Satyagopal Mandal
Department of Mathematics
University of Kansas
Office: 502 Snow Hall Phone: 785-864-5180
e-mail:
mandal@.ku.edu
© Copy right Laws Apply, 2001.
Multimedia Statistics
Supported by the Faculty Fellowship program, Fall 2001, CTE, University of Kansas
Illustrations:
Tossing Experiment
with a Jayhawk-Wildcat coin.
Probability Density Functions:
Bell Shape Curve
Normal- graph
t-Distribution - graph
Chi-Square - graph
Probability Computation :
Normal - Probability
Standard Normal
Example 10 : Solution
Example 11 : Solution
t-Distribution - Probability
Chi-Square - Probability
Exponential - Probability
Inverse Probability Computation :
Inverse Standard Normal Distribution
Inverse t-Distribution
Inverse Chi-Square - Distribution
Chapter 1: Basic Language
Example 1 : Solution
Example 2 : Solution
Example 3 : Solution
Example 4 : Solution
Chapter 2: Measure of central tendency
Example 1 : Solution
Example 2 : Solution
Example 3 : Solution
Example 4 : Solution
Example 6 : Solution
Example 7 : Solution
Example 8 : Solution
Example 9 : Solution
Example 11 : Solution
Example 12 : Solution
Example 13 : Solution
Example 14 : Solution
Example 16 : Solution
Example 17 : Solution
Example 18 : Solution
Example 19 : Solution
Chapter 3: Probability
Example 1 : Solution
Example 2 : Solution
Example 3 : Solution
Example 4 : Solution
Example 5 : Solution
Example 6 : Solution
Example 7 : Solution
Example 8 : Solution
Example 9 : Solution
Example 10 : Solution
Example 11 : Solution
Example 12 : Solution
Example 13 : Solution
Example 14 : Solution
Example 15 : Solution
Example 15 : Solution
Example 16 : Solution
Example 17 : Solution
Example 18 : Solution
Example 19 : Solution
Example 20 : Solution
Example 21 : Solution
Example 22 : Solution
Example 23 : Solution
Chapter 4: Random variables
Example 1 : Solution
Example 2 : Solution
Example 3 : Solution
Example 4 : Solution
Example 6 : Solution
Example 7 : Solution
Example 8 : Solution
Example 9 : Solution
Chapter 5: Continuous random variables
Example 1 : Solution
Example 2 : Solution
Example 3 : Solution
Example 4 : Solution
Example 5 : Solution
Example 6 : Solution
Example 7 : Solution
Example 8 : Solution
Example 9 : Solution
Cut Off points
Example 10 : Solution
Example 11 : Solution
Example 12 : Solution
Example 13 : Solution
Normal aproximation to binomial
Example 14 : Solution
Example 15 : Solution
Example 16 : Solution
Example 17 : Solution
Example 18 : Solution
Example 19 : Solution
Example 20 : Solution
Example 21 : Solution
Example 22 : Solution
Example 23 : Solution
Chapter 6: Sampling distribution
Example 1 : Solution
Example 2 : Solution
Example 3 : Solution
Example 4 : Solution
Example 5 : Solution
Chapter 7: Estimation
Section 1 : Z-interval for mean
Example 1 : Solution
Example 2 : Solution
Example 3 : Solution
Example 4 : Solution
Example 5 : Solution
Section 2 : t-interval for mean
Example 6 : Solution
Example 7 : Solution
Example 8 : Solution
Example 9 : Solution
Example 10 : Solution
Example 11 : Solution
Section 3: Confidence interval for variance
Example 12 : Solution
Example 13 : Solution
Example 14 : Solution
Section 4: Confidence interval for p
Example 15 : Solution
Example 16 : Solution
Example 17 : Solution
Example 18 : Solution
Example 19 : Solution
Chapter 8: Compare two populations
Section 1 : Z-interval for difference of mean
Example 1 : Solution
Example 2 : Solution
Example 3 : Solution
Section 2:t-interval for difference of means
Example 1 : Solution
Example 2 : Solution
Example 3 : Solution
Example 4 : Solution
Section 3 : Confidence Interval for difference of proportions
Example 1 : Solution
Example 2 : Solution
Example 3 : Solution
Chapter 9: Hypothesis Testing
Section 2 : Z-Test for mean
Example 1 : Solution
Example 2 : Solution
Example 3 : Solution
Section 3 : t-Test for mean
Example 4 : Solution
Example 5 : Solution
Example 6 : Solution
Example 7 : Solution
Example 8 : Solution
Section 4: Testing hypotheses for variance
Example 9 : Solution
Example 10 : Solution
Example 11 : Solution
Section 5: 1-Proportion Z-test for p
Example 12 : Solution
Example 13 : Solution
Example 14 : Solution
Example 15 : Solution
Section 6 : Z-Test for difference of mean
Example 16 : Solution
Example 17 : Solution
Example 18 : Solution
Section 7:t-interval for difference of means
Example 19 : Solution
Example 20 : Solution
Example 21 : Solution
Example 22 : Solution
Section 9 : Z-Test for difference of proportions
Example 23 : Solution
Example 24 : Solution
Example 25 : Solution