Math 790	Final	Satya Mandal
Fall 05	Each Problem 10 points	December 15, 2005
Unless o	therwise stated, \mathbb{F} is a field.	

- 1. Let A, B, C be square matrices.
 - (a) Suppose B is a left inverse of A and C is right inverse of A. Prove that B = C.
 - (b) Prove that inverse of a matrix, if it exists, is unique.
 - (c) Suppose all these matrices are invertible. Prove that $(ABC)^{-1} = C^{-1}B^{-1}A^{-1}$.
- 2. Let V be a vector space over \mathbb{F} and W_1, W_2 be two subspaces of V. Assume $W_1 + W_2$ has finite dimension. Prove that

$$\dim(W_1 + W_2) = \dim(W_1) + \dim(W_2) - \dim(W_1 \cap W_2).$$

3. Let V, W be two vector spaces over \mathbb{F} and let $T : V \to W$ be a linear transformation. Assume $\dim(V) = n$ is finite. Prove that

 $rank(T) + nullity(T) = \dim(V).$

4. Suppose V is vector space of finite dimension, dim V = n, over \mathbb{F} . Define the map

$$\varphi: L(V, V) \to L(V^*, V^*)$$

by $\varphi(T) = T^t$. Prove that φ is an isomorphism.

- 5. Suppose I is a non-zero ideal in $\mathbb{F}[X]$. Prove that $I = \mathbb{F}[X]d$ for some $d \in I$.
- 6. Suppose $T \in L(V, V)$ is a linear operator and $c_1, c_2, \ldots, c_k \in \mathbb{F}$ are the distinct eigen values of T. For $i = 1, \ldots, k$, let $W_i = N(c_i)$ be the eigen space of c_i .

Prove that T is diagonalizable if and only if

$$V = W_1 \oplus W_2 \oplus \cdots \oplus W_k.$$

- 7. Suppose V is vector space over \mathbb{F} with finite dim(V) = n. Let $T \in L(V, V)$ be a linear operator. Suppose W is a T-invariant subspace of W and $T' = T_{|W}$ be the restriction.
 - (a) Let q be the characteristic polynomial of T and Q be the characteristic polynomial of T'. Prove that $Q \mid q$.
 - (b) Likewise, let p bet the MMP of T and P be the MMP of T'. Prove that $P \mid p$.
- 8. Let V be a finite dimensional vector space over a field \mathbb{F} . Suppose E_1, \ldots, E_k are k linear operators on V satisfying all the conditions:
 - (a) $E_i E_j = 0 \quad \forall \quad i \neq j.$

(b)
$$E_1 + E_2 + \dots + E_k = I$$
.

Write $W_i = E_i(V)$. Prove that E_i is a projection and

$$V = W_1 \oplus W_2 \oplus \cdots \oplus W_k.$$

- 9. Suppose V is a vector space over \mathbb{F} with dim V = n. Suppose $T \in L(V, V)$ is an operator on V. Suppose w_1, \ldots, w_r be such that
 - (a) $V = \mathbb{F}[T]w_1 \oplus \mathbb{F}[T]w_2 \oplus \cdots \oplus \mathbb{F}[T]w_r$.
 - (b) Let p_i be the MMP of w_i . Assume that $p_k \mid p_{k-1}$ for k = 2, ..., r.

Prove $ann(T) = ann(w_1) = \mathbb{F}[X]p_1$.

- 10. Let $\mathbb{F} = \mathbb{R}$ or $\mathbb{F} = \mathbb{C}$ and let V be an finite dimensional inner product space over \mathbb{F} . Let $T, U \in L(V, V)$ be two linear operator and $c \in \mathbb{F}$. Then
 - (a) $(T+U)^* = T^* + U^*$,
 - (b) $(cT)^* = \overline{c}T^*$,
 - (c) $(TU)^* = U^*T^*$,
 - (d) $(T^*)^* = T$.