Math 790 **Test 3 (Solutions)** Satya Mandal Fall 05 Each Problem 10 points Due on: October 2, 2005 I like short proofs and elmentary proof. Unless otherwise stated, $\mathbb F$ is a field and V, W are two vector sapces over \mathbb{F} .

- 1. Let V, W be two vector spaces over F and let $T: V \to W$ be a set theoretic map. Prove that the following are equivalent:
	- (a) For $u, v \in V$ and $c, d \in \mathbb{F}$ we have

$$
T(cu + dv) = cT(u) + dT(v)
$$

in W.

(b) For $u, v \in V$ and $c \in \mathbb{F}$ we have

$$
T(u + v) = T(u) + T(v) \quad \text{and} \quad T(cu) = cT(u)
$$

in W.

(c) For $u, v \in V$ and $c \in \mathbb{F}$ we have

$$
T(cu + v) = cT(u) + T(v)
$$

in W.

(Recall, T is said to be a linear transformation if one of (or all) the above conditions are satisfied.)

Solution. ((a) \Rightarrow (b)): We have $T(cu + dv) = cT(u) +$ $dT(v)$. Take $c = d = 1$, we get $T(u + v) = T(u) + T(v)$. Now take $d = 0$, we get $T(cu) = cT(u)$. Therefore (b) is established.

 $((b) \Rightarrow (c))$: Using the additive part of the hypothesis, we have $T(cu + v) = T(cu) + T(v)$. Using $T(cu) = cT(u)$, we get $T(cu + v) = T(cu) + T(v) = cT(u) + T(v)$. Hence, (c) is established.

 $((c) \Rightarrow (a))$: From the hypothesis in (c), we have $T(cu +$ $dv = cT(u) + T(dv)$. Also taking $v = 0$ we get $T(cu) =$ $cT(u)$ for any $c \in \mathbb{F}$ and $u \in V$. So, we have

$$
T(cu + dv) = cT(u) + T(dv) = cT(u) + dT(v)
$$

and (a) is established.

2. Let V, W be two vector spaces over F. Let e_1, e_2, \ldots, e_n be a basis of V and $w_1, w_2, \ldots, w_n \in W$ be n elments in W. Prove that there is EXACTLY one linear transformation

$$
T: V \to W
$$

such that

$$
T(e_1) = w_1, T(e_2) = w_2, \dots, T(e_n) = w_n.
$$

3. Let V, W be two vector spaces over $\mathbb F$ and let $T: V \to W$ be a linear transformation. Assume $\dim(V) = n$ is finite. Prove that

$$
rank(T) + nullity(T) = dim(V).
$$

4. Let A be an $m \times n$ matrix with entries in \mathbb{F} . Prove that

$$
row\ rank(A) = column\ rank(A).
$$

- 5. Let V, W be two vector spaces over F and let $T: V \to W$ be a linear transformation. Assume that $\dim(V) = \dim(W) = n$ is finite. Prove that the following statements are equivalent:
	- (a) T is invertible.
	- (b) If $e_1, e_2, \ldots, e_m \in V$ (here $m \leq n$,) are linearly independent in V then the images $T(e_1), T(e_2), \ldots, T(e_m)$ are linearly independent in W.
	- (c) T is onto.

Solution. ((a) \Rightarrow (b)): Suppose $e_1, e_2, \ldots, e_m \in V$ are linearly independent. We will prove that $T(e_1), T(e_2), \ldots, T(e_m)$ are linearly independent. Suppose

$$
c_1T(e_1) + c_2T(e_2) + \cdots + c_mT(e_m) = 0
$$

for some $c_i \in \mathbb{F}$. Since T is linear, we have $T(c_1e_1 + \cdots +$ $c_m e_m$) = $c_1 T(e_1) + c_2 T(e_2) + \cdots + c_m T(e_m) = 0$. By (a), T is invertible and hence one to one. Therefore $c_1e_1 + \cdots +$ $c_m e_m = 0$. By linear indpendence of e_1, \ldots, e_m , we have $c_i = 0$. Therefore (b) is established.

