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26 Homomorphisms and Factor Rings

As always, a homomorphism f : X −→ Y between two sets X, Y with a

given structure, is a map f that respects the structure. Accordingly,
homomorphisms of rings was define in §18, which we reall.

Definition 26.1. A map ϕ : R −→ R′ from a ring R to another ring R′ is

called a homomorphism of rings, if

∀ a, b ∈ R ϕ(a+b) = ϕ(a)+ϕ(b), ϕ(ab) = ϕ(a)ϕ(b), and also ϕ(1) = 1.

Example 26.2 (26.2 Projection Homomorphism). Let R1, . . . , Rn be rings.

Then the ith−projection π : R1 ×R2 × · · · × Rn −→ Ri sending

(r1, r2, . . . , rn) 7→ ri is a homomorphism.

26.1 Properties of Homomorphism

In §13, we discussed the properties of group homomorphisms. In this section
we do the same for ring homomorphisms. Given most of the results in §13
on group homomorphisms, there is a version for the ring homomorphisms.
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Generic Notations. Unless there is risk of confussion, for any ring R, its
additive identity will be denoted by zero 0 and multiplicatiove identity will
be denoted by 1.

Theorem 26.3 (Analogue of 13.12). Let ϕ : R −→ R′ be a ring homomor-

phism. Then,

1. ϕ(0) = 0.

2. ϕ(R) is a subring of R′.

3. If S ′ is a subring of R′, then ϕ−1(S) is a subring of R.

Proof. Routine, like the proof of theorem 13.12. Read it from the textbook.

Caution: Contrary to the convention in the textbook, all rings in this class
that unlity 1.

Definition 26.4. Let ϕ : R −→ R′ be a ring homomorphism. As in group

theory, we define kernel of ϕ as

ker(ϕ) = ϕ−1({0}).

The kernel ker(ϕ) has the follwoing properties:

1. ker(ϕ) is a subgroup of the additive group R.

2. Suppose x ∈ ker(ϕ) and a ∈ R. Then ax ∈ ker(ϕ) and xa ∈ ker(ϕ).

Proof. Note, a ring homomorphism is, in particular, a homomorphism of

the additive group. So, (1) follows from the corresponding theorem on group

homomorphisms (show it is closed under addition, and the negative). We

also have

ϕ(ax) = ϕ(a)ϕ(x) = ϕ(a) · 0 = 0, similalry, ϕ(xa) = 0.

So, ax, xa ∈ ker(ϕ). The proof is complete.
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Remark, ignoreable: I consider such definitions of kernel, to be "ad hoc",
while this is the approprite defintion at this level, or for this course. In the
language of category theory all "kernels", "cokernel", "images" are defined
in a unified manner.

Theorem 26.5 (Analogue of 13.15). Let ϕ : R −→ R′ be a ring homomor-

phism and let H = ker(ϕ). Then, ϕ−1(ϕ(a)) = a + H, where a + H is the

coset of the additive subgroup H, that contains a.

Proof. Apply theorem 13.15 or repeat its proof.

Corollary 26.6 (Analogue of 13.18). ϕ : R −→ R′ be a ring homomorphism.

Then ϕ is injective if and only if ker(ϕ) = {0}.

Proof. Apply theorem 13.18 or repeat its proof.
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26.2 Factor (Quotient Rings)

Before we proceed, I want to define "ideals" of a ring, by abstracting the
properties of kernels stated in (26.4). (The textbook postpones it a little
longer).

Definition 26.7 (26.10). Let R be a ring. An additive subgroup N of R is

called an ideal of R, if

∀a ∈ R aN ⊆ N, and Na ⊆ N.

Obvious Examples and Comments:

1. By the properties of the kernels (26.4), ker(ϕ) is an ideal of R, for any

ring homomorphism ϕ : R −→ R′.

2. Trivial Examples: {0} and R are two trivial ideals of a ring R.

3. Suppose N is an ideal of a ring R. If 1 ∈ N , then N = R.

Definition 26.8. Suppose N is an ideal of a ring R.

