \cdots \\
a_{m 1} & a_{m 2} & \cdots & a_{m n}
\end{array}\right) \in \mathbb{M}_{m \times n}(\mathbb{R})
$$

Examples

Exercise
Homomorphisms and Matrices
Null Space, Range, and Isomorphisms

Continues:Matrix A to T_{A}

Then, there is a homomorphism $T_{A}: V \longrightarrow W$ such that

$$
\left\{\begin{array}{c}
T_{A}\left(\mathbf{v}_{1}\right)=a_{11} \mathbf{w}_{1}+a_{12} \mathbf{w}_{2}+\cdots+a_{1 n} \mathbf{w}_{n} \\
T_{A}\left(\mathbf{v}_{2}\right)=a_{21} \mathbf{w}_{1}+a_{22} \mathbf{w}_{2}+\cdots+a_{2 n} \mathbf{w}_{n} \tag{4}\\
\cdots \\
T_{A}\left(\mathbf{v}_{m}\right)=a_{m 1} \mathbf{w}_{1}+a_{m 2} \mathbf{w}_{2}+\cdots+a_{m n} \mathbf{w}_{n}
\end{array}\right.
$$

In matrix notation,

$$
\left(\begin{array}{c}
T_{A}\left(\mathbf{v}_{1}\right) \tag{5}\\
T_{A}\left(\mathbf{v}_{2}\right) \\
\cdots \\
T_{A}\left(\mathbf{v}_{m}\right)
\end{array}\right)=\left(\begin{array}{cccc}
a_{11} & a_{12} & \cdots & a_{1 n} \\
a_{21} & a_{22} & \cdots & a_{2 n} \\
\cdots & \cdots & \cdots & \cdots \\
a_{m 1} & a_{m 2} & \cdots & a_{m n}
\end{array}\right)\left(\begin{array}{c}
\mathbf{w}_{1} \\
\mathbf{w}_{2} \\
\cdots \\
\mathbf{w}_{n}
\end{array}\right)
$$

Examples

Exercise
Homomorphisms and Matrices
Null Space, Range, and Isomorphisms

Continues

Proof. It follows from Theorem 7.2.4 and equation (4) and theorem above.
We Remark:

- The notation T_{A} was chosen, with subscript A, to show its dependence on A, and for future reference.
- T_{A}, also, depend on the basis $\left\{\mathbf{v}_{1}, \ldots, \mathbf{v}_{m} \in V\right\}$ and elements $\left\{\mathbf{w}_{1}, \ldots, \mathbf{w}_{m} \in W\right.$. That means, if we change the basis \mathbf{v}_{i}, or elements $\left\{\mathbf{w}_{j}\right\}$ the homomorphism T_{A} we get will be different.

Examples

Exercise
Homomorphisms and Matrices
Null Space, Range, and Isomorphisms

Continues

- Suppose $V=\mathbb{R}^{m}$ and $W=\mathbb{R}^{n}$. Let $\left\{\mathbf{v}_{1}, \ldots, \mathbf{v}_{m} \in V\right\}$ be the standard basis of $V=\mathbb{R}^{m}$ and $\left\{\mathbf{w}_{1}, \ldots, \mathbf{w}_{m} \in W\right\}$ be the standard basis of $W=\mathbb{R}^{n}$ (as in Equation 3). Then,

$$
T_{A}(\mathbf{x})=A^{t} \mathbf{x} \quad \forall \mathbf{x} \in \mathbb{R}^{m} .
$$

This example was discussed before.

- A converse of the above is also valid as follows.

