Math 790	Test 3 (Takehome)	Satya Mandal
Fall 05	Each Problem 10 points	Due on: October 2, 2005

Unless otherwise stated, F is a field and V,W are two vector sapces over F. .

1. Let V, W be two vector spaces over F and let $T: V \to W$ be a set theoretic map. Prove that the following are equivalent:

(a) For
$$u, v \in V$$
 and $c, d \in F$ we have

$$T(cu + dv) = cT(u) + dT(v)$$

in W.

(b) For
$$u, v \in V$$
 and $c \in F$ we have
 $T(u+v) = T(u)+T(v)$ and $T(cu) = cT(u)$
in W .

(c) For $u, v \in V$ and $c \in F$ we have

$$T(cu+v) = cT(u) + T(v)$$

in W.

(Recall, T is said to be a linear transformation if one of (or all) the above conditions are satisfied.)

2. Let V, W be two vector spaces over F. Let e_1, e_2, \ldots, e_n be a basis of V and $w_1, w_2, \ldots, w_n \in$

W be n elements in W. Prove that there is EX-ACTLY one linear transformation

$$T: V \to W$$

such that

$$T(e_1) = w_1, T(e_2) = w_2, \dots, T(e_n) = w_n.$$

3. Let V, W be two vector spaces over F and let $T: V \to W$ be a linear transformation. Assume dim(V) = n is finite. Prove that

$$rank(T) + nullity(T) = \dim(V).$$

4. Let A be an $m \times n$ matrix with entries in F. Prove that

$$row \ rank(A) = column \ rank(A).$$

- 5. Let V, W be two vector spaces over F and let $T: V \to W$ be a linear transformation. Assume that $\dim(V) = \dim(W) = n$ is finite. Prove that the following statements are equivalent:
 - (a) T is invertible.
 - (b) If $e_1, e_2, \ldots, e_m \in V$ (here $m \leq n$,) are linearly independent in V then the images

 $T(e_1), T(e_2), \ldots, T(e_m)$ are linearly independent in W.

(c) T is onto.

6. Give the examples as follows:

- (a) Give an example of a linear operator T: $V \rightarrow V$ such that $T^2 = 0$ but $T \neq 0$.
- (b) Give two linear operator $T, U : V \to V$ such that TU = 0 but $UT \neq 0$.
- 7. Let V be vector space and $T : V \to V$ be a linear operator. Assume that $rank(T) = rank(T^2)$. Prove that

$$range(T) \cap (Null \ Space(T)) = \{0\}.$$

- 8. Let V, W be two finite dimensional vector spaces over F. Assume dim V = n and dim W = m. Let $M_{m,n}$ be the set of all $m \times n$ matrices with entries in F. Let $E = \{e_1, e_2, \ldots, e_n\}$ be a basis of V and $E' = \{\epsilon_1, \epsilon_2, \ldots, \epsilon_m\}$ be a basis of W.
 - (a) For a linear transformation $T: V \to W$ define the matrix of T with respect to Eand E'.

(b) Prove that the map

$$f: L(V, W) \to M_{m,n}$$

such that

$$f(T) = matrix of T$$
 with respect to E and E'

is an isomorphism.

(Try to understand the following diagram. Here A is the matrix of T.)

$$V \xrightarrow{T} W$$

$$\downarrow iso \qquad \qquad \downarrow iso$$

$$F^n \xrightarrow{A} F^m$$

9. Let V be a finite dimensional vector space over F with $\dim(V) = n$ and

$$f: L(V, V) \to M_{n,n}$$

be the above isomorphism, with respect to a (same) fixed basis E. Prove that

- (a) f(TU) = f(T)f(U);
- (b) $f(Id) = I_n$, the identity matrix;
- (c) $T \in L(V, V)$ is an isomorphism if and only if f(T) is an invertible matrix.

10. Let V be a finite dimensional vector space over F with $\dim(V) = n$. Let $E = \{e_1, \ldots, e_n\}$ and $E' = \{\epsilon_1, \ldots, \epsilon_n\}$ be two basis of V. Let $T \in L(V, V)$ be linear operator. Let

$$(e_1,\ldots,e_n)=(\epsilon_1,\ldots,\epsilon_n)P$$

for some $n \times n$ matrix.

- (a) Prove that P is an invertible matrix.
- (b) Let A be the matrix of T with respect to E and B be the matrix of T with respect to E'. Prove that $B = PAP^{-1}$.
- 11. Let V be a finite dimensional vector space over F with $\dim(V) = n$. Let e_1, \ldots, e_n be a basis of V.
 - (a) Define the dual basis of e_1, \ldots, e_n . Also give a proof that it is indeed a basis of V^* .
 - (b) Let $W \subseteq V$ be subspace of V. Define the annihilator W^0 of W. Also prove that

$$\dim(W) + \dim(W^0) = n.$$

(c) For two subspaces W_1, W_2 of V prove that $W_1 = W_2$ if and only if $W_1^0 = W_2^0$.

(d) For two subspaces W_1, W_2 of V prove that $(W_1+W_2)^0=W_1^0\cap W_2^0$

and

$$(W_1 \cap W_2)^0 = W_1^0 + W_2^0.$$