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1 Section 1: Basics

Definition 1.1 A nonempty set R is said to be a ring if the follow-
ing are satisfied:

1. R has two binary operations, called addition (+) and multipli-
cation.

2. R has an abelian group structure with respect to addition.

3. The additive identity is called zero and denoted by 0.

4. (Distributivity) For x, y, z ∈ R we have x(y+z) = xy+xz and
(y + z)x = yx+ zx.

5. We assume that there is a multiplicative identity denoted by
1 6= 0.

Note the multiplication need not be commutative. So, it is possible
that xy 6= yx. Also note that not all non-zero elements have an
inverse. For example Let R =Mnn(F) be the set of all n×n matrices
(n ≥ 2). Then R is a ring but multiplication is not commutative.
Following are few more definitions:

Definition 1.2 Let R be a ring.

1. We say R is commutative if xy = yx for all x, y ∈ R.

2. A commutative ring R is said to be an integral domain if

xy = 0 =⇒ (x = 0 or y = 0).
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3. Let A be another ring. A map f : R → A is said to be a
ring homomorphism if for all x, y ∈ R we have f(x + y) =
f(x) + f(y), f(xy) = f(x)f(y) and f(1) = 1.

4. For a ring R, an R−algebra is a ring A with together with a
ring homomorphism f : R → A.

Remark 1.1 Let F be a field and A be an F−algebra. The textbook
calls such an algebra as Linear Algebra. Note that A has a natural
vector space structure.

Exercise 1.1 Let F be a field and f : F → A be ring homomor-
phism. Then f is 1-1. ( This means that if A is an F−algebra then
F ⊆ A. )

Proof. It is enough to show that if f(x) = 0 then x = 0. (Are
you sure that it is enough?) Assume x 6= 0 and f(x) = 0. We have
f(1) = 1. So, 1 = f(xx−1) = f(x)f(x−1). So, f(x) 6= 0.

2 Polynomials

We do not look at polynomials as functions. Polynomilas are formal
expressions and (in algebra) they are manipulated formally.

Definition 2.1 Let F be a field and N = {0, 1, 2, . . .} be the set of
non-negative integers.

1. Let F denote the set of all functions f : N → F. So,

F = {(a0, a1, a2, . . .) : ai ∈ F}

is the set of all infinite sequences in F.

Define addition and multiplication on F naturally (see the
book).

F is called the power series ring.
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2. Let X = (0, 1, 0, 0, . . .) ∈ F . Then any element f = (ai) ∈ F
can be written as

f =
∞
∑

i=0

aiX
i

with apprpriate meaning of infinite sum attached.

3. Notation: Usual notation for the power series ring is

F[[X]] = F .

Elements in F[[X]] are called power series over F.

4. Let

F[X] = {f ∈ F[[X]] : f = a0 + a1X + · · ·+ anX
n, ai ∈ F}

Note that F[X] is a subring of F[[X]]. We say that F[X] is the
polynomial ring over F.

5. Importantly, two polynomials f, g are equal if and only if
coefficients of X i are same for both f and g.

Theorem 2.1 Let F[X] be the polynomial ring over over a field F.

1. Suppose f, g, g1, g2 ∈ F[X] and f is non zero. Then

(fg = 0⇒ g = 0) and (fg1 = fg2 ⇒ g1 = g2).

2. f ∈ F[X] has an inverse in F[X] if and only if f is a nonzero
scalar.

3 Section 4: Division and Ideals

Theorem 3.1 (Division Algorithm) Let F is a field and F[X] be
a polynomial ring over F. Let d 6= 0 be a polynomial and deg(D) = n.
Then for any f ∈ F[X], there are polynomials q, r ∈ F[X] such that

f = qd+ r r = 0 deg(r) < n.

In fact, q, r are UNIQUE for a given f.
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Proof. Write a proof.

Corollary 3.1 Let F is a field and F[X] be a polynomial ring over
F. Let f be a nonzero polynomial and c ∈ F. Then f(c) = 0 if and
only if (X − c) divides f in F[X].

Further, a polynomial f with deg(f) = n has atmost n roots in
F.

