Theorem 0.1 Let V, W be two finite dimentional vector spaces over a field F with dim $V = \dim W = n$. Suppose $T: V \to W$ is a linear transformation. Then the following are equivalent:

- 1. T is invertible.
- 2. T is nonsingular. (That means $(T(v) = 0) \Rightarrow (v = 0)$.)
- 3. T is onto.
- 4. If e_1, e_2, \ldots, e_n is a basis of V then $T(e_1), T(e_2), \ldots, T(e_n)$ is a basis of W.
- 5. There is a basis e_1, e_2, \ldots, e_n of V such that $T(e_1), T(e_2), \ldots, T(e_n)$ is a basis of W.

Proof. $(1) \Rightarrow (2)$: Obvious.

 $(2) \Rightarrow (3)$: Suppose e_1, e_2, \ldots, e_n is a basis of V.

Claim that $T(e_1), T(e_2), \ldots, T(e_n)$ is a basis of W. Supppose $a_1T(e_1)+$ $a_2T(e_2)+\cdots+a_nT(e_n)=0$ for some $a_i \in F$. Then $T(a_1e_1+a_2e_2+\cdots+a_n)$ a_ne_n) = $a_1T(e_1)+a_2T(e_2)+\cdots+a_nT(e_n)=0$. Since T is nonsingular $a_1e_1+a_2e_2+\cdots+a_ne_n=0$. Since e_1,\ldots,e_n are linearly independent, $a_i = 0$ for $i = 1, 2, ..., n$. So, $T(e_1), T(e_2), ..., T(e_n)$ are linearly independent. Since, dim $W = n$, indeed $T(e_1), T(e_2), \ldots, T(e_n)$ is a basis of W. Therefore $W \subseteq Span(T(e_1), T(e_2), \ldots, T(e_n)) = T(V)$. So, T is onto.

 $(3) \Rightarrow (1)$: Let w_1, \ldots, w_n be basis of W. Since T is onto, $T(e_i) = w_i$ for $i = 1, \ldots, n$ for some $e_i \in V$. It follows that e_1, \ldots, e_n are linearly independent and hence a basis of V, because dim $V = n$.

Now, suppose $T(v) = 0$ for some $v \in V$. Then $v = a_1 e_1 + \cdots + a_n e_n$ for some $a_i \in F$. Apply T and get $0 = a_1T(e_1) + \cdots + a_nT(e_n) =$ $a_1w_1 + \cdots + a_nw_n$. Therefore $a_i = 0$ for $i = 1, \ldots, n$ and hence $v = 0$. So, T is also nonsingular and hence T is an isomorphism.

 $(3) \Rightarrow (4)$: Since T is onto, $W = Span{T(e_1), T(e_2), \ldots, T(e_n)}$. Since dim $W = n$, indeed, $T(e_1), T(e_2), \ldots, T(e_n)$ is a basis of W and hence linearly independent.

 $(4) \Rightarrow (5)$: Let e_1, \ldots, e_n ne any basis of V. By (4) , we have, $T(e_1), T(e_2), \ldots, T(e_n)$ is a basis of W.

 $(5) \Rightarrow (3) : By (5)$, there is a basis e_1, \ldots, e_n of V such that $T(e_1), T(e_2), \ldots, T(e_n)$ is a basis of W. Then, given any $w \in W$, we have $w = a_1T(e_1) + \cdots + a_nT(e_n) = T(a_1e_1 + \cdots + a_ne_n)$. Therefore $w \in T(W)$ and T is onto.