Theorem 7.2.6:Homomorphisms to Matrices

Let V, W be two vector spaces. Let $\mathbf{v}_{1}, \mathbf{v}_{2}, \ldots, \mathbf{v}_{m} \in V$ be a basis of V and $\mathbf{w}_{1}, \mathbf{w}_{2}, \ldots, \mathbf{w}_{n} \in W$ be basis in W. Let $T: V \longrightarrow W$ be a homomorphism. Since, $\left\{\mathbf{w}_{j}\right\}$ is a basis of W, we can back track the above steps and write uniquely:

$$
\left\{\begin{array}{c}
T\left(\mathbf{v}_{1}\right)=a_{11} \mathbf{w}_{1}+a_{12} \mathbf{w}_{2}+\cdots+a_{1 n} \mathbf{w}_{n} \tag{6}\\
T\left(\mathbf{v}_{2}\right)=a_{21} \mathbf{w}_{1}+a_{22} \mathbf{w}_{2}+\cdots+a_{2 n} \mathbf{w}_{n} \\
\cdots \\
T\left(\mathbf{v}_{m}\right)=a_{m 1} \mathbf{w}_{1}+a_{m 2} \mathbf{w}_{2}+\cdots+a_{m n} \mathbf{w}_{n}
\end{array}\right.
$$

with unique $a_{i j} \in \mathbb{R}$.

Examples

Exercise
Homomorphisms and Matrices
Null Space, Range, and Isomorphisms

Continued: T to Matrix

This way we get a well defined matrix

$$
\mathbf{A}_{T}=\left(\begin{array}{cccc}
a_{11} & a_{12} & \cdots & a_{1 n} \tag{7}\\
a_{21} & a_{22} & \cdots & a_{2 n} \\
\cdots & \cdots & \cdots & \cdots \\
a_{m 1} & a_{m 2} & \cdots & a_{m n}
\end{array}\right)
$$

We remark, the \mathbf{A}_{T} depends on the choice of bases of V and of W, as above.

Theorem 7.2.7:The Correspondence

Let V, W be two vector spaces. Let $\mathbf{v}_{1}, \mathbf{v}_{2}, \ldots, \mathbf{v}_{m}$ be a basis of V and $\mathbf{w}_{1}, \mathbf{w}_{2}, \ldots, \mathbf{w}_{n}$ be basis in W. Let $\mathcal{L}(V, W)$ be the set of all homomorphisms $V \longrightarrow W$.

- Define $\varphi: \mathcal{L}(V, W) \longrightarrow \mathbb{M}_{m \times n}(\mathbb{R})$ by $\varphi(T)=A_{T}$, where $A_{T} \in \mathbb{M}_{m \times n}(\mathbb{R})$ is the matrix is as in Theorem 7.2.6. Then, φ is a well defined bijective correspondence.
- Define $\psi: \mathbb{M}_{m \times n}(\mathbb{R}) \longrightarrow \mathcal{L}(V, W)$ by $\psi(A)=T_{A}$, where $T_{A} \in \mathcal{L}(V, W)$ is as in Theorem 7.2.5. Then, ψ and φ are the inverses of each other.

Examples

Exercise
Homomorphisms and Matrices
Null Space, Range, and Isomorphisms

Proof

Proof. It follows from the above discussions on the definitions of A_{T} and T_{A}. We skip the details of the proof.

Remark. We comment that A_{T} and T_{A} depend on the choices of bases $\left\{\mathbf{v}_{i}\right\}$ of V and $\left\{\mathbf{w}_{j}\right\}$ of W. Hence φ and ψ would also do the same.

Definitions and Theorem 7.2.8

Definitions. Let V, W be two vector spaces and $T: V \longrightarrow W$ is a homomorphism. Then, define

$$
\left\{\begin{array}{l}
\mathcal{N}(T)=\left\{\mathbf{v} \in V: T(\mathbf{v})=\mathbf{0}_{W}\right\} . \\
\mathcal{R}(T)=\{\mathbf{w} \in W: w=T(\mathbf{v}) \text { for some } \mathbf{v} \in V\} .
\end{array}\right.
$$

- Then, $\mathcal{N}(T)$ is a subspace of V. This subspace $\mathcal{N}(T)$ is called the Null Space of T.
- Then, $\mathcal{R}(T)$ is a subspace of W. This subspace $\mathcal{R}(T)$ is called the Range of T.
Proof. Skip

Examples

Exercise
Homomorphisms and Matrices
Null Space, Range, and Isomorphisms

Continued

As before $T: V \longrightarrow W$ be a homomorphism. Also, define

- $\operatorname{Nullity}(T)=\operatorname{dim} \mathcal{N}(T)$.
- $\operatorname{rank}(T)=\operatorname{dim} \mathcal{R}(T)$

Examples

Exercise
Homomorphisms and Matrices
Null Space, Range, and Isomorphisms

Motivating Example

Let $A \in \mathbb{M}_{m \times n}(\mathbb{R})$ and $T=T_{A}: \mathbb{R}^{m} \longrightarrow \mathbb{R}^{n}$ be as above.