 $((b) \Rightarrow (c))$: Suppose e_1, e_2, \ldots, e_n is a basis of V. By (b), $T(e_1), T(e_2), \ldots, T(e_n)$ are linearly independent. Since $dim(W) = n$, it follows that $T(e_1), T(e_2), \ldots, T(e_n)$ is a basis of W. Therefore $T(V) =$

$$
T(Span(e1,...,en))=Span(T(e1), T(e2),..., T(en))=W.
$$

Hence T is onto and (c) is established.

 $((c) \Rightarrow (a))$: We need to show, T is one to one. We have $nullity(T) + rank(T) = n$. Since T is onto, $rank(T) = n$. Hence, $nullity(T) = 0$. So, null space of T is zero and $T(v) = 0$ implies $v = 0$. Hence T is one to one. So, (a) is established.

- 6. Give the examples as follows:
	- (a) Give an example of a linear operator $T: V \to V$ such that $T^2 = 0$ but $T \neq 0$.
	- (b) Give two linear operator $T, U : V \to V$ such that $TU = 0$ but $UT\neq 0.$

7. Let V ba vector space and $T: V \to V$ be a linear operator. Assume that $rank(T) = rank(T^2)$. Prove that

$$
range(T) \cap (Null\ Space(T)) = \{0\}.
$$

Solution. N_T and N_{T^2} will denote the null space of T and T^2 , respectively. First, note that $N_T \subseteq N_{T^2}$.

Since $\dim(N_T) + rank(T) = n = \dim(N_{T^2}) + rank(T^2)$, we have dim $(N_T) = \dim(N_{T^2})$. Therefore, $N_T = N_{T^2}$.

Now suppose

$$
x \in range(T) \cap (Null\ Space(T)).
$$

So, $x = T(y)$ for some $y \in V$. Since $T(x) = 0$ we have $y \in N_{T^2} = N_T$. Therfore $x = T(y) = 0$ and the proof is complete.

- 8. Let V, W be two finite dimensional vector spaces over \mathbb{F} . Assume dim $V =$ n and dim $W = m$. Let $M_{m,n}$ be the set of all $m \times n$ matrices with entries in F. Let $E = \{e_1, e_2, \ldots, e_n\}$ be a basis of V and $E' = \{\epsilon_1, \epsilon_2, \ldots, \epsilon_m\}$ be a basis of W.
	- (a) For a linear transformation $T: V \to W$ define the matrix of T with respect to E and E' .
	- (b) Prove that the map

$$
f: L(V, W) \to M_{m,n}
$$

such that

$$
f(T) = matrix \ of \ T \ with \ respect \ to \ E \ and \ E'
$$

is an isomorphism.

(Try to understand the following diagram. Here A is the matrix of T .)

Solution. We will prove only (b). Let me comment that to prove that f is 'isomorphism', there are two general methods. First method proves that the map f is one to one and onto. Alternately, you can define a map g in the opposite direction and prove that $fg = Id$ and $gf = Id$. I will write a proof in using this alternative method.

Define a map

$$
g: M_{m,n} \to L(V,W)
$$

as follows: For $A \in M_{m,n}$ define $T \in L(V, W)$ by the equation:

$$
(T(e_1),\ldots,T(e_n))=(\epsilon_1,\epsilon_2,\ldots,\epsilon_m)A
$$

and let $g(A) = T$.

Note g is linear and $gf = Id_{L(V,W)}$ and $fg = Id_{M_{m,n}}$. So, g is the inverse of f and the proof is complete.

9. Let V be a finite dimensional vector space over $\mathbb F$ with $\dim(V) = n$ and

$$
f: L(V, V) \to M_{n,n}
$$

be the above isomorphism, with respect to a (same) fixed basis E . Prove that

- (a) $f(TU) = f(T)f(U);$
- (b) $f(Id) = I_n$, the identity matrix;
- (c) $T \in L(V, V)$ is an isomorphism if and only if $f(T)$ is an invertible matrix.

Solution. Suppose e_1, e_2, \ldots, e_n be a basis of V and f is defined with respect to this basis.

