Annihilators : Linear Algebra Notes

Satya Mandal

September 21, 2005

Let F be a filed and V be vector space over F with $\dim(V) = n < \infty$. As usual V^{*} will denote the dual space of V and $V^{**} = (V^*)^*$.

1. **Definition 0.1** For a subset $S \subseteq V$ define the annihilator

 $ann(S) = \{ f \in V^* : f(v) = 0 \text{ for all } v \in S \}.$

We also use the notation $S^0 = ann(S)$.

We may also, temporarily, use the notation

 $ann(V^*:S) = ann(S)$

to underscore the fact that $ann(V^*:S)$ is a subspace of V^* .

- 2. First note that for $S \subseteq V$, the annihilator $ann(S) \subseteq V^*$ is a subspace of the dual space.
- 3. Also note for $S \subseteq V$, if W = Span(S) then

$$ann(S) = ann(W).$$

4. Now let $S \subseteq V^*$. Then according to above definition, annihilator of S is $ann(S) = ann(V^{**} : S)$ is a subspace of V^{**} .

In this case, there is another natural annihilator of S as a subspace of V as follows:

$$ann(V:\mathcal{S}) = \{v \in V : f(v) = 0 \text{ for all } f \in \mathcal{S}\}.$$

It is possible to mix up two annihilator of S. The first one is a subspace of the double dual V^{**} and the second one is the subspace of V.

We will justify that these two annihilators are same via the natural identification of V and V^{**} .

- 5. Let $L: V \xrightarrow{\sim} V^{**}$ be the natural isomorphism.
- 6. Let $\mathcal{S} \subseteq V^*$. Then

$$L(ann(V:\mathcal{S})) = ann(V^{**}:\mathcal{S}).$$

Proof. Let $v \in ann(V : S)$. Then f(v) = 0 for all $f \in S$. Hence L(v)(f) = f(v) = 0 for all $f \in S$. So, $L(v) \in ann(V^{**} : S)$. Therefore

$$L(ann(V:\mathcal{S})) \subseteq ann(V^{**}:\mathcal{S}).$$

Now let $G \in ann(V^{**}: S)$. Since L is an isomorphism, we have G = L(v) for some $v \in V$. We need to show that $v \in ann(V : S)$. But for $f \in S$ we have 0 = G(f) = L(v)(f) = f(v). Therefore $v \in ann(V : S)$. So,

$$ann(V^{**}:\mathcal{S}) \subseteq L(ann(V:\mathcal{S})).$$

Hence the proof is complete.

7. Now, for a subspace $W \subseteq V$, the annihilator $W^0 = ann(V : W)$ has two annihilators. They are $ann(V : W^0)$ and $ann(V^{**} : W^0)$.

It follows from above that

$$L(ann(V:W^0)) = ann(V^{**}:W^0).$$

Since, L is a linear isomorphism, we also have

$$\dim(ann(V:W^0)) = \dim(ann(V^{**}:W^0)).$$

8. Theorem 0.1 For a subspace $W \subseteq V$, we have

$$W = ann(V : ann(V, W))$$

also written as

$$W = W^{00}.$$

Proof. Write U = ann(V : ann(V : W)). It is easy to see that $W \subseteq U$. Therefore, it is enough to show that $\dim(W) = \dim(U)$. We have

$$\dim(W) + \dim(ann(V:W)) = \dim(V).$$

Also, by the same theorem,

 $\dim(ann(V:W)) + \dim(ann(V^{**}:ann(V,W))) = \dim(V^{**}) = \dim(V).$

It follows that

 $\dim(W) = \dim(ann(V^{**}:ann(V,W))) = \dim(ann(V:ann(V:W))) = \dim(U).$

So the proof is complete.

Lemma 0.1 Suppose V is vector space of finite dimension, dim V = n, over \mathbb{F} . Let $f, g \in V^*$ be two linear functionals. let N_f be the null space of f and N_g be the null space of g.

Then, $N_f \subseteq N_g$ if and only if g = cf for some $c \in \mathbb{F}$.

Proof. (\Leftarrow :) Obvious.

(⇒:) If g = 0 then g = cf with c = 0. So, we assume that $g \neq 0$. So, dim $(N_g) = n-1$. Since $N_f \subseteq N_g$, we have $f \neq 0$ and dim $(N_f) = n-1$. Therefore, $N_f = N_g = N(say)$.

Now, pick $e \notin N$. Since dim(V) = n, it follows that $V = N + \mathbb{F}e$. Also, $f(e) \neq 0$ and $g(e) \neq 0$. Write c = g(e)/f(e). Claim that

g = cf.

First note, g(e) = cf(e). Now, for $x \in V$, we have $x = y + \lambda e$ for some $y \in N$ and $\lambda \in \mathbb{F}$. Therefore

$$g(x) = g(y) + \lambda g(e) = \lambda g(e) = \lambda c f(e) = c(f(y + \lambda e)) = c f(x).$$

So, the proof is complete.

Following is Theorem 20, page 110.

Theorem 0.2 Suppose V is vector space of finite dimension, dim V = n, over \mathbb{F} . Let $g, f_1, \ldots, f_r \in V^*$ be linear functionals. Let N be the null space of g and N_i be the null space of f_i .

Then, $N_1 \cap N_2 \cap \cdots \cap N_r \subseteq N$ if and only if $g = \sum_{i=1}^r c_i f_i$ for some $c_i \in \mathbb{F}$.

Proof. (\Leftarrow :) Obvious.

 $(\Rightarrow:)$ We use induction on r to prove this part. Case r = 1, is the above Lemma 0.1.

Now, we assume the validity of the theorem for r-1 functionals and prove it for r. Write $V' = N_r$.

Let

$$g' = G_{|V'}, f'_1 = (f_1)_{|V'}, \dots, f'_{r-1} = (f_{r-1})_{|V'},$$

be the restrictions of the respective functionals to V'. Induction applies for these functionals and it follows that

$$g' = \sum_{i=1}^{r-1} c_i f'_i$$

for some $c_i \in \mathbb{F}$. This means, for all $x \in V' = N_r$, we have

$$g(x) = \sum_{i=1}^{r-1} c_i f_i(x).$$

This means, for all $x \in V' = N_r$, we have

$$g(x) = \sum_{i=1}^{r-1} c_i f_i(x).$$

Write

$$h = g - \sum_{i=1}^{r-1} c_i f_i.$$

Then $N_r = V' \subseteq Null - Space(h)$. By the case r = 1 (or by Lemma 0.1) It follows that $h = c_r f_r$ for some $c_r \in \mathbb{F}$. Hence

$$g = \sum_{i=1}^{r-1} c_i f_i + h = \sum_{i=1}^r c_i f_i$$

and the proof is complete.