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13 Homomorphisms

In this section the author defines group homomorphisms. I already defined
homomorphisms of groups, but did not work with them.

In general, "morphism" refers to maps f : X −→ Y of objects with
certain structures that respects the structure. We already defined the
homomorhisms of binary structures. In set theory, morphisms f : X −→ Y
are just the set-maps. In topology, morphisms f : X −→ Y are called the
continuous functions. In algebra morphisms are called "homomorphisms". In
this textbook, homomorhisms of binary structures were already defined. You
also know about "linear homomorphisms" in the category of vectors spaces.

In this section G,G′ will denote two groups. We use multiplication nota-
tions. The identity of G,G′ will be denoted by e, e′, respectively.

Definition 13.1. We have the following definitions:

1. (Recall) a map ϕ : G −→ G′ of groups G,G′, is called a homomorphism,

if

∀ a, b ∈ G ϕ(ab) = ϕ(a)ϕ(b).
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2. Let ϕ : G −→ G′ be a homomorphism of groups. Then, image of ϕ is

defined by ϕ(G) = {ϕ(g) : g ∈ G}.

3. Let ϕ : G −→ G′ be a homomorphism of groups. Then, the kernel of

ϕ is defined as ker(ϕ) = ϕ−1({e′}) = {g ∈ G : ϕ(g) = e′}.

Theorem 13.2. Let ϕ : G −→ G′ be homomorphism of groups.

1. Then, the image ϕ(G) is a subgroup of G′.

2. And, the kernel ker(ϕ) is a subgroup of G.

Proof. Exercise.

The Trivial Homomorphisms:

1. Let G,G′ be groups. Define

ϕ : G −→ G′ by ϕ(a) = e′ ∀a ∈ G.

Proof. Clearly, ϕ(ab) = e′ = e′e′ = ϕ(a)ϕ(b). The proof is complete.

2. Then identity map I : G −→ G given by I(a) = a ∀a ∈ G is a
homomorphism.

Reading Assignment:Read Examples 13.3-13.10. This is very impor-
tant. I will run through them.

Example 13.3 (13.3). Let ϕ : Sn −→ Z2 be define as

ϕ(σ) =

{

0 if σ is even

1 if σ is odd

1. Note, ϕ is surjective.

2. The kernel ker(ϕ) = An.
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Example 13.4 (13.4). Let F = C([0, 1]) be the additive group of all con-

tinuous real valued functions and c ∈ [0, 1] be fixed point. Let

ϕ : F −→ R be defined by ϕ(f) = f(c)

(to be called the evaluation map, at c). That means, ϕ(f) = f(c) for f ∈ F .

Then ϕ is a homomorphism.

Example 13.5 (13.5). Let A be an n×n matrix. Then the map R
n −→ R

n

given by ϕ(x) = Ax is a homomorphism from the additive group R
n to itself.

Remark. Note, a vector space V is a group under addition.

Example 13.6 (13.6). Let GLn(R) be the multiplicative group of invertible

matrices of order n with coefficients in R. Then the determinant map

det : GLn(R) −→ R
∗ is a homomorphism.

1. This map is onto.

2. The kernel of the determinant homomorphisn is SLn(R), the matrices

of determinat 1.

3. This is the only example, in this list, with non-commutative groups,

other than the symmetric group Sn (13.3).

Exercise 13.7 (13.7). Describe all the homomorphisms ϕ : Z −→ Z.

Example 13.8. Projection πi to the ith−coordinate of the direct product of

groups is a homomorphism.

πi : G1 ×G2 × · · · ×Gn −→ Gi (g1, g2, . . . , gn) 7→ gi.

Example 13.9 (13.9). Let F = C([0, 1]) be the additive group of all contin-

uous real valued functions. The integration function

∆ : C([0, 1]) −→ R given by f 7→

∫

1

0

f(x)dx
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is a homomorphism of groups.

Question. What is the kernel of this homomorphism?

Question. Could we formulate a similar example of a group homomorphim

using derivative f 7→ df

dx
?

