Math 790 Test 3 (Solutions) Satya Mandal

Fall 05 Each Problem 10 points Due on: October 2, 2005
I like short proofs and elmentary proof. Unless otherwise stated, F is
a field and V, W are two vector sapces over F.

1. Let V,W be two vector spaces over F and let T' : V' — W be a set
theoretic map. Prove that the following are equivalent:

(a) For u,v € V and ¢,d € F we have
T(cu+ dv) = cT'(u) + dT(v)
in W.
(b) For u,v € V and ¢ € F we have
Tu+v)=T(u)+T(v) and T(cu)=cT(u)

in W.
(¢) For u,v € V and ¢ € F we have

T(cu+v) =T (u)+T(v)
in W.

(Recall, T is said to be a linear transformation if one of (or all) the
above conditions are satisfied.)

Solution. ((a) =(b)): We have T'(cu + dv) = T'(u) +
dT'(v). Take ¢ = d = 1, we get T(u+v) = T(u) + T'(v).
Now take d = 0, we get T'(cu) = ¢T'(u). Therefore (b) is
established.

((b) =(c)): Using the additive part of the hypothesis, we
have T'(cu +v) = T'(cu) + T'(v). Using T'(cu) = ¢T'(u), we
get T(cu+v) = T(cu) + T(v) = I'(u) + T(v). Hence, (c)
is established.



((c) =(a)): From the hypothesis in (c¢), we have T'(cu +

dv) = cT'(u) + T(dv). Also taking v = 0 we get T'(cu) =
cT'(u) for any ¢ € F and u € V. So, we have

T(cu+ dv) = cT(u) + T (dv) = cT'(u) + dT(v)
and (a) is established.



2. Let V,W be two vector spaces over [F. Let ey, es,...,¢e, be a basis of
V and wy,ws,...,w, € W be n elments in W. Prove that there is
EXACTLY one linear transformation

T:V—->W

such that
T(el) = 'UJ1,T(€2) = Wa, ... 7T(en) = Wy,.

3. Let V., W be two vector spaces over F and let T": V — W be a linear
transformation. Assume dim(V') = n is finite. Prove that

rank(T) + nullity(T) = dim(V).

4. Let A be an m X n matrix with entries in [F. Prove that

row rank(A) = column rank(A).



5. Let V., W be two vector spaces over F and let T": V' — W be a linear
transformation. Assume that dim(V') = dim(WW) = n is finite. Prove
that the following statements are equivalent:

(a) T is invertible.

(b) If e1,e9,...,e, € V (here m < n,) are linearly independent in V/
then the images T'(e;),T(ez),...,T(en) are linearly independent
in W.

(c) T is onto.

Solution. ((a) =(b)): Suppose ey, es,...,€, € V are lin-
early independent. We will prove that T'(e;), T(e2), ..., T(em)
are linearly independent. Suppose

aT(er) + T (e2) + -+ cnT(en) =0

for some ¢; € F. Since T is linear, we have T'(cie; + -+ +
cmem) = al'(e1) + T (e2) + -+ + cnT'(en) = 0. By (a), T
is invertible and hence one to one. Therefore cie; + -+ +
cmem = 0. By linear indpendence of eq,...,e,,, we have
¢; = 0. Therefore (b) is established.

((b) =(c)): Suppose ey, es,...,e, is a basis of V. By (b),
T(e1),T(es),...,T(e,) are linearly independent. Since
dim(W) = n, it follows that T'(e1),T(es),...,T(e,) is a
basis of W. Therefore T'(V') =

T(Span(er, ... en)) = Span(T'(e1), T(e2), ..., T(en)) = W.
Hence T is onto and (c) is established.

((c) =(a)): We need to show, T is one to one. We have
nullity(T) + rank(T) = n. Since T is onto, rank(T) = n.
Hence, nullity(T) = 0. So, null space of T is zero and
T(v) = 0 implies v = 0. Hence T is one to one. So, (a) is
established.



6. Give the examples as follows:

(a) Give an example of a linear operator T : V' — V such that 72 = 0
but T # 0.

(b) Give two linear operator T,U : V' — V such that TU = 0 but
UT # 0.



7. Let V ba vector space and T : V' — V be a linear operator. Assume
that rank(T) = rank(T?). Prove that

range(T) N (Null Space(T')) = {0}.

Solution. Ny and Np2 will denote the null space of T" and
T?, respectively. First, note that Ny C Npe.

Since dim(N7) + rank(T) = n = dim(Np2) + rank(T?), we
have dim(Nr) = dim(Npz2). Therefore, Ny = Nrp2.

Now suppose
x € range(T) N (Null Space(T)).

So, x = T(y) for some y € V. Since T'(x) = 0 we have
y € Np2 = Np. Therfore z = T(y) = 0 and the proof is
complete.



