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1 Section 1: Basics

Definition 1.1 A nonempty set R is said to be a ring if the follow-
ing are satisfied:

1. R has two binary operations, called addition (+) and multipli-
cation.

2. R has an abelian group structure with respect to addition.
3. The additive identity is called zero and denoted by 0.

4. (Distributivity) For z,y,z € R we have x(y+z) = zy+xz and
(y + 2)x = yx + 2.

5. We assume that there is a multiplicative identity denoted by

140,

Note the multiplication need not be commutative. So, it is possible
that xy # yx. Also note that not all non-zero elements have an
inverse. For example Let R = M,,,,(IF) be the set of all n x n matrices
(n > 2). Then R is a ring but multiplication is not commutative.
Following are few more definitions:

Definition 1.2 Let R be a ring.

1. We say R is commutative if xy = yx for all z,y € R.
2. A commutative ring R is said to be an integral domain if

ry=0= (z=0 or y=0).



3. Let A be another ring. A map f : R — A is said to be a
ring homomorphism if for all z,y € R we have f(x + y) =

f(@) + f(y), f(zy) = f(2)f(y) and f(1) = 1.

4. For a ring R, an R—algebra is a ring A with together with a
ring homomorphism f : R — A.

Remark 1.1 Let F be a field and A be an F—algebra. The textbook
calls such an algebra as Linear Algebra. Note that A has a natural
vector space structure.

Exercise 1.1 Let F be a field and f : F — A be ring homomor-
phism. Then f is 1-1. ( This means that if A is an F—algebra then
FCA )

Proof. It is enough to show that if f(z) = 0 then z = 0. (Are
you sure that it is enough?) Assume z # 0 and f(x) = 0. We have

F(1) = 1.0, 1 = f(aa~1) = f(2)f(x). So, f(z) # 0,

2 Polynomials

We do not look at polynomials as functions. Polynomilas are formal
expressions and (in algebra) they are manipulated formally.

Definition 2.1 Let FF be a field and N = {0, 1,2,...} be the set of

non-negative integers.
1. Let F denote the set of all functions f: N — F. So,
F =A{(ag,a1,a9,...) : a; € F}

is the set of all infinite sequences in F.

Define addition and multiplication on F naturally (see the
book).

F is called the power series ring.



2. Let X =(0,1,0,0,...) € F. Then any element f = (a;) € F

can be written as
f= i a; X"
=0
with apprpriate meaning of infinite sum attached.
3. Notation: Usual notation for the power series ring is
F[[X]] = F.
Elements in F[[X]] are called power series over F.
4. Let
FIX]|={feF[X]]: f=a+a X+ - +a,X" a€F}

Note that F[X] is a subring of F[[X]]. We say that F[X] is the
polynomial ring over F.

5. Importantly, two polynomials f,g are equal if and only if
coefficients of X' are same for both f and g.

Theorem 2.1 Let F[X] be the polynomial ring over over a field F.
1. Suppose f, g, g1, 92 € F[X] and f is non zero. Then

(fg=0=9=0) and (fg1=fg2= g1 = go).

2. f € F[X] has an inverse in F[X] if and only if f is a nonzero
scalar.

3 Section 4: Division and Ideals

Theorem 3.1 (Division Algorithm) Let F is a field and F[X] be
a polynomial ring over F. Let d # 0 be a polynomial and deg(D) = n.

Then for any f € F[X], there are polynomials q,r € F[X]| such that
f=qd+r r=0 deg(r)<n.

In fact, q,r are UNIQUE for a given f.

3



Proof. Write a proof.

Corollary 3.1 Let F is a field and F[X] be a polynomial ring over
F. Let f be a nonzero polynomial and ¢ € F. Then f(c) = 0 if and
only if (X — ¢) divides f in F[X].

Further, a polynomial f with deg(f) = n has atmost n roots in
F.

Proof. (< ): Obvious.
(= ): By division algorithm, we have f = (X — C)Q + R where
R,Q € F[X] and either R = 0 or deg(R) = 0. We have 0 = f(c) =
R(0) = R. Therefore f = (X — C)Q

For the proof of the last assertion, use induction on n.

3.1 GCD

Definition 3.1 Let F be a filed and F[X] be the polynomial ring.
Let fi,...,fr € F[X] be polynomials, not all zero. An element
d € F[X] is said to be a Greatest common divisor (ged) if

Ldlfi ¥V i=1,...,r
2. If there is an elment d’ € F[X] such that
dIfi ¥V i=1,....r
then d'|d.

Lemma 3.1 Let F be a filed and F[X] be the polynomial ring. Let
fi,.-., fr € F[X] be polynomials, not all zero. Suppose dy and dy
are two GCDs of f1,..., f.. Then

dl = Udg

for some unit u € .
Further, if we assume that both di,ds are monic then d; = ds.

That means, monic GCD of fi,..., f. € F[X] is UNIQUE.



Proof. By property (2) of the definition, d; = udy and dy = vd; for
some u,v € F[X]. Hence d; = wvd;. Since d; # 0, we have uv = 11,
SO u is an unit.

Now, if dy,dy are monic then comparing the coefficients of the
top degree terms in the equation d; = uds it follows that © = 1 and
hence d; = dy. This completes the proof.

Remarks. (1) Note that Z has only two unit, 1 and -1. When
you computed GCD of integers, definition assumes that the GCD is
positive. That is why GCD of integers is unique.

Definition 3.2 Let R be a (commutative) ring. A nonempty subset
I of R is said to be an ideal of R if

L. (z,yel)=(x+yel).

2. (reR, yel)=(zyel).