Example 13.10 (13.10 Reduction Modulo n). Let

γ : Z −→ Zn be defined by γ(r) = r.

Then, γ is a homomorphism.

Question. What is the kernel of this homomorphism?
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13.1 Properties of Homomorphisms

Theorem 13.11. Let f : G −→ G′ be a homomorphism of groups. (As

above, e, e′ will denote the identity of G and G′ respectively.) Then,

1. f(e) = e′.

2. ∀a ∈ G, we have f(a−1) = f(a)−1.

3. If H is a subgroup of G then f(H) is a subgroup of G′.

4. The kernel ker(f) is a subgroup of G.

5. If K is a subgroup of G′ then f−1(K) is a subgroup of G.

Proof. The proof is routine.

1. We have f(e) = f(ee) = f(e)f(e). By cancellation, (1) is established.

2. We have

e′ = f(e) = f(aa−1) = f(a)f(a−1), similarly e′ = f(a−1)f(a).

So, (2) is established.

3. We have e′ = f(e) ∈ f(H). So, e′ is also an identity of f(H). Let
y ∈ f(H). Then, y = f(a) for some a ∈ H. So, From (2), y−1 =
f(a−1) ∈ f(H), because a−1 ∈ H. So, (3) is established.

4. (4) follows from (5).

5. Now proeve (5). First, e′ = f(e) ∈ K. So, e ∈ f−1(K). Let a ∈
f−1(K). So, f(a) ∈ K. So, f(a−1) = f(a)−1 ∈ K. So, a−1 ∈ f−1(K).
So, (4) is established.

The proof is complete.
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Theorem 13.12. Let f : G −→ G′ be a homomorphism of groups. Let

H = ker(f) and a ∈ G. Then,

f−1({f(a)}) = aH = Ha.

In particular, the left and right cosets are same.

Proof. Recall (defnition from §0) that f−1({f(a)}) = {x ∈ G : f(x) = f(a)}.
Now,

x ∈ f−1({f(a)}) ⇐⇒ f(x) = f(a) ⇐⇒ f(a−1x) = f(a−1)f(x) = e′

⇐⇒ a−1x ∈ ker(f) = H ⇐⇒ x ∈ aH.

So,
f−1({f(a)}) ⊆ aH and aH ⊆ f−1({f(a)}).

So, f−1({f(a)}) = aH. Similarly, f−1({f(a)}) = Ha. The proof is complete.

Example 13.13 (13.16). The absolute value (length) function

ab : C∗ −→ R
+ z 7→ |z|

is a groups homomorphism, from the multiplicative group of nonzero complex

numbers to the multiplicative group of positive real numbers.

1. The kernel of this homomorphism is ab−1{1} = U is the unit circle.

2. Also ab−1{r} = Cr is the circle of radius r. This is the left coset

Cr = zU for any z ∈ C with |z| = r.

Example 13.14 (13.17). Let D(R) be the additive group of all differentiable

functions, f : R −→ R, with continuous derivative. Let F be the additive

group of all continuous functions f : R −→ R. Let

∆ : D(R) −→ F be defined by ∆(f) =
df

dx
.

1. Then, ∆ is a homomorphism.
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2. Then ker(∆) = {f ∈ D(R) : df

dx
= 0}, which is the set of all constant

functions C.

3. The coset of a function g ∈ D(R) is
{

f ∈ D(R) :
df

dx
= g′

}

= {g + c : c ∈ R} = g + C.

Corollary 13.15. Let ϕ : G −→ G′ be a homomorphism of groups. Then

ϕ is injective if and only if ker(ϕ) = {e}. (Therefore, from now on, to check

that ϕ is injective, we would only check.)

ϕ(g) = e′ =⇒ g = e.

Proof. (⇒): Suppose ϕ is injective. Let x ∈ ker(ϕ). Then ϕ(x) = e′ = ϕ(e).
So, x = e. So, it is established that ker(ϕ) = {e}.