Proof of (a): Write $f(T) = A \in M_{n,n}$ and $f(U) = B \in$ $M_{n,n}$. Then

$$
(T(e_1),\ldots,T(e_n))=(e_1,\ldots,e_n)A
$$

and

$$
(U(e_1),\ldots,U(e_n))=(e_1,\ldots,e_n)B.
$$

Apply T to the second one and then use the first one. We get

$$
(TU(e_1),...,TU(e_n))=(T(e_1),...,T(e_n))B=(e_1,...,e_n)AB.
$$

So, the matrix of TU is AB. Hence $f(TU) = AB = f(T)f(U)$ and the proof of (a) is complete.

Proof of (b): We have $(Id(e_1), \ldots, Id(e_n)) = (e_1, \ldots, e_n)I_n$. Therefore $f(Id) = I_n$.

Proof of (c): (\Rightarrow): Suppose T has a inverse T^{-1} . Then $TT^{-1} = T^{-1}T = Id.$ Now use (a) and (b). We have

 $f(TT^{-1}) = f(T^{-1}T) = f(Id) = I_n$. By (a) $f(T)f(T^{-1}) =$ $f(T^{-1})f(T) = I_n$. Therefore $f(T^{-1})$ is the inverse of $f(T)$. (\Rightarrow) : Write $f(T) = A$. Suppose A is ivertible. Let B be the inverse of A. Since f is onto, $f(U) = B$ for some $U \in M_{n,n}$. So, $f(TU) = f(T)f(U) = AB = I_n$. Since f is one to one, $TU = Id$. Similarly, $UT = Id$ and therefore, T is invertible. This completes the proof.

10. Let V be a finite dimensional vector space over $\mathbb F$ with $\dim(V) = n$. Let $E = \{e_1, \ldots, e_n\}$ and $E' = \{\epsilon_1, \ldots, \epsilon_n\}$ be two basis of V. Let $T \in L(V, V)$ be linear operator. Let

$$
(e_1,\ldots,e_n)=(\epsilon_1,\ldots,\epsilon_n)F
$$

for some $n \times n$ matrix.

- (a) Prove that P is an invertible matrix.
- (b) Let A be the matrix of T with respect to E and B be the matrix of T with respect to E'. Prove that $B = PAP^{-1}$.

Solution. Proof of (a): There is also a matrix Q such that

$$
(\epsilon_1,\ldots,\epsilon_n)=(e_1,\ldots,e_n)Q.
$$

Combining these two, we get

$$
(e_1,\ldots,e_n)=(e_1,\ldots,e_n)QP.
$$

Therefore $QP = I_n$ and similarly, $PQ = I_n$. So, P is invertible.

Proof of (b): Apply T to the equation:

$$
(e_1,\ldots,e_n)=(\epsilon_1,\ldots,\epsilon_n)P.
$$

We get

$$
(T(e_1),\ldots,T(e_n))=(T(\epsilon_1),\ldots,T(\epsilon_n))P.
$$

We also have

$$
(T(e_1),\ldots,T(e_n))=(e_1,\ldots,e_n)A
$$

and

$$
(T(\epsilon_1),\ldots,T(\epsilon_n))=(\epsilon_1,\ldots,\epsilon_n)B.
$$

Therefore

$$
(e_1,\ldots,e_n)A=(\epsilon_1,\ldots,\epsilon_n)BP=(e_1,\ldots,e_n)P^{-1}BP.
$$

Comparing, we get $A = P^{-1}BP$. This completes the proof.

- 11. Let V be a finite dimensional vector space over $\mathbb F$ with $\dim(V) = n$. Let e_1, \ldots, e_n be a basis of V.
	- (a) Define the dual basis of e_1, \ldots, e_n . Also give a proof that it is indeed a basis of V^* .
	- (b) Let $W \subseteq V$ be subspace of V. Define the annihilator W^0 of W. Also prove that

$$
\dim(W) + \dim(W^0) = n.
$$

- (c) For two subspaces W_1, W_2 of V prove that $W_1 = W_2$ if and only if $W_1^0 = W_2^0$.
- (d) For two subspaces W_1, W_2 of V prove that

$$
(W_1 + W_2)^0 = W_1^0 \cap W_2^0
$$

and

$$
(W_1 \cap W_2)^0 = W_1^0 + W_2^0.
$$