Math 790Test 5 (Takehome)Fall 05Each Problem 10 points

Satya Mandal Due on: October 17, 2005

Unless otherwise stated, \mathbb{F} is a field and $\mathbb{F}[X]$ is the polynomial ring over \mathbb{F} .

- 1. Prove that a polynomial $f(X) \in \mathbb{F}[X]$ of degree n has at most n roots in \mathbb{F} .
- 2. Suppose I is a non-zero ideal in $\mathbb{F}[X]$. Prove that $I = \mathbb{F}[X]d$ for some $d \in I$.
- 3. Suppose $f_1, \ldots, f_n \in \mathbb{F}[X]$ and not all of them are zero. Prove the they have a CGD and the two GCDs differ by a unit multiple.
- 4. Suppose $f_1, \ldots, f_n \in \mathbb{F}[X]$ are all non-zero. Suppose p is a prime element. Prove that if p divides the product $f_1 f_2 \cdots f_n$ then p divides f_i for some $i = 1, \ldots, n$.
- 5. Prove that any $f \in \mathbb{F}[X]$ has a uniques factorization as

$$f = up_1p_2\cdots p_r$$

where u is an unit and p_i is a prime in $\mathbb{F}[X]$ for $i = 1, \ldots, r$.

6. (About determinants) Let V be a vector space over \mathbb{F} with dim(V) = n. Let $T \in L(V, V)$ be a linear operator. Define determinant of ${\cal T}$ and prove that it is well defined.