Transpose : Linear Algebra Notes

Satya Mandal

September 22, 2005

Let $\mathbb F$ be a filed and V be vector space over F with $\dim(V) =$ $n < \infty$.

Definition 0.1 Let V, W be two vector spaces over \mathbb{F} and

 $T: V \to W$

be a linear trancformation. We define a map

 $T^t:W^*\to V^*$

by defining $T^t(f) = f \circ T : V \to \mathbb{F}$ for $f \in W^*$. Diagramatically:

$$
V \xrightarrow{T} W
$$

\n
$$
T^{t}(f) \searrow \searrow^{f}
$$

\n
$$
F
$$

We say that T^t is the transpose of T. Note that the transpose T^t is linear transformation.

Theorem 0.1 Let V, W be two finite dimensional vector spaces over \mathbb{F} , with $\dim(V) = n$ and $\dim(W) = m$. Let

$$
T: V \to W
$$

be a linear transformation. Assume e_1, \ldots, e^n is a basis of V and $\epsilon_1, \ldots, \epsilon_m$ is a basis of W. Suppose A is the matrix of T with respect to these two bases. Then the transpose A^t is the matrix of T^t with respect to the dual bases ϵ_1^* $\epsilon_1^*,\ldots,\epsilon_m^*$ of W^* and e_1^* i_1^*, \ldots, e_n^* of V^* .

Proof. We have

$$
(T(e_1),\ldots,T(e_n))=(\epsilon_1,\ldots,\epsilon_m)A.
$$

Write $A = (a_{ij})$. Apply, for example, ϵ_1^* $i₁$ to the above equation, we get

$$
(\epsilon_1^*(T(e_1)), \ldots, \epsilon_1^*(T(e_n))) = (1, 0, \ldots, 0)A = (a_{11}, \ldots, a_{1n}).
$$

This means that

$$
T^{t}(\epsilon_1^*) = (e_1^*, \ldots, e_n^*) \left(\begin{array}{c} a_{11} \\ a_{12} \\ \ldots \\ a_{1n} \end{array} \right).
$$

Similarly, for $i = 1, \ldots, m$, we work with ϵ_i^* i ^{*}, and get

$$
T^{t}(\epsilon_i^*) = (e_1^*, \ldots, e_n^*) \begin{pmatrix} a_{i1} \\ a_{i2} \\ \ldots \\ a_{in} \end{pmatrix}.
$$

Therefore,

$$
(T^t(\epsilon_1^*), \dots, T^t(\epsilon_m^*)) = (e_1^*, \dots, e_n^*)A^t.
$$

Hence A^t is the matrix of T^t , with respect to these dual bases. So, the proof is complete.

Theorem 0.2 Let V, W be two finite dimensional vector spaces over \mathbb{F} , with $\dim(V) = n$ and $\dim(W) = m$. Let

$$
T: V \to W
$$

be a linear transformation.

1. Let $\mathcal{R} = T(V)$ be the range of T and N be the null space of the transpose T^t . Then the null space

$$
\mathcal{N}=ann(\mathcal{R})
$$

- 2. $rank(T) = rank(T^t)$.
- 3. Also range(T^t) = ann(N_T), where N_T is the null space of T.

Proof. To prove (1), we have null space of $T^t = \mathcal{N} = \{f \in W^* :$ $T^t(f) = 0$ = {f ∈ W^{*} : foT = 0} = {f ∈ W^{*} : f(R) = 0} = $ann(\mathcal{R})$.

To prove (2), note that

$$
\dim(W) = \dim(\mathcal{R}) + \dim(ann\mathcal{R}) = rank(T) + \dim(\mathcal{N})
$$

and

$$
\dim(W) = \dim(W^*) = rank(T^t) + \dim(\mathcal{N}).
$$

Therefore $rank(T) = rank(T^t)$ and the proof of (2) is complete. Proof of (3) is similar to that of (1).

Theorem 0.3 Let A be an $m \times n$ matrix with entries in \mathbb{F} . Then $Row-rank(A) = Column-rank(A).$

Proof. Let $T : \mathbb{F}^n \to \mathbb{F}^m$ be the linear transformation given by $T(X) = AX$. Observe that $T(\mathbb{F}^n) =$ the row space of A.

By above theorem $\dim(T(X)) = rank(T) = rank(T^t)$. So, Row $rank(A) = rank(T) = rank(T^t) = Row - rank(A^t) = column$ $rank(A)$. Therefore the proof is complete.

Remark 0.1 One should try a direct proof of this theorem.