More from Random Variables

Satya Mandal

1 Problems on Random Variables

Exercise 1.1 The following table gives the proportion of credit hours that earned grades F, D, C, B and A in KU:

grade	A	B	C	D	F
proportion	.15	.35	.30	.15	.05

Let X represent the points earned for grades A, B, C, D and F. Write down the probability distribution of X and compute the mean (or the expected value $E(X)$) and the standard deviation.

Solution: We have $X=0,1,2,3,4$ respectively, when the grades are F, D, C, B, A. Therefore, the distribution of X is given by

x	0	1	2	3	4
$p(x)=P(X=x)$.05	.15	.30	.35	.15

Now, the mean μ is given by

$$
\mu=\sum x_{i} p\left(x_{i}\right)=0 * .05+1 * .15+2 * .30+3 * .35+4 * .15=2.4
$$

The variance $\sigma^{2}=$
$\sum x_{i}^{2} p\left(x_{i}\right)-m u^{2}=0^{2} * .05+1^{2} * .15+2^{2} * .30+3^{2} * .35+4^{2} * .15-(2.4)^{2}=1.14$

The square root of the variance is the standard deviation. So, the standard deviation

$$
\sigma=\sqrt{1.14}=1.0677
$$

Exercise 1.2 Maria's daily income X (in dollars) has the following distribution.

$X=x$	0	100	120	130	140	150
$p(x)$.14	0.27	0.27	0.18	0.09	0.05

What is Maria's expected daily income and the standard deviation?

Exercise 1.3 The number X of typos in a website has the following probability distribution.

$X=x$	0	1	2	3	4	5
$p(x)$	0.24	0.31	0.23	0.14	0.07	0.01

What is the expected number of typos in a website?

Exercise 1.4 A Van pool can carry 7 people. Following is the distribution of number of riders in the van on a given day.

number of	1	2	3	4	5	6	7
probability	0	.12	.22	.23	.28	.08	.07

Let X be the number of passenger on a day. Find the expected value $E(X)$ (or mean) and the standard deviation of X.

Exercise 1.5 Let X represent the hourly wages (in whole dollars) earned by workers in an industry. Following is the distribution of X,

x (wages)	7	8	9	10	11	12	13	14	15	16	17	18	19	20
$p(x)$.04	.06	.07	.09	.11	.12	.14	.11	.09	.08	.04	.03	.01	.01

Find the expected value $E(X)$ (or mean) and the standard deviation of X.

Exercise 1.6 In a school district, let X represents the number of students in a class. The following is the distribution of X.

number	8	9	10	11	12	13	14	15	16	17	18	19	20	21	22	23
prob	.03	.04	.06	.07	.10	.12	.13	.11	.09	.07	.06	.04	.03	.02	.02	.01

1. What is the probability that X is at least 20 ?

$$
\text { Answer }=P(\text { at least } 20)=.03+.02+.02+.01=.08
$$

2. Find the expected value $E(X)$ (or mean) and the standard deviation of X.
3. Find the variance σ^{2} of X .
4. Find the standard deviation σ of X .