(⇐): Suppose ker(ϕ) = {e}. We want to prove ϕ is injective. Let ϕ(x) =
ϕ(y). Then, ϕ(xy−1) = e′. So, xy−1 ∈ ker(ϕ) = {e} or xy−1 = e. So, x = y.
The proof is complete.

Corollary 13.16. Let ϕ : G −→ G′ be a mapping of groups. To check that

ϕ is an isomorphism, we have to do the following:

1. Prove ϕ is a homomorphism.

2. Show ker(ϕ) = {e}

3. Show ϕ is onto.

Normal Subgroups:

Definition 13.17. Let G is a group and H be a subgroup of G. We say that

H is a normal subgroup of G if

gH = Hg ∀ g ∈ G.

If follows from (13.12) that kernel of any homomorphism is normal.
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14 Factor Groups

Given a normal subgroup H of G, we define a group structure of the set
of (left) cosets of H. I wrote "left" within parenthesis, because for normal
subgroups, the left cosets and the right cosets are same.

The textbook gives more than two pages of motivational discussison.

Remark/Prelude: Let me provide my prelude for "factor" groups. "Factor
groups" would also be referred to as the "quotient group", in future. Given
an object G is a category C and a subobject H of G, there will be an attempt
to define the "quotient object" G/H. For example, in topology, quetient of
the inteval G = [0, 1] by the subobject {0, 1} is the circle.
In group theory, we can define factor groups G/H, only when H is a normal
subgroup of G, as follows.

Definition 14.1. Let G is a group and H is a normal subgroup of G.

1. Let G/H denote the set of all left (right) cosets of H in G. "G/H" is

read as "G mod H" or "G modulo H"

2. On the set G/H define a binary operation on G/H as follows:

aH ∗ bH := (ab)H.

It seems, this operation depends on the choices of repersentatives a

from aH and b from bH. For a definition to make sense, we need to

show that it does not depend on such choices of representativs.

So, let aH = xH and bH = yH. We will show (ab)H = (xy)H. First,

since x ∈ aH, y ∈ bH we have x = ah1, y = bh2 for some h1, h2 ∈ H.

So, xy = ah1bh2.

Since Hb = bH (why?) we have h1b = bh3 for some h3 ∈ H. So,

xy = ah1bh2 = ab(h3h2) ∈ abH. So, (xy)H ⊆ (ab)H.

Similalry, (ab)H ⊆ (xy)H. So, (ab)H = (xy)H.

Therefore, this binary operation on G/H is well defined.
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3. Notation. Since a(bH) = (ab)H, we will write abH := (ab)H.

4. It follows, G/H is a group under this binary operation.

Proof. We check all the conditions:

(a) The opertion is well defined and G/H is closed under this opera-

tion.

(b) (Assiciative): We have

(aH∗bH)∗cH = (abH)∗cH = abcH = (aH)(bcH) = (aH)(bH∗cH).

(c) (Identity): eH = H is the identity: (eH)(aH) = aH = (aH)(eH)

(d) (Inverse): The inverse of aH is a−1H:

(aH)(a−1H) = (aa−1)H = H and (a−1H)(aH) = (a−1a)H = H.

So, it is established that G/H is a group under this binary operation.

The proof is complete.

This group G/H is called the factor/quotient group of G by H.

14.1 Fundamental Homomorphism Theorem

Theorem 14.2 (14.9). Let H be a normal subgroup of G. Then, the map

γ : G −→ G/H defined by γ(a) = aH

is a group homomorphism. Further, ker(γ) = H.

Proof. Clearly,

γ(ab) = abH = (ah)(bH) = γ(a)γ(b).

So, γ is a homomorphism.

Also, clearly, H ⊆ ker(γ). If a ∈ ker(γ) then γ(a) = aH = H. So, a ∈ H.
Therefore, H ⊆ ker(γ). So, H = ker(γ). The proof is complete.

