
Math 790 Test 3 (Solutions) Satya Mandal
Fall 05 Each Problem 10 points Due on: October 2, 2005

I like short proofs and elmentary proof. Unless otherwise stated, F is
a field and V,W are two vector sapces over F.

1. Let V,W be two vector spaces over F and let T : V → W be a set
theoretic map. Prove that the following are equivalent:

(a) For u, v ∈ V and c, d ∈ F we have

T (cu+ dv) = cT (u) + dT (v)

in W.

(b) For u, v ∈ V and c ∈ F we have

T (u+ v) = T (u) + T (v) and T (cu) = cT (u)

in W.

(c) For u, v ∈ V and c ∈ F we have

T (cu+ v) = cT (u) + T (v)

in W.

(Recall, T is said to be a linear transformation if one of (or all) the
above conditions are satisfied.)

Solution. ((a) ⇒(b)): We have T (cu + dv) = cT (u) +
dT (v). Take c = d = 1, we get T (u + v) = T (u) + T (v).
Now take d = 0, we get T (cu) = cT (u). Therefore (b) is
established.

((b) ⇒(c)): Using the additive part of the hypothesis, we
have T (cu + v) = T (cu) + T (v). Using T (cu) = cT (u), we
get T (cu + v) = T (cu) + T (v) = cT (u) + T (v). Hence, (c)
is established.
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((c) ⇒(a)): From the hypothesis in (c), we have T (cu +
dv) = cT (u) + T (dv). Also taking v = 0 we get T (cu) =
cT (u) for any c ∈ F and u ∈ V. So, we have

T (cu+ dv) = cT (u) + T (dv) = cT (u) + dT (v)

and (a) is established.
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2. Let V,W be two vector spaces over F. Let e1, e2, . . . , en be a basis of
V and w1, w2, . . . , wn ∈ W be n elments in W. Prove that there is
EXACTLY one linear transformation

T : V → W

such that
T (e1) = w1, T (e2) = w2, . . . , T (en) = wn.

3. Let V,W be two vector spaces over F and let T : V → W be a linear
transformation. Assume dim(V ) = n is finite. Prove that

rank(T ) + nullity(T ) = dim(V ).

4. Let A be an m× n matrix with entries in F. Prove that

row rank(A) = column rank(A).
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5. Let V,W be two vector spaces over F and let T : V → W be a linear
transformation. Assume that dim(V ) = dim(W ) = n is finite. Prove
that the following statements are equivalent:

(a) T is invertible.

(b) If e1, e2, . . . , em ∈ V (here m ≤ n,) are linearly independent in V

then the images T (e1), T (e2), . . . , T (em) are linearly independent
in W.

(c) T is onto.

Solution. ((a) ⇒(b)): Suppose e1, e2, . . . , em ∈ V are lin-
early independent. We will prove that T (e1), T (e2), . . . , T (em)
are linearly independent. Suppose

c1T (e1) + c2T (e2) + · · ·+ cmT (em) = 0

for some ci ∈ F. Since T is linear, we have T (c1e1 + · · · +
cmem) = c1T (e1) + c2T (e2) + · · ·+ cmT (em) = 0. By (a), T
is invertible and hence one to one. Therefore c1e1 + · · · +
cmem = 0. By linear indpendence of e1, . . . , em, we have
ci = 0. Therefore (b) is established.

((b) ⇒(c)): Suppose e1, e2, . . . , en is a basis of V. By (b),
T (e1), T (e2), . . . , T (en) are linearly independent. Since
dim(W ) = n, it follows that T (e1), T (e2), . . . , T (en) is a
basis of W. Therefore T (V ) =

T (Span(e1, . . . , en)) = Span(T (e1), T (e2), . . . , T (en)) = W.

Hence T is onto and (c) is established.

((c) ⇒(a)): We need to show, T is one to one. We have
nullity(T ) + rank(T ) = n. Since T is onto, rank(T ) = n.

Hence, nullity(T ) = 0. So, null space of T is zero and
T (v) = 0 implies v = 0. Hence T is one to one. So, (a) is
established.
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6. Give the examples as follows:

(a) Give an example of a linear operator T : V → V such that T 2 = 0
but T 6= 0.

(b) Give two linear operator T, U : V → V such that TU = 0 but
UT 6= 0.
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7. Let V ba vector space and T : V → V be a linear operator. Assume
that rank(T ) = rank(T 2). Prove that

range(T ) ∩ (Null Space(T )) = {0}.

Solution. NT and NT 2 will denote the null space of T and
T 2, respectively. First, note that NT ⊆ NT 2.

Since dim(NT ) + rank(T ) = n = dim(NT 2) + rank(T 2), we
have dim(NT ) = dim(NT 2). Therefore, NT = NT 2.

Now suppose

x ∈ range(T ) ∩ (Null Space(T )).

So, x = T (y) for some y ∈ V. Since T (x) = 0 we have
y ∈ NT 2 = NT . Therfore x = T (y) = 0 and the proof is
complete.
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8. Let V,W be two finite dimensional vector spaces over F.Assume dimV =
n and dimW = m. LetMm,n be the set of allm×nmatrices with entries
in F. Let E = {e1, e2, . . . , en} be a basis of V and E ′ = {ε1, ε2, . . . , εm}
be a basis of W.