- Then, $\mathcal{N}(T)=\mathcal{N}(A)$. In words, the Null space of T and Null space of A are same. Therefore, $\operatorname{Nullity}(T)=\operatorname{Nullity}\left(A^{t}\right)$.
- Also, the range $\mathcal{R}(T)$ is equal to the column space of A. Therefore, $\operatorname{rank}(T)=\operatorname{rank}(A)$.

Theorem 7.2.9:Injective Homomorphisms

Let V, W be vector spaces and $T: V \longrightarrow W$ be a homomorphism. Then, T is injective if and only of the null space $\mathcal{N}(T)=\{\mathbf{0}\}$.
Proof. (\Longrightarrow) : Suppose T is injective and $\mathbf{x} \in \mathcal{N}(T)$. So, $T(\mathbf{x})=\mathbf{0}_{W}=T(\mathbf{0})$. By injectivity of $T, \mathbf{x}=\mathbf{0}$. So, $\mathcal{N}(T) \subseteq\{\mathbf{0}\}$. So, $\mathcal{N}(T)=\{\mathbf{0}\}$
(\Longleftarrow) : Suppose $\mathcal{N}(T)=\{\mathbf{0}\}$. Let $\mathbf{x}_{1}, \mathbf{x}_{2} \in V$ and $T\left(\mathbf{x}_{1}\right)=T\left(\mathbf{x}_{2}\right)$. Then, $T\left(\mathbf{x}_{1}-\mathbf{x}_{2}\right)=\mathbf{0}_{W}$. So, $\mathbf{x}_{1}-\mathbf{x}_{2} \in \mathcal{N}(T)=\{\mathbf{0}\}$. So, $\mathbf{x}_{1}-\mathbf{x}_{2}=\mathbf{0}$ and $\mathbf{x}_{1}=\mathbf{x}_{2}$. So, T is injective.

Theorem 7.2.10:Bijective Homomorphisms

Let V, W be a vector spaces and $T: V \longrightarrow W$ be homomorphism. Then, the following three statements are equivalent.
$1 T$ is bijective.
2 The null space $\mathcal{N}(T)=\{\mathbf{0}\}$ and range $\mathcal{R}(T)=W$.
$3 \operatorname{Nullity}(T)=\{\mathbf{0}\}$ and range $\mathcal{R}(T)=W$.
Proof. Follows from the above.

Isomorphisms

Defintion. Let V, W be a vector spaces. A bijective homomorphism $T: V \longrightarrow W$ is also called isomorphism. When there is such an isomorphism, we say V and W are isomorphic.

Theorem. Let V, W be a vector spaces and $T: V \longrightarrow W$ is an isomorphism. Let $G: W \longrightarrow V$ be the set theoretic inverse of T. Then, G is also an isomorphism.

Proof. Skip.

Isomorphisms: Remarks

If V and W, are isomorphic, then properties (Vector-space related) of V translates to properties of W, and conversely. So, they can be treated as "same". For Example:
Suppose $T: V \longrightarrow W$ is an isomorphism.

- If $\mathbf{v}_{1}, \ldots, \mathbf{v}_{n}$ is a basis of V. Then, $T\left(\mathbf{v}_{1}\right), \ldots, T\left(\mathbf{v}_{n}\right)$ is a basis of W.
- So, $\operatorname{dim} V=\operatorname{dim} W$.

Examples

Exercise
Homomorphisms and Matrices
Null Space, Range, and Isomorphisms

Lemma 7.2.11 (auxilery)

Let V be a vector space and $W \subseteq V$ be a subspace of V. Assume $\operatorname{dim} V<\infty$. Then, $W=V$ if and only if $\operatorname{dim} W=\operatorname{dim} V$. In particular, if V and W are isomorphic, then $\operatorname{dim} V=\operatorname{dim} W$.