9



Theorem 14.3 (14.11). Let ϕ : G −→ G′ be a homomorphism of groups

and H = ker(ϕ). Let γ : G −→ G/H be the "canonical" homomorphism

defined above. Then,

1. There is a homomorhism f : G/H −→ G′ such that ϕ = fγ. Dia-

gramtically,

G
ϕ

//

γ

��

G′

G/H
f

<<
②

②

②

②

commutes.

We say, ϕ factors through G/H.

2. In fact, f is injective.

3. f induces and isomorphism G/H
∼

−→ ϕ(G) from G/H to image of ϕ.

Proof. First, define f : G/H −→ G′ by f(aH) = ϕ(a).

1. To see f is well defined, let xH = aH. So, a ∈ aH and x = ah for
some h ∈ H. So,

ϕ(x) = ϕ(ah) = ϕ(a)ϕ(h) = ϕ(a)e′ = ϕ(a).

So, f is well defined. Also

f((aH)(bH)) = f(abH) = ϕ(ab) = ϕ(a)ϕ(b) == f(aH)f(bH).

So, f is a well defined homomorphism.

2. Let f(aH) = e′, So, ϕ(a) = e′ and a ∈ ker(ϕ) = H, which is the
identity of G/H. So, by (13.15) f is injective.

3. Clealy, image of f is ϕ(G). So, f is bijective from G/H to ϕ(G), hence
and isomorphism.

The proof is complete.
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Corollary 14.4 (Extra). Let ϕ : G −→ G′ be a homomorphism of groups

and K be a normal subgroup of G and K ⊆ ker(ϕ). Let γ : G −→ G/K

be the "canonical" homomorphism defined above. Then, there is a homo-

morhism f : G/K −→ G′ such that ϕ = fγ. Diagramtically,

G
ϕ

//

γ

��

G′

G/K
f

<<
②

②

②

②

commutes.

We say, ϕ factors through G/K.

Proof. Similar to the above.
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14.2 Normal Subgroups and Inner Automorphisms

We give different characterizations of normal subgroups. Let me introduce
some obvious notations:

Notations 14.5. Let G be a group and S, T are subsets of G. Define

1.

ST = {gh : g ∈ S, h ∈ T}

ST is a subset of G.

2. So, gH = {g}H.

3. Similarly, we define product STU of subsets of G.

Theorem 14.6. Let H be a subgroup fo G. Then the following conditions

are equivalent:

1. H is a normal sugroup of G.

2. gHg−1 = H ∀g ∈ G.

3. gHg−1 ⊆ H ∀g ∈ G.

Proof. It is obvious that (1) =⇒ (2) =⇒ (3). Now suppose (3) holds. So,
For g ∈ G we have gHg−1 ⊆ H. So, gH ⊆ Hg. Also, the given equation,
when applied to g−1 we have g−1Hg ⊆ H. So, Hg ⊆ gH. So, gH = Hg and
(1) is established. The proof is complete.

Example 14.7 (14.14). Let G be a commutative group. Then, any subgroup

H is a normal subgroup of G.

Definition 14.8. Let G be a group.

1. A homomorphism f : G −→ G is called and Endomorphism of G.

2. An isomorphism f : G −→ G is called and Automorphism of G.
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3. For g ∈ G, define ig : G −→ G by ig(x) = gxg−1 for all x ∈ G. Then

ig is an automorphism of G. Such an automorphism is called an inner

automorphism of G.

4. Note, a subgroup of G is normal if and only if ig(H) = H ∀g ∈ G.
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15 Factor Group Computation and Simple Gro-

pus

In this section, we discuss some examples.

Example 15.1 (15.2 Edited). (A trivial example) Let G be a group. Then

{e} is a normal subgroup of G. Also, G
∼

−→ G/{e} is an isomorphism.

Example 15.2 (15.3 edited). (A trivial example) Let G be a group. Then,

G itself is normal subgroup of G. Also G/G ≈ {1}, the one element group.

Example 15.3 (15.4). The alternating geoup An is a normal subgroups of

the symmetric group Sn. Also, Sn/An ≈ Z2.