Example 3.1 Let R be a (commutative) ring. Let fi,..., f. € R.
Let
I={rcR:z=gfi+ - +gf for g cR}

Then I is an ideal of R. This ideal is sometime denoted by (f1, ..., f.).
Also
I'=Rfi+---+Rf,.

Theorem 3.2 Let I be a filed and F[X] be the polynomial ring. Let
I be a non zero ideal of F[X]. Then

I =F[X]d

for some d € F[X]. In fact, for any non-zero d € I with deg(d) least,
we have I = F[X]d.



Proof. Let k = min{deg(f): f € I, f # 0}. Pick d € I such that
d # 0 and deg(d) = k. (Question: Why such a d exists?) Now claim
[ =TF[X]d.

Clearly, I O F[X]d. Now, let f € I. By division f = gd + r with
r =0 or deg(r) < k. Noter = f—qd e I. We prove r = 0. If r # 0,
then deg(r) < k would contradicts the minimality of k. So, r = 0
and f = gd € F[X]d. This completes the proof.

Theorem 3.3 Let I be a filed and F[X] be the polynomial ring. Let
fi,..., fr € F[X] be polynomials, not all zero.

1. Then fi,..., fr has a GCD. In fact, a GCD d of fi1,..., f, is
given by
d=qafh+-+af

for some ¢; € F[X].
2. Two GCDs differ by a unit multiple.

3. A monic GCD is unique.

Proof. Write
I =F[X]fi +---+FX]f,

By above thorem, I = F[X]d for some d € F[X]. We calim that
d is a GCD of fi,..., f,. First note,

d=qfi+ - +qfr

for some ¢; € F[X].

Since f; € I, what have d|f;. Now let d’" € I be such that d'|f;,
for i = 1,...,7. We need to prove that d’|d. This follows from the
above equation. This completes that proof that GCD exist. We have
alrady seen (2) and (3) before.



4 Prime Factorization

Definition 4.1 Let F[X] be a the polynomial ring over a field F.

1. An element f € F[X] is said to be a an reducible over F if
f = gh for some non-unit g, h € F[X] (equivalently, deg(g) > 0
and deg(h) > 0.)

2. f € F[X]is said to be irredubible over F if it is not reducible.

3. A non-scalar irreducible element f € F[X] over F is called a
prime in F[X].

Lemma 4.1 Let R be an integral domain. For non-zero f,g € R,
Rf = Rg if and only if f = ug for some unit in R.

Proof. Easy.

Lemma 4.2 Let R = F[X]| be the polynomial ring over a field F.
Let p € R be a prime element and f € R. Then

(Rf + Rp=R) <= (pdoes not divide f.)

Proof. (=): We prove by contradiction. Assume that p | f. Then
f = dp for some d € R. Hence Rf + Rp = Rdp + Rp = Rp # R. So,
this part of the proof is complete.

(<): Assume p does not divide f. By Theorem 3.2, we have Rf +
Rp = Rd for some d € R. Therefore f = ud and p = vd for some
u,v € R. Claim d is a unit.

If not, since p is prime, v is an unit. Hence f = ud = wv~'p.
That means, p | f. This will be a contradiction. Therefore the claim
is proved and d is a unit. Hence Rf + Rp = Rd = R The proof is
complete.

Theorem 4.1 Let R = F[X] be the polynomial ring over a field F.
Let p € R be a prime element and f,g € R. Then

plfg = either p|f or plyg.



Proof. Assume p | fg and p does not divide f. We will prove that
ply.

We have fg = pw for some w € R. Also by above lemma 4.2,
Rf + Rp = R. Therefore, 1 = zf + yp for some z,y € R. Hence
g=xfg+yp = xwp+ yp. This completes the proof.

Corollary 4.1 Let R = F[X] be the polynomial ring over a field F.
Let p € R be a prime element and fi, fo,..., fr € R. Then

plfifor--fr = plfi

for somei=1,...,r.
Proof. Use induction and the above thoerem.

Theorem 4.2 (Unique Factorization) Let R = F[X] be the poly-
nomial ring over a field F. Let f € R be a nonzero element. Then

f=upipa---pi

where u € F 1s a unit and pq,...,pr are monic prime elements. In
fact, this factorizton is unique, except for order.

Proof. First we prove that factorization, as above, of f is possible.
Let deg(f) = n. we will use induction on n.

Case n=0:1f n =0 then f is an unit and we are done.

Case n = 1 : In this case, f = uX + v with u,v € F and u # 0.
Write p = X + v/u. The p is prime and f = up.

Case n > 1: If f is prime, then write f = uX" +a,_ X" 1 +... +
a1 X + ag, with u,a; € F and u # 0. Write p = f/u. The p is monic
prime and f = up.

Now, if f is not a prime, then f = gh with deg(g) < n and
deg(h) < n. By induction, g and h have factorization as desired. The
product of these two factorizations will give a desired factorization
of f.

So, the proof of existance of the factorization is complete.

Now we will prove the uniqueness of the factorization. Suppose

f=upips---pr = 0012 - @,



where u, v are units and p;, ¢; are monic primes.
Assume deg(f) = n. By comparing coefficients of X" we get
u = v. Therefore, we have

g=piP2- Pk = 4q192 - qm

where g = f/u is monic.

Now p1 | ¢1¢2 - - - ¢m- By Corollary 4.1, p; | g; for some j. we may
assume j = 1 and p; | ¢;. Since both py, ¢ are monic primes, we
have p; = ¢;.

Hence it follows

P2 Pk = Q2 G-

Therefore, by induction, & = m and p; = ¢; upto order. This com-
pletes the proof.