(a) For a linear transformation T : V → W define the matrix of T

with respect to E and E ′.

(b) Prove that the map

f : L(V,W )→Mm,n

such that

f(T ) = matrix of T with respect to E and E ′

is an isomorphism.

(Try to understand the following diagram. Here A is the matrix
of T.)

V
T

//

iso

²²

W

iso

²²

Fn A
// Fm

Solution. We will prove only (b). Let me comment that to prove that
f is ’isomorphism’, there are two general methods. First method proves
that the map f is one to one and onto. Alternately, you can define a
map g in the opposite direction and prove that fg = Id and gf = Id. I
will write a proof in using this alternatve method.

Define a map
g : Mm,n → L(V,W )

as follows: For A ∈Mm,n define T ∈ L(V,W ) by the equa-
tion:

(T (e1), . . . , T (en)) = (ε1, ε2, . . . , εm)A

and let g(A) = T.
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Note g is linear and gf = IdL(V,W ) and fg = IdMm,n
. So, g

is the inverse of f and the proof is complete.
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9. Let V be a finite dimensional vector space over F with dim(V ) = n and

f : L(V, V )→Mn,n

be the above isomorphism, with respect to a (same) fixed basis E. Prove
that

(a) f(TU) = f(T )f(U);

(b) f(Id) = In, the identity matrix;

(c) T ∈ L(V, V ) is an isomorphism if and only if f(T ) is an invertible
matrix.

Solution. Suppose e1, e2, . . . , en be a basis of V and f is
defined with respect to this basis.

Proof of (a): Write f(T ) = A ∈ Mn,n and f(U) = B ∈

Mn,n. Then

(T (e1), . . . , T (en)) = (e1, . . . , en)A

and
(U(e1), . . . , U(en)) = (e1, . . . , en)B.

Apply T to the second one and then use the first one. We
get

(TU(e1), . . . , TU(en)) = (T (e1), . . . , T (en))B = (e1, . . . , en)AB.

So, the matrix of TU isAB.Hence f(TU) = AB = f(T )f(U)
and the proof of (a) is complete.

Proof of (b): We have (Id(e1), . . . , Id(en)) = (e1, . . . , en)In.

Therefore f(Id) = In.

Proof of (c): (⇒ ): Suppose T has a inverse T−1. Then
TT−1 = T−1T = Id. Now use (a) and (b). We have
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f(TT−1) = f(T−1T ) = f(Id) = In. By (a) f(T )f(T−1) =
f(T−1)f(T ) = In. Therefore f(T−1) is the inverse of f(T ).

(⇒ ): Write f(T ) = A. Suppose A is ivertible. Let B be the
inverse of A. Since f is onto, f(U) = B for some U ∈Mn,n.

So, f(TU) = f(T )f(U) = AB = In. Since f is one to one,
TU = Id. Similarly, UT = Id and therefore, T is invertible.
This completes the proof.
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10. Let V be a finite dimensional vector space over F with dim(V ) = n.

Let E = {e1, . . . , en} and E ′ = {ε1, . . . , εn} be two basis of V. Let
T ∈ L(V, V ) be linear operator. Let

(e1, . . . , en) = (ε1, . . . , εn)P

for some n× n matrix.

(a) Prove that P is an invertible matrix.

(b) Let A be the matrix of T with respect to E and B be the matrix
of T with respect to E ′. Prove that B = PAP−1.

Solution. Proof of (a): There is also a matrix Q such
that

(ε1, . . . , εn) = (e1, . . . , en)Q.

Combining these two, we get

(e1, . . . , en) = (e1, . . . , en)QP.

Therefore QP = In and similarly, PQ = In. So, P is invert-
ible.

Proof of (b): Apply T to the equation:

(e1, . . . , en) = (ε1, . . . , εn)P.

We get

(T (e1), . . . , T (en)) = (T (ε1), . . . , T (εn))P.

We also have

(T (e1), . . . , T (en)) = (e1, . . . , en)A

and
(T (ε1), . . . , T (εn)) = (ε1, . . . , εn)B.

Therefore

(e1, . . . , en)A = (ε1, . . . , εn)BP = (e1, . . . , en)P
−1BP.

Comparing, we get A = P−1BP. This completes the proof.
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11. Let V be a finite dimensional vector space over F with dim(V ) = n.

Let e1, . . . , en be a basis of V.

(a) Define the dual basis of e1, . . . , en. Also give a proof that it is
indeed a basis of V ∗.

(b) Let W ⊆ V be subspace of V. Define the annihilator W 0 of W.

Also prove that
dim(W ) + dim(W 0) = n.

(c) For two subspaces W1,W2 of V prove that W1 = W2 if and only
if W 0

1
= W 0

2
.

(d) For two subspaces W1,W2 of V prove that

(W1 +W2)
0 = W 0

1
∩W 0

2

and
(W1 ∩W2)

0 = W 0

1
+W 0

2
.
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