Example 15.4 (15.7). Compute (Z4 × Z6)/〈(0, 1)〉 ≈ Z4.

Example 15.5 (15.8). Let H,K be two group and G = H×K. Then H×{e}

is normal in G and G/H × {e} ≈ K.

Theorem 15.6. A factor groups of a cyclic group is cyclic.

Example 15.7 (15.10). Compute (Z4 × Z6)/〈(0, 2)〉 ≈ Z4 × Z2.

Example 15.8 (15.11). Compute (Z4 × Z6)/〈(2, 3)〉 ≈ Z4 × Z3 ≈ Z12.

Example 15.9 (15.12). Compute (Z× Z)/〈(1, 1)〉
∼

−→ Z given by (x, y) 7→

x− y.

If diagrams would help, see the textbook.
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15.1 Simple Groups

Definition 15.10. A group is called simple, if it is nontrivial and has no

nonrivial normal subgroups.

We skip the rest of this subsection.
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15.2 Center and Commutator Subgroups

We define two important subgroups of a group G.

Definition 15.11. Let G be a group. Define the center Z(G) of G as

follows:

Z(G) = {g ∈ G : zg = gz ∀g ∈ G}.

1. So, the center Z(G) consists of all elements z ∈ G that commutes with

every other elements og G.

2. First the identity e ∈ Z(G).

3. It is easy to check that Z(G) is a subgroup of G and it is abelian.

Proof. Exercise

4. If G is abelian, then Z(G) = G.

Remark. Let G be a group and a, b ∈ G. Then

ab = ba ⇐⇒ aba−1b−1 = e.

Definition 15.12. Let G be a group.

1. For a, b ∈ G write [a, b] := aba−1b−1. Such an expression is called a

commutator of G. Note, [a, b]−1 = [b, a] is also a commutator.

2. The commutator subgroup of G is defined to be the subgroup [G : G]

generated by all the commutators [a, b] of G. So, the commutator:

[G,G] = {[a1, b1][a2, b2] · · · [ak, bk] : k ≥ 0 and ai.bi ∈ G}

=

{

k
∏

i=1

[ai, bi] : k ≥ 0 and ai.bi ∈ G

}
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Proof. Let the RHS be donoted bt S. Obviously, S contains all the

commutatiors. S is closed under multiplication. e = [e, e] ∈ S. Also,

S is closed under inverse. So, S is a subgroup.

Also, if H is subgroup, containing all the commutators then S ⊆ H.

So, [G,G] = S. The proof is complete.

3. If G is commutative then [G,G] = {e}.

Theorem 15.13. Let G be a group. Then,

1. [G,G] is a normal subgroup of G.

2. G/[G,G] is commutative.

3. If N is a normal subgroup of G and G/N is abelian, then [G,G] ⊆ N .

Proof.

1. let g ∈ G. We will prove g−1[G,G]g ⊆ [G,G]. First,

g−1[a, b]g = g−1(aba−1b−1)g = (g−1aba−1)e(b−1g)

= (g−1aba−1)(gb−1bg−1)(b−1g) = ((g−1a)b(g−1a)−1b−1)(bg−1b−1g)

[g−1a, b][b, g−1] ∈ [G,G].

Now let x ∈ [G,G]. Then x =
∏k

i=1
[ai, bi] for some ai, bi ∈ G. So,

g−1xg =
k
∏

i=1

(
(

g−1[ai, bi]g
)

Since each factor g−1[ai, bi]g ∈ [G,G] we have g−1xg ∈ [G,G]. So, it is
established that g−1[G,G]g ⊆ [G,G]. So, [G,G] is a normal subgroup
of G and (1) is proved.

