Math 790Test 8 (Takehome)Satya MandalFall 05Each Problem 10 pointsDue on: November 16, 2005Unless otherwise stated, \mathbb{F} is a field and V will denote a vector space over \mathbb{F} with finite dimension dim V = n.

1. Suppose V is a vector space over \mathbb{F} with dim V = n. Suppose $T \in L(V, V)$ is an operator on V. Suppose W_0 is an T-invariant subspace of V and $v \in V \setminus W_0$. Write $W_1 = W_0 + \mathbb{F}[T]v$ and

$$I = \{ f \in \mathbb{F}[X] : f(T)v \in W_0 \}.$$

Prove that

- (a) I is a proper ideal,
- (b) Let f be the MMP of I. Prove that dim $W_1 = \dim W_0 + degree(f)$.
- 2. Suppose V is a vector space over \mathbb{F} with dim V = n. Suppose $T \in L(V, V)$ is an operator on V. Prove that V is cyclic if and only if V has a basis E such that with respect to E the matrix of T is the companion matrix of a monic polynomial p.
- 3. Let p be a non-constant monic polynomial and A be the companion matrix of p. Prove that p is both the MMP of A and the characteristic polynomial of A.
- 4. Let $T: \mathbb{F}^3 \to \mathbb{F}^3$ be th operator defined by

$$T(X) = \begin{pmatrix} 2 & 0 & 0 \\ 0 & 2 & 0 \\ 0 & 0 & -1 \end{pmatrix} X$$

Prove that \mathbb{F}^3 is not T-cyclic.

- 5. Suppose V is a vector space over \mathbb{F} with dim V = n. Suppose $T \in L(V, V)$ is an operator on V. Suppose w_1, \ldots, w_r be such that
 - (a) $V = \mathbb{F}[T]w_1 \oplus \mathbb{F}[T]w_2 \oplus \cdots \oplus \mathbb{F}[T]w_r$.
 - (b) Let p_i be the MMP of w_i . Assume that $p_k \mid p_{k-1}$ for $k = 2, \ldots, r$.

Prove $ann(T) = ann(w_1) = \mathbb{F}[X]p_1$.

- 6. Suppose V is a vector space over \mathbb{F} with dim V = n. Suppose $T \in L(V, V)$ is an operator on V. Assume W_0 is a T-admissible set and $V = W_0 + \mathbb{F}[T]v$ for some $v \in V$. Find $w \in V$ such that
 - (a) $V = W_0 \oplus \mathbb{F}[T]w$.
 - (b) Let p be the MMP of w. Prove that p is unique. That means, if $V = W_0 \oplus \mathbb{F}[T]w'$ for some w' then MMP of w' is p.
- 7. Suppose V is a vector space over \mathbb{F} with dim V = n. Suppose $T \in L(V, V)$ is an operator on V. Then V is T-cyclic if and only if the characteristic polynomial and the MMP of T are identical.
- 8. Suppose V is a vector space over \mathbb{F} with dim V = n. Suppose $T \in L(V, V)$ is an operator on V. Let P be the MMP of T and Q be the characteristic polynomial of T. Let p be an irreducible polynomial. Prove that

$$p \mid P \Longleftrightarrow p \mid Q.$$

- 9. Given an example (with justification) of a 2×2 -matrix A whose characteristic polynomial is $(1 X)^2$.
- 10. Suppose V is a vector space over \mathbb{F} with dim V = n. Suppose $T \in L(V, V)$ is an operator on V. Suppose the characteristic polynomial Q of T factors completely into linear factors:

$$Q = (X - c_1)^{d_1} (X - c_2)^{d_2} (X - c_k)^{d_k}$$

where c_1, \ldots, c_k are the distinct eigen values of T. Describe the Jordan matrix of T and give a short outline of the proof of existance.