1. An ideal N of a ring R is an additive subgroup of R. So, (left) cosets

are defined.

2. Since addition is commutative, N is a normal subgroup of R. So, left

and right cosets are same.

3. For a ∈ R, the coset is denoted by

a+N or a (when N is understood from context)

4. Set of all such cosets are denoted bt R/N . By group theory, R/N is a

commutative groups under the addition, defined, for a, b ∈ R, by

(a+N) + (b+N) = (a+ b) +N
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Lemma 26.9 (26.14). Suppose N is an ideal of a ring R. Define multipli-

cation, for a, b ∈ R, by

(a+N)(b+N) = (ab) +N.

Then, multiplication is well defined and R/N form a ring under the usual

addition and this multiplication.

Proof. Suppose a + N = x + N and b + N = y + N . We will prove
ab + N = xy + N . Now, a = x + h1, b = y + h2 for some h1, h2 ∈ H. So,
ab = xy + (xh2 + h1y + h1h2) ∈ xy + N . So, ab + N = xy + N . So, this
multiplication is well defined.

From group theory, R/N is an additive group. Regarding the multiplica-
tion

1. For a, b, c ∈ R we have

((a+N)(b+N))(c+N) = (ab+N)(c+N) = (ab)c+N

= a(bc) +N = (a+N)((b+N)(c+N)).

So, the multiplication is associative.

2. Distributivity: Also,

((a+N) + (b+N))(c+N) = (ac+ bc) +N = (ac+N) + (bc+N)

= (a+N)(c+N) + (b+N)(c+N)

Likewise,

(c+N)((a+N) + (b+N)) = (c+N)(a+N) + (c+N)(b+N).

So, distributiviy holds.

3. Also, if N 6= R, then 1 +N is the unity in R/N , because

(a+N)(1 +N) = a+N = (1 +N)(a+N).

If N = R, then R/N = {0} is the one element group.

The proof is complete.

Definition 26.10. Let R and N be above. Then the ring R/N is called the

factor ring (or quotient ring). R/N is also denoted by R
N

.
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26.3 Fundamental Homomorphism Theorem

Theorem 26.11 (Analogue of 14.9). Let N be an ideal of a ring R. Then,

γ : R −→ R/N is a homomorphism of rings.

Proof. As in group theory, for a ∈ define γ(a) = a+N ∈ R/N .

From group theory (14.9) or directly, γ is well defined and

γ(a+ b) = (a+ b) +N = (a+N) + (b+N) = γ(a) + γ(b)

Also,
γ(ab) = (ab) +N = (a+N)(b+N) = γ(a)γ(b).

Further,
γ(1) = 1 +N

is the "one" of R/N . The proof is complete.

Theorem 26.12 (26.17 Analogue of 14.11). Let ϕ : R −→ R′ be a homo-

morphism of rings and H = ker(ϕ). Let γ : R −→ R/H be the "canonical"

homomorphism defined above. Then,

1. There is a homomorhism f : R/H −→ R′ of rings, such that ϕ = fγ.

Diagramtically,

R
ϕ

//

γ

��

R′

R/H
f

<<③
③

③
③

③

commutes.

We say, ϕ factors through R/H.

2. In fact, f is injective.

3. f induces and isomorphism R/H
∼

−→ ϕ(R) from R/H to image of ϕ.

Proof. Only statement that is not group theoretic, hence does not follow
from 14.9, is that f is a ring homomorphism. (However, if asked in an exam,
you will have to give a complete proof.) So, let me give a proof, which will
be line for line repeatation of the proof of (14.9).

First, define f : R/H −→ R′ by f(a+H) = ϕ(a).
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1. To see f is well defined, let x+H = a+H. So, x ∈ a+H and x = a+h
for some h ∈ H. So,

ϕ(x) = ϕ(a+ h) = ϕ(a) + ϕ(h) = ϕ(a) + 0 = ϕ(a).