Proof. It is obvious, if $W=V$ then, $\operatorname{dim} W=\operatorname{dim} V$. Now, assume $\operatorname{dim} W=\operatorname{dim} V=m$. Let $\mathbf{w}_{1}, \ldots, \mathbf{w}_{m}$ be a basis of W. If $W \neq V$, there is $\mathbf{v} \in V$ and $\mathbf{v} \notin W$. Then, $\mathbf{w}_{1}, \ldots, \mathbf{w}_{m}, \mathbf{v}$ are linearly independent. This contradicts that $\operatorname{dim} V=m$. So, $V=W$.

Theorem 7.2.12:Isomorphism and Dimension

Let V, W be vector spaces, with $\operatorname{dim} V<\infty, \operatorname{dim} W<\infty$. Then, V and W are isomorphic if and only if $\operatorname{dim} V=\operatorname{dim} W$.
Proof. As was established above, if V, W are isomorphic then $\operatorname{dim} V=\operatorname{dim} W$. Now, suppose $\operatorname{dim} V=\operatorname{dim} W=n$. Let $\mathbf{v}_{1}, \ldots, \mathbf{v}_{n}$ is a basis of V, and $\mathbf{w}_{1}, \ldots, \mathbf{w}_{n}$ is a basis of W. Let $T: V \longrightarrow W$ be the homomorphism, such that

$$
T\left(\mathbf{v}_{1}\right)=\mathbf{w}_{1}, \ldots, T\left(\mathbf{v}_{n}\right)=\mathbf{w}_{n}
$$

It is easy to see T is an isomorphism.

Corollary 7.2.13:Isomorphisms with \mathbb{R}^{n}

Suppose V is a vector space with $\operatorname{dim} V=n$. Let $\mathbf{v}_{1}, \ldots, \mathbf{v}_{n}$ is a basis of V. Let $\mathbf{e}_{1}, \ldots, \mathbf{e}_{n}$ be the standard basis basis of \mathbb{R}^{n}. Then, the homomorphism $f: \mathbb{R}^{n} \longrightarrow V$, determined by,

$$
f\left(\mathbf{e}_{1}\right)=\mathbf{v}_{1}, \ldots, f\left(\mathbf{e}_{n}\right)=\mathbf{v}_{n}
$$

is an isomorphism. We would call this isomorphism the standard isomorphism.

Theorem 7.2.14:Nullity-Rank Theorem

Theorem. Let V, W be vector spaces, with $\operatorname{dim} V=m<\infty, \operatorname{dim} W=n<\infty$. Let $T: V \longrightarrow W$ be a homomorphism. Then,

$$
\operatorname{Nullity}(T)+\operatorname{rank}(T)=\operatorname{dim} V=m .
$$

Proof. Fix a basis $\mathbf{v}_{1}, \ldots, \mathbf{v}_{m}$ of V and a basis $\mathbf{w}_{1}, \ldots, \mathbf{w}_{n}$ of W. Let $A:=A_{T} \in \mathbb{M}_{m \times n}(\mathbb{R})$ be the matrix of T, with respect to these bases. Let $A^{t} \in \mathbb{M}_{n \times m}(\mathbb{R})$ denote the transpose of A.

Examples

Exercise
Homomorphisms and Matrices
Null Space, Range, and Isomorphisms

Continues

Close inspection shows, the diagram

$$
\begin{array}{lll}
\mathbb{R}^{m} \xrightarrow{T_{A^{t}}} & \mathbb{R}^{n} \\
\left.f\right|_{\downarrow} & \imath \mid g & \text { commutes, } \\
V & \\
V & W
\end{array}
$$

where f, g are the standard isomorphisms. The restrictions of f establishes an isomorphism $f_{0}: \mathcal{N}\left(T_{A^{t}}\right) \longrightarrow \mathcal{N}(T)$. So,

$$
\operatorname{Nullity}\left(A^{t}\right)=\operatorname{dim} \mathcal{N}\left(T_{A^{t}}\right)=\operatorname{dim} \mathcal{N}(T)=\operatorname{Nullity}(T)
$$