2. We want to prove (a[G,G])(b[G,G]) = (b[G,G])(a[G,G]). That means,
to prove ab[G,G] = ba[G,G]. That means, to prove a−1b−1ab[G,G] =
[G,G], which is true because a−1b−1ab ∈ [G,G]. So, G/[G,G] is com-
mutative and (2) is established.
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3. For a, b ∈ G we have (aN)(bN) = (bN)(aN) or abN = baN or
a−1b−1abN = N . So, [a−1, b−1] = a−1b−1ab ∈ N . Replacing a by a−1

and b by b−1 we have [a, b] ∈ N for all a, b ∈ G.. So, each commutator
of G is in N so, [G,G] ⊆ N . So, (3) is established.

The proof is complete.
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16 Group Action of Sets

Let X ba a set. Let G be the group of all bijections ϕ : X −→ X. So,
G = {ϕ : ϕ : X −→ X a bijection}. Then, G acts on X in the the following
sense:

ϕ ∈ G acts on X : x 7→ ϕ(x) ∈ X.

In subsequent notations, ϕ(x) =: ϕ ∗ x be viewed as some kind of "multipli-
cation".

Definition 16.1. Let G be a group and X be a set. Let ∗ : G ×X −→ X

be a function. For x ∈ X, g ∈ G we use the notation gx := g ∗ x. Such a

map ∗ is called an action of G on X if

1. ex = x ∀ x ∈ X.

2. For g1, g2 ∈ G and x ∈ X we have (g1g2)x = g1(g2x).

In this case, we also say that X is a G−set.

Example 16.2 (16.2). Let S(X) denote the set of all permutaions (bijec-

tions) σ : X −→ X. Let H be a subgroup of S(X). Then, X is a H−set

by the action ∗ : H ×X −→ X that sends (σ, x) 7→ σ(x). So, we will write

σx := σ(x).

Theorem 16.3. Let G be a group and X be a G−set. For g ∈ G define

σg : X −→ X by σg(x) = gx for x ∈ X.

1. Then, σg is a permutation of X.

2. The map ϕ : G −→ S(X) define by ϕ(g) = σg is a group homomor-

phism.
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Proof. In fact, inverse of σg is σg−1 . For x ∈ X we have

σg−1oσg(x) = σg−1(gx) = g−1(gx) = (g−1g)x = ex = x.

So, σg−1oσg = IX and similalry, σgoσg−1 = IX . So, σg has a (set theoretic)
inverse. Therefore, σg is a bijection (permutation). So, (1) is established.

Fors, g1, g2 ∈ G we have ϕ(g1g2) = σg1g2 For x ∈ X we have

σg1g2(x) = (g1g2)x = g1(g2x) = σg1oσg2(x).

So,
ϕ(g1g2) = σg1g2 = σg1oσg2 = ϕ(g1)ϕ(g2).

Therefore, ϕ is a homomorphism. The proof is complete.

Definition 16.4. Let X be a G−set.

1. We say G acts faithfully on X, if

for g ∈ G, gx = x ∀ x ∈ X =⇒ g = e.

In words, if only e leaves every element of X fixed.

2. We say G is transitive, if for each x1, x2 ∈ X, there is an element

g ∈ G such that gx1 = x2.

Lemma 16.5. Let X be a G−set. Let N = {g ∈ G : gx = x ∀ x ∈ X}.

That means, N is the subgroup of G that acts trivially (as identity) on X.

Then

1. N is a normal subgroup of G.

2. The action of G on X induces an action of G/N on X.

3. The action of G/N on X is faithful.

Proof.
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1. First, let g, h ∈ N . Then, for x ∈ X we have ghx = gx = x. So, gh ∈ N
and N is closed under multiplication. By definition of the action, the
identity e ∈ N . Also, for g ∈ N and x ∈ X we have gx = x. Apply
g−1, we have g−1(gx) = g−1x or x = g−1x. So, g−1 ∈ N. So, N is also
closed under inverse, hence is a subgroup of G.

Now let g ∈ G and h ∈ N . For x ∈ X we have (g−1hg)x = g−1gx =
ex = x. So, g−1Ng ⊆ N and N is a normal subgroup of G. So, (1) is
established.

