Math 790	Test 4 (Takehome)
Fall 05	Each Problem 10 points

Unless otherwise stated, F is a field and V,W are two vector sapces over F. .

- 1. Suppose V is a vector space over \mathbb{F} and $W \subseteq V$ is a subspace of V. Prove that annihilator of the the annihilator of W is itself. That is, notationally, prove that $W = W^{00}$.
- 2. Suppose V is vector space of finite dimension, dim V = n, over F. Let $g, f_1, \ldots, f_r \in V^*$ be linear functionals. Let N be the null space of g and N_i be the null space of f_i . Then, $N_1 \cap N_2 \cap \cdots \cap N_r \subseteq N$ if and only if $g = \sum_{i=1}^r c_i f_i$ for some $c_i \in F$.
- 3. Suppose V is a vector space over \mathbb{F} and $W \subseteq V$ is a subspace of V. Suppose $g_1, \ldots, g_r \in V^*$ forms a basis of the annihilator W^0 . Write $N_i = Null(g_i)$. Prove that

$$W = \bigcap_{i=1}^r N_i.$$

4. Suppose V, W be two finite dimensional vector spaces over \mathbb{F} . Let $T : V \to W$ be a linear transformation and $T^t : W^* \to V^*$ be the transpose. Prove that $rank(T) = rank(T^*)$. Also prove that for a $m \times n$ matrix A with entries in A, we have row-rank(A) = column-rank(A).

5. Suppose V is vector space of finite dimension, $\dim V = n$, over F. Define the map

$$\varphi: L(V,V) \to L(V^*,V^*)$$

by $\varphi(T) = T^t$. Prove that φ is an isomorphism.