Continued

Likewise, restrictions of g establishes an isomorphism $g_{0}: \mathcal{R}\left(T_{A^{t}}\right) \longrightarrow \mathcal{R}(T)$. So,

$$
\operatorname{rank}\left(A^{t}\right)=\operatorname{dim} \mathcal{R}\left(T_{A^{t}}\right)=\operatorname{dim} \mathcal{R}(T)=\operatorname{rank}(T)
$$

Recall, we proved

$$
\operatorname{Nullity}\left(A^{t}\right)+\operatorname{rank}\left(A^{t}\right)=m \quad(\text { no of columns of }) \mathrm{A}^{\mathrm{t}}
$$

So,

$$
\operatorname{Nullity}(T)+\operatorname{rank}(T)=\operatorname{dim} V=m
$$

Re-Define: Eigenvalues and Eigenvectors

We worked with eigenvalues and eigenvectors for matrices. Now, vector spaces V and linear transformations $T: V \longrightarrow V$, we define eigenvalues and eigenvectors. Let V be a vector space and $T: V \longrightarrow V$ be a Linear Transformation. A scalar $\lambda \in \mathbb{R}$ is said to be a eigenvalue of T, if $T(\mathbf{x})=\lambda \mathbf{x}$ for some $\mathbf{x} \in V$, with $\mathbf{x} \neq \mathbf{0}$. In this case, \mathbf{x} would be called eigenvector, of T, corresponding to λ.

Theorem 7.2.15:Eigen Value in Two Ways

Let V be a vector space and $T: V \longrightarrow V$ be a Linear Transformation. Assume $\operatorname{dim} V=n<\infty$. Let $B=\left\{\mathbf{v}_{1}, \ldots, \mathbf{v}_{n}\right\}$ be a basis of V. Let $A \in \mathbb{M}_{n \times n}(\mathbb{R})$ be the matrix of T, with respect to the basis B, on two sides. That means,

$$
\left(\begin{array}{c}
T\left(\mathbf{v}_{1}\right) \\
T\left(\mathbf{v}_{2}\right) \\
\cdots \\
T\left(\mathbf{v}_{n}\right)
\end{array}\right)=A\left(\begin{array}{c}
\mathbf{v}_{1} \\
\mathbf{v}_{2} \\
\cdots \\
\mathbf{v}_{n}
\end{array}\right)
$$

Continued

Also, let $f: \mathbb{R}^{n} \longrightarrow V$ be the standard isomorphism, and $g: V \longrightarrow \mathbb{R}^{n}$ be the inverse of f. So, f, g are determined by

$$
\left\{\begin{array}{l}
f\left(\mathbf{e}_{1}\right)=\mathbf{v}_{1}, \ldots, f\left(\mathbf{e}_{n}\right)=\mathbf{v}_{n} \\
g\left(\mathbf{v}_{1}\right)=\mathbf{e}_{1}, \ldots, g\left(\mathbf{v}_{n}\right)=\mathbf{e}_{n}
\end{array}\right.
$$

Then, for $\lambda \in \mathbb{R}$
following three conditions are equivalent:

- $\lambda \in \mathbb{R}$ is an eigen value of T
- $\lambda \in \mathbb{R}$ is an eigen value of A.
- $\lambda \in \mathbb{R}$ is an eigen value of A^{t}.

Continued

Further, corresponding an eigenvalue λ of $T, \mathbf{x} \in \mathbb{R}^{n}$ is an eigenvector of A^{t} if and only if $f(\mathbf{x})$ is an eigenvector of T. Proof. Proof follows from the following commutative diagram:

$$
\begin{gathered}
\mathbb{R}^{n} \xrightarrow{T_{A^{t}}} \mathbb{R}^{n} \\
\left.\left.f\right|_{\downarrow} \quad \imath\right|_{f} \quad \text { More explicitly, } \\
V \xrightarrow[T]{\longrightarrow} V \\
A^{t} \mathbf{x}=\lambda \mathbf{x} \Longleftrightarrow f\left(A^{t} \mathbf{x}\right)=f(\lambda \mathbf{x}) \Longleftrightarrow T(f(\mathbf{x}))=\lambda f(\mathbf{x}) .
\end{gathered}
$$

The proof is complete.