2. For gN ∈ G/N define the action gN ∗ x = gx for x ∈ X. We, first
need to show that this is well defined. Suppose gN = fN . Then
f = gh for some h ∈ N . So, for x ∈ X, we have fc = ghx = gx. So,
gN ∗ x = gx is well defined. Clearly, for x ∈ X, N ∗ x = e ∗ x = x and
(gNfN) ∗ x = (gfN) ∗ x = (gf)x = g ∗ (f ∗ x) = gN(fN ∗ x). This
establishes (2) that this is a G−action on X.

3. Now suppose gN ∗ x = x for some g ∈ G and for all x ∈ X. This
means, gx = x ∀x ∈ X. So, g ∈ N and gN = N the identity in G/N .
So, the action of G/N is faithful. So, (3) is established.

The proof is complete.

Example 16.6 (16.4, 16.5). Let G be a group and H be a subgroup. Then

G is a H−set. For g ∈ H and x ∈ G the action is defined by g ∗ x = gx.

In particular, G is a G−set.

Example 16.7 (16.6). Let V be a vector space of R. Then V is a R∗−set

by scalar multiplication.

Example 16.8 (16.8). Read about the action of D4 on the sides, diagonals

and horizonatal and vertical axes.
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16.1 Isotropy Subgroups

.

Definition 16.9. Let X be a G−set and x ∈ X, g ∈ G. Define

Xg = {z ∈ X : gz = z} and Gx = {f ∈ G : fx = x}.

Xg is the subset of fixed points of g. Gx is the subgroup of elements that leave

x-fixed.

Theorem 16.10. Let X be a G−set and x ∈ X. Then Gx is a normal

subgroup of G.

Proof. The proof is simialr to (16.5).

Definition 16.11. Let X be a G−set and x ∈ X. Then, Gx is called the

isotropy subgroup of x.
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16.2 Orbits

Theorem 16.12. Let X be a G−set. For a, b ∈ X define a ∼ b if there is a

g ∈ G such that ga = b. Then, ∼ is an equivalence relation on X.

Proof. We check the three conditions.

1. (Reflexive): For x ∈ X we have ex = x. So, x ∼ X.

2. Symmetric): Suppose x ∼ y. Then gx = y for some g ∈ G. Multi-
plying by g−1, we have x = g−1y. So, y ∼ x. So, ∼ is reflexive.

3. (Transitive): Suppose x ∼ y ∼ Z. Then, fx = y, gy = z for some
f, g ∈ G. So, gfx = z. So, x ∼ z and ∼ is transitive.

The proof is complete.

Definition 16.13. Let X be a G−set and x ∈ X. The equivalence class of x

is called the orbit of x under G. In fact, the orbit of x is Gx = {gx : g ∈ G}.

Notations. Recall, the cardinality of a set X is denoted by |X|. For a
subgroup H of G, the index of H in G is denoted by (G : H).

Theorem 16.14. Let X be a G−set and x ∈ X. Then

1. |Gx| = (G : Gx).

2. If G is finite, then |Gx| divides |G|.

Proof. (Here x is fixed.) Let G/Gx denote the set of left cosets of Gx. (Gx

may not be normal in G.) Define the map

ϕ : G/Gx −→ Gx by ϕ(gGx) = gx.

Then, ϕ is a well defined bijection. To see this let gGx = fGx. Then f = gh
for some h ∈ Gx. Since h ∈ Gx, hx = x. So, fx = (gh)x = g(hx) = gx. This
establishes that ϕ is well defined.
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Give y ∈ Gx we have y = gx for some g ∈ G. So, ϕ(gGx) = gx = y. So, ϕ
is onto. Now let ϕ(gGx) = ϕ(fGx). That means, gx = fx. So, (f−1g)x = x.
So, f−1g ∈ Gx and hence gGx = fGx. So, ϕ is one to one (injective). So, ϕ
is bijective. Therefore |Gx| = (G : Gx).

Since (G : Gx) divides |G|, so does |Gx|. The proof is complete.

24



17 Application of G−sets to Counting

We skip this section, for now.
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