Math 790Test 9 (Takehome)Fall 05Each part of each Problem is worth 5 points

Satya Mandal Due on: December 8, 2005

Unless otherwise stated, $\mathbb{F} = \mathbb{R}$ or $\mathbb{F} = \mathbb{C}$ and V will denote an inner product space over \mathbb{F} .

- 1. Let V be an inner product space over \mathbb{F} ..
 - (a) Prove the parallelogram law that

$$||x + y||^{2} + ||x - y||^{2} = 2 ||x||^{2} + 2 ||y||^{2}.$$

(b) Prove the Cauchy-Schwartz inequality

$$|(x, y)| \leq ||x|| ||y||$$

and that the equality holds if an only if

$$y = \frac{(y,x)}{\|x\|^2}x.$$

2. Consider $V = \mathbb{C}^n$, with the usual inner product. Think of the elements of V as row vectors.

Let $v_1, v_2, \ldots, v_n \in V$ and let

$$A = \left(\begin{array}{c} v_1 \\ v_2 \\ \dots \\ v_n \end{array}\right)$$

- (a) Prove that v_1, v_2, \ldots, v_n forms a basis if and only if A invertible.
- (b) Prove that v_1, v_2, \ldots, v_n forms an orthonormal basis if and only if A is an unitary matrix (i.e. $A^*A = I$).
- (c) Formulate the similar statements about vectors in \mathbb{R}^n and orthogonal matrices.
- 3. Let V be an inner product space over \mathbb{F} . Suppose $E = \{e_1, \ldots, e_n\}$ is an orthonormal basis.

- (a) Suppose $v \in V$ and $v = a_1e_1 + \cdots + a_ne_n$ where $c_i \in \mathbb{F}$. Compute (with proof) c_i in terms of E and v.
- (b) Suppose $\mathcal{E} = \{\epsilon_1, \ldots, \epsilon_n\}$ be another orthonormal basis. Let

$$(e_1,\ldots,e_n)=(\epsilon_1,\ldots,\epsilon_n)P$$

for some amtrix $P \in \mathbb{M}_n(\mathbb{F})$. Prove that P is a unitary matrix.

4. Let V be an inner product space over \mathbb{F} . Suppose W is a subspace of V and $E = \{e_1, \ldots, e_n\}$ is an orthonormal basis of W. For $v \in V$ define

$$\pi(v) = \sum_{k=1}^{n} (v, e_k) e_k$$

Prove (do not quote or use any theorem) the following:

- (a) $(v \pi(v)) \perp w$ for all $w \in W$,
- (b) and

$$\| (v - \pi(v)) \| \leq \| (v - w) \| \text{ for all } w \in W.$$

- (c) Also prove that π is a projection and $V = W \oplus W^{\perp}$.
- 5. Let V be an inner product space over \mathbb{F} with dimV = n finite. Let $T \in L(V, V)$ be an operator.
 - (a) Prove that there is unique operator $T^* \in L(V, V)$ such that

$$(T(x), y) = (x, T^*y)$$
 for all $x, y \in V$.

- (b) $E = \{e_1, \ldots, e_n\}$ is an orthonormal basis of V. Let A matrix of T with respect to E. Prove that matrix of T^* with respect to E is A^* .
- (c) Give an example of an innner product space V, a basis $\mathcal{B} = \{v_1, \ldots, v_n\}$, and an operator $T \in L(V, V)$ so that above (5a) fails OR that matrix, with respect to \mathcal{B} , of $T^* \neq A^*$ where A is the matrix of T with respect to \mathcal{B} .

- 6. Let $\mathbb{F} = \mathbb{R}$ or $\mathbb{F} = \mathbb{C}$ and let V be an finite dimensional inner product space over \mathbb{F} . Let $T, U \in L(V, V)$ be two linear operator and $c \in \mathbb{F}$. Then
 - (a) $(T+U)^* = T^* + U^*$,
 - (b) $(cT)^* = \overline{c}T^*$,
 - (c) $(TU)^* = U^*T^*$,
 - (d) $(T^*)^* = T$.
- 7. Let $\mathbb{F} = \mathbb{R}$ or $\mathbb{F} = \mathbb{C}$ and let V be an inner product space over \mathbb{F} . Let $T, U \in L(V, V)$ be two linear operator.
 - (a) Prove that T preserves inner product if and only if T preserves norm.
 - (b) U is unitary if and only if the adjoint U^* of U exists and $UU^* = U^*U = I$.
- 8. Let $\mathbb{F} = \mathbb{R}$ or $\mathbb{F} = \mathbb{C}$. Let V be a finite dimensional (with dim V = n) inner product space over \mathbb{F} .
 - (a) Let $T \in L(V, V)$ be self-adjoint operator. Prove that V has an orthonormal basis $E = \{e_1, \ldots, e_n\}$ such that each e_i is an eigen vector of T.
 - (b) Let $A \in \mathbb{M}_n(\mathbb{F})$ be an Hermitian (self-adjoint) matrix. Prove that there is an unitary matrix $P \in \mathbb{M}_n(\mathbb{F})$ such that $P^{-1}AP$ is a diagonal matrix.
- 9. Let V be a finite dimensional inner product space over \mathbb{C} .
 - (a) Let $T \in L(V, V)$ be a normal operator on V. Then there is an orthonormal basis $E = \{e_1, \ldots, e_n\}$ such that each e_i is an eigen vector of T.
 - (b) Let $A \in \mathbb{M}_n(\mathbb{C})$ be a NORMAL matrix. Then there is an unitary matrix $U \in \mathcal{U}(n) \subseteq \mathbb{M}_n(\mathbb{C})$, such that $U^{-1}AU$ is a diagonal matrix.