Theorem 7.2.16:Change of Basis

Let V be a vector space, with $\operatorname{dim} V=n$ and $T: V \longrightarrow V$ be a linear transformation. Let $\mathcal{B}_{1}=\left\{\mathbf{v}_{1}, \ldots, \mathbf{v}_{n}\right\}$, $\mathcal{B}_{2}=\left\{\mathbf{w}_{1}, \ldots, \mathbf{w}_{n}\right\}$ two bases of V.
Since both \mathcal{B}_{1} and \mathcal{B}_{2} are both bases, the is an invertible matrix P, expressing \mathcal{B}_{1} in terms of \mathcal{B}_{2}, as follows:

$$
\left(\begin{array}{c}
\mathbf{v}_{1} \tag{8}\\
\mathbf{v}_{2} \\
\cdots \\
\mathbf{v}_{n}
\end{array}\right)=P\left(\begin{array}{l}
\mathbf{w}_{1} \\
\mathbf{w}_{2} \\
\cdots \\
\mathbf{w}_{n}
\end{array}\right)
$$

Continued

- Using the basis \mathcal{B}_{1} (respectively. \mathcal{B}_{2}), for both domain and codomain, we have A_{T}, B_{T}, as follows:

$$
\left(\begin{array}{c}
T\left(\mathbf{v}_{1}\right) \\
T\left(\mathbf{v}_{2}\right) \\
\ldots \\
T\left(\mathbf{v}_{n}\right)
\end{array}\right)=A_{T}\left(\begin{array}{c}
\mathbf{v}_{1} \\
\mathbf{v}_{2} \\
\cdots \\
\mathbf{v}_{n}
\end{array}\right),\left(\begin{array}{c}
T\left(\mathbf{w}_{1}\right) \\
T\left(\mathbf{w}_{2}\right) \\
\cdots \\
T\left(\mathbf{w}_{n}\right)
\end{array}\right)=B_{T}\left(\begin{array}{c}
\mathbf{w}_{1} \\
\mathbf{w}_{2} \\
\cdots \\
\mathbf{w}_{n}
\end{array}\right)
$$

Continued

These three matrices are related as follows:

$$
B_{T}=P^{-1} A_{T} P
$$

This is called the Change of Basis Formula.
Proof. Rewrite the first equation (9):

$$
T\left(\begin{array}{c}
\mathbf{v}_{1} \\
\mathbf{v}_{2} \\
\cdots \\
\mathbf{v}_{n}
\end{array}\right)=A_{T}\left(\begin{array}{c}
\mathbf{v}_{1} \\
\mathbf{v}_{2} \\
\cdots \\
\mathbf{v}_{n}
\end{array}\right)
$$

Continued

Using the equation (8), in this,

$$
T\left(P\left(\begin{array}{l}
\mathbf{w}_{1} \\
\mathbf{w}_{2} \\
\cdots \\
\mathbf{w}_{n}
\end{array}\right)\right)=A_{T} P\left(\begin{array}{c}
\mathbf{w}_{1} \\
\mathbf{w}_{2} \\
\cdots \\
w_{n}
\end{array}\right)
$$

$$
\text { So, } \quad P T\left(\begin{array}{c}
\mathbf{w}_{1} \\
\mathbf{w}_{2} \\
\cdots \\
\mathbf{w}_{n}
\end{array}\right)=A_{T} P\left(\begin{array}{c}
\mathbf{w}_{1} \\
\mathbf{w}_{2} \\
\cdots \\
w_{n}
\end{array}\right)
$$

Continued

$$
\text { So, } T\left(\begin{array}{l}
\mathbf{w}_{1} \\
\mathbf{w}_{2} \\
\cdots \\
\mathbf{w}_{n}
\end{array}\right)=P^{-1} A_{T} P\left(\begin{array}{l}
\mathbf{w}_{1} \\
\mathbf{w}_{2} \\
\cdots \\
w_{n}
\end{array}\right)
$$

Comparing the second equation in (9), we have

$$
B_{T}=P^{-1} A_{T} P
$$

This establishes the Change of Basis Formula.