Proof. (⇐ ): Obvious.
(⇒ ): By division algorithm, we have f = (X − C)Q + R where
R,Q ∈ F[X] and either R = 0 or deg(R) = 0. We have 0 = f(c) =
R(0) = R. Therefore f = (X − C)Q
For the proof of the last assertion, use induction on n.

3.1 GCD

Definition 3.1 Let F be a filed and F[X] be the polynomial ring.
Let f1, . . . , fr ∈ F[X] be polynomials, not all zero. An element
d ∈ F[X] is said to be a Greatest common divisor (gcd) if

1. d|fi ∀ i = 1, . . . , r,

2. If there is an elment d′ ∈ F[X] such that

d′|fi ∀ i = 1, . . . , r

then d′|d.

Lemma 3.1 Let F be a filed and F[X] be the polynomial ring. Let
f1, . . . , fr ∈ F[X] be polynomials, not all zero. Suppose d1 and d2

are two GCDs of f1, . . . , fr. Then

d1 = ud2

for some unit u ∈ F.
Further, if we assume that both d1, d2 are monic then d1 = d2.

That means, monic GCD of f1, . . . , fr ∈ F[X] is UNIQUE.
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Proof. By property (2) of the definition, d1 = ud2 and d2 = vd1 for
some u, v ∈ F[X]. Hence d1 = uvd1. Since d1 6= 0, we have uv = 1i,
so u is an unit.
Now, if d1, d2 are monic then comparing the coefficients of the

top degree terms in the equation d1 = ud2 it follows that u = 1 and
hence d1 = d2. This completes the proof.

Remarks. (1) Note that Z has only two unit, 1 and -1. When
you computed GCD of integers, definition assumes that the GCD is
positive. That is why GCD of integers is unique.

Definition 3.2 Let R be a (commutative) ring. A nonempty subset
I of R is said to be an ideal of R if

1. (x, y ∈ I)⇒ (x+ y ∈ I).

2. (x ∈ R, y ∈ I)⇒ (xy ∈ I).

Example 3.1 Let R be a (commutative) ring. Let f1, . . . , fr ∈ R.
Let

I = {x ∈ R : x = g1f1 + · · ·+ grfr for gi ∈ R}.

Then I is an ideal ofR. This ideal is sometime denoted by (f1, . . . , fr).
Also

I = Rf1 + · · ·+Rfr.

Theorem 3.2 Let F be a filed and F[X] be the polynomial ring. Let
I be a non zero ideal of F[X]. Then

I = F[X]d

for some d ∈ F[X]. In fact, for any non-zero d ∈ I with deg(d) least,
we have I = F[X]d.
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Proof. Let k = min{deg(f) : f ∈ I, f 6= 0}. Pick d ∈ I such that
d 6= 0 and deg(d) = k. (Question: Why such a d exists?) Now claim
I = F[X]d.
Clearly, I ⊇ F[X]d. Now, let f ∈ I. By division f = qd+ r with

r = 0 or deg(r) < k. Note r = f − qd ∈ I. We prove r = 0. If r 6= 0,
then deg(r) < k would contradicts the minimality of k. So, r = 0
and f = qd ∈ F[X]d. This completes the proof.

Theorem 3.3 Let F be a filed and F[X] be the polynomial ring. Let
f1, . . . , fr ∈ F[X] be polynomials, not all zero.

1. Then f1, . . . , fr has a GCD. In fact, a GCD d of f1, . . . , fr is
given by

d = q1f1 + · · ·+ qrfr

for some qi ∈ F[X].

2. Two GCDs differ by a unit multiple.

3. A monic GCD is unique.

Proof. Write
I = F[X]f1 + · · ·+ F[X]fr

By above thorem, I = F[X]d for some d ∈ F[X]. We calim that
d is a GCD of f1, . . . , fr. First note,

d = q1f1 + · · ·+ qrfr

for some qi ∈ F[X].
Since fi ∈ I, what have d|fi. Now let d′ ∈ I be such that d′|fi,

for i = 1, . . . , r. We need to prove that d′|d. This follows from the
above equation. This completes that proof that GCD exist. We have
alrady seen (2) and (3) before.
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4 Prime Factorization

Definition 4.1 Let F[X] be a the polynomial ring over a field F.