So, f is well defines. Also

f((a+H)+(b+H)) = f((a+b)+H) = ϕ(a+b) = ϕ(a)+ϕ(b)f(a)+f(b)

and

f((a+H)(b+H)) = f(ab+H) = ϕ(ab) = ϕ(a)ϕ(b)f(a)f(b)

and
f(1 +H) = ϕ(1) = 1.

So, f is a well defined ring homomorphism.

2. Let f(a + H) = 0, So, ϕ(a) = 0 and a ∈ ker(ϕ) = H, which is the
additive identity of R/H. So, by (26.6) f is injective.

3. Clealy, image of f is ϕ(R). So, f is bijective from R/H to ϕ(G), hence
an isomorphism.

The proof is complete.

Following summarizes some of the above.

Theorem 26.13 (Summary). Let R be a ring and N ⊆ R be a subset of

R. Then, N is a proper ideal of R if and only if N is the kernel of a ring

homomorphism ϕ : R −→ R′.

Proof. If ϕ : R −→ R′ is a ring homomorphism and N = ker(ϕ), then by
(26.4), N is an ideal, Since ϕ(1) = 1 1 6∈ N . So, N is a proper ideal of R.

Conversely, suppose N is a proper ideal of R. Then, N is the kernel of
the homomorphism ϕ : R −→ R/N . The proof is complete.
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26.4 Some Examples

Example 26.14 (26.19). Let n ∈ Z be an integer n ≥ 2. Then,

1. nZ is an ideal of the ring Z.

2. nZ is the kernel of the homomorphism Z −→ Zn.

Example 26.15. Let F be a ring of all continuous real valued functions on

R and a ∈ R. Let Z(a) ("Z" for "zero") be the set of all continuous functions

in F that vanish at x = a.

1. Then, Z(a) is an ideal of F .

2. In fact, Z(a) is the kernal of the evaluation homomorphism eva : F −→

R that sends f 7→ f(a)

3. By the theorem above or by direct checking eva induces an isomorphism

f : F/Z(a)
∼

−→ R, such that the diagram:

F
ϕ

//

γ

��

R

F
Z(a)

f

>> >>⑦
⑦

⑦
⑦

commutes.

More generally, let U ⊆ R be a subset. Let Z(U) denote all the continuous

functions f ∈ F that vanishes on U . Then, Z(U) is an ideal of F .

Example 26.16. Let R be a commutative ring and a ∈ R. Then Ra is an

ideal.

Example 26.17. Let R be a ring and I ⊆ R is an ideal. Then the set Mn(I)

of all n× n matrices with entries in I is an ideal of Mn(R).

Exercise 26.18. Let F be a field. Prove that Mn(R) has no nontrivial ideal.

(Note this is a noncommutative situation.)
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27 Prime and Maximal Ideals

Here are some examples showing how properties of a ring and its factor rings
may differ.

Example 27.1 (27.1, 27.10). Let p is a prime number. Then, Zp = Z

pZ
is

field, but Z is not a field.

In fact, for a positive integer n ≥ 2, Zn is a field if an only if n is a prime.

Example 27.2 (27.2). Z×Z is not an integral domain, because (1, 0)(0, 1) =

(0, 0). Let N = {(n, 0) : n ∈ Z}. Then, the map ϕ : Z×Z

N
−→ Z sending

(n, k) +N 7→ k is an isomorphism. So, Z/N is an integral domain.

27.1 Maximal ideals

Definition 27.3. Let R be a ring and M be an proper ideal of R. Then M

is said to be a maximal ideal of R, if there is no other ideal N between M

and R. That means if,

for ideal N, M ⊆ N =⇒ (N =M or N = R).

Example 27.4 (28.8). Let p be a (positive) prime integer. Then, pZ is

maximal ideal of Z.

Proof. Suppose N is an ideal of Z and pZ ⊆ N . Since N is a subgroup of

Z, there is a positive integer n such that N = nZ. Since pZ ⊆ N = nZ, we

have p = nk. So, n = or k = 1. So, N = nZ = Z or N = pZ.

