Math 790Test 7 (Takehome)Satya MandalFall 05Each Problem 10 pointsDue on: October 31, 2005Unless otherwise stated, \mathbb{F} is a field and V will denote a vector space over \mathbb{F} with finite dimension dim V = n.

- 1. Suppose V is vector space over \mathbb{F} with finite dim(V) = n. Let $T \in L(V, V)$ be a linear operator. Suppose W is a T-invariant subspace of W and $T' = T_{|W}$ be the restriction.
 - (a) Let q be the characteristic polynomial of T and Q be the characteristic polynomial of T'. Prove that $Q \mid q$.
 - (b) Likewise, let p bet the MMP of T and P be the MMP of T'. Prove that $P \mid p$.
- 2. Suppose V is vector space over \mathbb{F} with finite dim(V) = n. Let $T \in L(V, V)$ be a linear operator. Suppose there is a basis E of V such that the matrix A of T with respect to E is upper triangular. Prove that there is another basis \mathcal{E} , such that with respect to \mathcal{E} , the matrix of T is lower triangular.
- 3. Let V be a vector space over \mathbb{F} with with finite dimension dim V = 3 and $T: V \to V$ be a linear operator on V. Prove that T is triangulable if and only if the minimal polynomial p of T is a product of linear factors.
- 4. Let V be a finite dimensional vector space over a field \mathbb{F} .
 - (a) Let e_1, e_2, \ldots, e_k be elements of V. Prove that e_1, e_2, \ldots, e_k are linearly independent if and only if $j = 1, \ldots, k$, we have $e_j \notin Span(e_1, e_2, \ldots, e_{j-1})$.
 - (b) Let W_1, \ldots, W_k be subspaces of V. Prove that $V = W_1 \oplus W_2 \oplus \cdots \oplus W_k$ if and only if $V = W_1 + W_2 + \cdots + W_k$ and for each $j = 2, \ldots, k$, we have

$$(W_1 + \dots + W_{j-1}) \cap W_j = \{0\}.$$

5. Let V be a finite dimensional vector space over a field \mathbb{F} . Suppose E_1, \ldots, E_k are k linear operators on V satisfying all the conditions:

(a) $E_i E_j = 0 \quad \forall \quad i \neq j.$ (b) $E_1 + E_2 + \dots + E_k = I.$

Write $W_i = E_i(V)$. Prove that E_i is a projection and

$$V = W_1 \oplus W_2 \oplus \cdots \oplus W_k.$$

- 6. Let V be a finite dimensional vector space over a field \mathbb{F} and W be a subspace of V. Prove that there is subspace U of V such that $V = W \oplus U$.
- 7. Let $V = \mathbb{R}^2$.
 - (a) Write down the projection $\pi: V \to V$ to the line y = x.
 - (b) Let = $(0, 1) \in V$. Write down the projection $p: V \setminus \{P\} \to V$ to the *x*-axis from the point *P*. Is it linear?
- 8. Let V be a vector space over \mathbb{F} with finite dimension dim V = n and $T: V \to V$ be a linear operator on V. Let p be the minimal monic polynomial (MMP) of T and

$$p = p_1^{r_1} p_1^{r_2} \cdots p_1^{r_k}$$

where $r_i > 0$ and p_i are distinct irreducible monic polynomials in $\mathbb{F}[X]$. Let

$$W_i = \{ v \in V : p_i(T)^{r_i}(v) = 0 \}$$

be the null space of $p_i(T)^{r_i}$.

- (a) Prove that W_1 is invariant under T.
- (b) Let

$$f_1g_1 + f_2g_2 + \dots + f_kg_k = 1$$

where $f_i = \prod_{j \neq i} p_j^{r_j}$. Prove that $W_1 = f_1 g_1(T)(V)$.

- (c) Prove that $V = W_1 \oplus W_2 \oplus \cdots \oplus W_k$.
- (d) Let $T_1 = T_{|W_1}$ be the restriction of T. Prove that MMP of T_1 is $p_1^{r_1}$.