1. An element f ∈ F[X] is said to be a an reducible over F if
f = gh for some non-unit g, h ∈ F[X] (equivalently, deg(g) > 0
and deg(h) > 0.)

2. f ∈ F[X] is said to be irredubible over F if it is not reducible.

3. A non-scalar irreducible element f ∈ F[X] over F is called a
prime in F[X].

Lemma 4.1 Let R be an integral domain. For non-zero f, g ∈ R,
Rf = Rg if and only if f = ug for some unit in R.

Proof. Easy.

Lemma 4.2 Let R = F[X] be the polynomial ring over a field F.
Let p ∈ R be a prime element and f ∈ R. Then

(Rf +Rp = R) ⇐⇒ (p does not divide f.)

Proof. (⇒): We prove by contradiction. Assume that p | f. Then
f = dp for some d ∈ R. Hence Rf +Rp = Rdp+Rp = Rp 6= R. So,
this part of the proof is complete.
(⇐): Assume p does not divide f. By Theorem 3.2, we have Rf +
Rp = Rd for some d ∈ R. Therefore f = ud and p = vd for some
u, v ∈ R. Claim d is a unit.
If not, since p is prime, v is an unit. Hence f = ud = uv−1p.

That means, p | f. This will be a contradiction. Therefore the claim
is proved and d is a unit. Hence Rf + Rp = Rd = R The proof is
complete.

Theorem 4.1 Let R = F[X] be the polynomial ring over a field F.
Let p ∈ R be a prime element and f, g ∈ R. Then

p | fg ⇒ either p | f or p | g.
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Proof. Assume p | fg and p does not divide f. We will prove that
p | g.
We have fg = pw for some w ∈ R. Also by above lemma 4.2,

Rf + Rp = R. Therefore, 1 = xf + yp for some x, y ∈ R. Hence
g = xfg + yp = xwp+ yp. This completes the proof.

Corollary 4.1 Let R = F[X] be the polynomial ring over a field F.
Let p ∈ R be a prime element and f1, f2, . . . , fr ∈ R. Then

p | f1f2 · · · fr =⇒ p | fi

for some i = 1, . . . , r.

Proof. Use induction and the above thoerem.

Theorem 4.2 (Unique Factorization) Let R = F[X] be the poly-
nomial ring over a field F. Let f ∈ R be a nonzero element. Then

f = up1p2 · · · pk

where u ∈ F is a unit and p1, . . . , pk are monic prime elements. In
fact, this factorizton is unique, except for order.

Proof. First we prove that factorization, as above, of f is possible.
Let deg(f) = n. we will use induction on n.
Case n = 0 : If n = 0 then f is an unit and we are done.
Case n = 1 : In this case, f = uX + v with u, v ∈ F and u 6= 0.
Write p = X + v/u. The p is prime and f = up.
Case n > 1 : If f is prime, then write f = uXn + an−1X

n−1 + · · ·+
a1X + a0, with u, ai ∈ F and u 6= 0. Write p = f/u. The p is monic
prime and f = up.
Now, if f is not a prime, then f = gh with deg(g) < n and

deg(h) < n. By induction, g and h have factorization as desired. The
product of these two factorizations will give a desired factorization
of f.
So, the proof of existance of the factorization is complete.
Now we will prove the uniqueness of the factorization. Suppose

f = up1p2 · · · pk = vq1q2 · · · qm
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where u, v are units and pi, qj are monic primes.
Assume deg(f) = n. By comparing coefficients of Xn we get

u = v. Therefore, we have

g = p1p2 · · · pk = q1q2 · · · qm

where g = f/u is monic.
Now p1 | q1q2 · · · qm. By Corollary 4.1, p1 | qj for some j. we may

assume j = 1 and p1 | q1. Since both p1, q1 are monic primes, we
have p1 = q1.
Hence it follows

p2 · · · pk = q2 · · · qm.

Therefore, by induction, k = m and pi = qi upto order. This com-
pletes the proof.
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