8. Let V, W be two finite dimensional vector spaces over F. Assume dim V' =
n and dim W = m. Let M,, ,, be the set of all m xn matrices with entries
in F. Let E = {ey,es,...,e,} be abasisof Vand E' = {e1,€9,...,€6n}
be a basis of W.

(a) For a linear transformation 7' : V' — W define the matrix of T
with respect to E and E’.

(b) Prove that the map
[ L(V,W) = My
such that
f(T) = matriz of T with respect to E and E’

is an isomorphism.
(Try to understand the following diagram. Here A is the matriz
of T.)

V=W

liso liso
A

]F"I’L > Fm

Solution. We will prove only (b). Let me comment that to prove that
f is lisomorphism’, there are two general methods. First method proves
that the map f is one to one and onto. Alternately, you can define a
map g in the opposite direction and prove that fg = Id and gf = Id. |
will write a proof in using this alternatve method.

Define a map
g: My, — L(V,W)

as follows: For A € M,,,, define T € L(V, W) by the equa-
tion:

(T'(e1),...,T(en)) = (€1,€9,...,€m)A
and let g(A) =T.



Note g is linear and gf = Idrww) and fg = Idy,, . So, g
is the inverse of f and the proof is complete.



9. Let V be a finite dimensional vector space over F with dim(V') = n and
f:L(V,V)— M,,

be the above isomorphism, with respect to a (same) fixed basis E. Prove
that

(a) f(TU) = f(T)f(U);
(b) f(Id) = I, the identity matrix;
(¢) T € L(V,V) is an isomorphism if and only if f(7') is an invertible

matrix.

Solution. Suppose e, e€9,...,¢e, be a basis of V and f is
defined with respect to this basis.

Proof of (a): Write f(T) = A € M,, and f(U) = B €
M,, . Then

(T'(e1),...,T(en)) = (e1,...,en)A

and
(U(er),...,U(en)) = (e1,...,e,)B.

Apply T to the second one and then use the first one. We
get

(TU(e1),...,TU(e,)) = (T(e1),...,T(en))B = (€1,...,e,)AB.

So, the matrix of TU is AB. Hence f(TU) = AB = f(T)f(U)
and the proof of (a) is complete.

Proof of (b): We have (Id(e1),...,1d(e,)) = (e1,...,en)l,.
Therefore f(Id) = I,.

Proof of (c): (= ): Suppose T has a inverse T!. Then
TT' = T7'T = Id. Now use (a) and (b). We have
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f(TT™) = f(T7'T) = f(Id) = I,.. By (a) f(T)f(T™") =
f(TYf(T) = I,,. Therefore f(T~1) is the inverse of f(T).
(=): Write f(T') = A. Suppose A is ivertible. Let B be the
inverse of A. Since f is onto, f(U) = B for some U € M,, ,.
So, f(TU) = f(T)f(U) = AB = I,,. Since f is one to one,
TU = Id. Similarly, UT = Id and therefore, T is invertible.
This completes the proof.
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10. Let V be a finite dimensional vector space over F with dim(V) = n.
Let E = {e1,...,e,} and E' = {ey,...,€,} be two basis of V. Let
T € L(V,V) be linear operator. Let

(617"-7671): (61,...,6n>P

for some n X n matrix.

(a) Prove that P is an invertible matrix.

(b) Let A be the matrix of T with respect to £ and B be the matrix
of T with respect to E’. Prove that B = PAP~!.

Solution. Proof of (a): There is also a matrix ) such
that

(€1,..,6n) = (€1,...,€,)Q.
Combining these two, we get
(e1,...,6n) = (€1,...,6,)QP.
Therefore QP = I,, and similarly, PQ) = I,,. So, P is invert-
ible.

Proof of (b): Apply T to the equation:
(61, . 7671) = (61, . ,En)P.
We get
(T'(e1),...,T(en)) = (T(e1),...,T(e,))P.

We also have

(T(e1),...,T(en)) = (e1,...,€n)A
and

(T'(e1),...,T(en)) = (€1,...,€)B.
Therefore

(e1,...,en)A=(e1,...,6,)BP = (ey,...,e,)P ' BP.

Comparing, we get A = P~1BP. This completes the proof.
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11. Let V be a finite dimensional vector space over F with dim(V) = n.
Let eq,...,e, be a basis of V.

(a) Define the dual basis of ey,...,e,. Also give a proof that it is
indeed a basis of V*.

(b) Let W C V be subspace of V. Define the annihilator W° of W.
Also prove that
dim(W) + dim(W?°) = n.

(c) For two subspaces Wy, Wy of V' prove that W; = Wj if and only
if WO = WY.
(d) For two subspaces Wi, Wy of V' prove that

(W1 +Wo)? =W N Wy

and
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