Theorem 27.5 (Analogue 15.18). Let R be a commutative ring (with unity,

as always) and M be an ideal. Then

M is maximal ⇐⇒
R

M
is a field.
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Proof. (⇒): Suppose M is maximal ideal. Then, R/M is a commutative
ring. Remains to show that each nonzero element in R/M has an inverse.
Suppose a +M ∈ R/M be nonzero. So, a /∈ M . Now, write N = Ra +M
(i.e. the set {xa + m : x ∈ R,m ∈ M}). Routine checking shows N is an
ideal of R. Now, M ⊆ N , and M 6= N because a ∈ N and a /∈ M . Since M
is maximal, N = R. Therfore, 1 ∈ N = Ra+M . Write 1 = ba+m for some
b ∈ R and m ∈ M . So, 1 +M = (b +M)(a +M). Therefore, b +M is the
inverse of a+M . This completes the proof that R/M is a field.

(⇐): Now suppose R/M is field. Suppose N be an ideal and M ⊆ N and
N 6=M . Required to prove that M = R. Since N 6=M , there is a ∈ N such
that a /∈M . Therefore, a+M 6=M = 0 in R/M . Since R/M is a field, a+M
has an inverse b+M ∈ R/M . So, 1 +M = (a+M)(b+M) = ab+M . So,
1 = ab+m for some m ∈M . Since both b,m ∈ N we have 1 = ab+m ∈ N .
Therfore N = R. So, M is maximal. The proof is complete.

Corollary 27.6. A commutative ring R is a field if and only if it has no

nontrivial ideals.

Proof. (A direct proof is easier. however, let me apply the theorem.) Suppose
R is a field. Since, R ≈ R/{0}, the ideal {0} is maximal, by the theorem
above. So, other than {0}, only ideal in R. So, R has only trivial ideals.

Now suppose R has not nontrivial ideals. This means, {0} is a maximal
ideal. So, R ≈ R/{0} is a field. The proof is complete.
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27.2 Prime ideals

Maximal ideals M of commutative ring R are characterized by the prop-
erty that R/M is a field. Likewise, prime ideal N will be characterized by
the property that R/N is an integral domain. They, also also like prime

numbers. Recall,

for p ∈ Z, p ≥ 2 p is prime ⇐⇒ p|mn =⇒ (p|m or p|n).

Analogously, define:

Definition 27.7. Let R be a commutative ring and N 6= R be an ideal R.

Then, N is called a prime ideal

if for a, b ∈ R, (ab ∈ N =⇒ (either a ∈ N or b ∈ N))

Example 27.8 (27.12). Often the model of a commutative ring is Z. How-

ever, in Z, an ideal

nZ is a prime ideal ⇐⇒ nZ is a maximal ideal.

Proof. Exercise.

Example 27.9 (27.14). In Z × Z the ideal Z × {0} and {0} × Z are prime

ideals. More generally, let R be an integral domain. In R × R the ideal

R× {0} and {0} ×R are prime ideals.

Proof. We give a proof of the later statement and prove R× {0} is a prime

ideal. First, it is easy to see R× {0} an ideal and R× {0} 6= ×R.

Now suppose (a, b)(x, y) ∈ R × {0}. So, by = 0. Since R is an integral

domain, b = 0 of y = 0. So, (a, b) ∈ R× {0} or (x, y) ∈ R× {0}. The proof

is complete.
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Lemma 27.10. Let R be a commutative ring. Then,

R is an integral domain ⇐⇒ {0} is a prime ideal.

Proof. Exercise.

Actually, we do not have any interesting example untill we conisder poly-
nomial rings in at least two variables.

Example 27.11. Suppose F is an field. Let R = F [x1, . . . , xn] be the poly-

nomial ring in n indeterminate. Then,

1. {0} is a prime ideal.

2. Nr = x1R + · · ·+ xrR is a prime ideal.

3. Nn = x1R + · · ·+ xnR is a maximal ideal.

Theorem 27.12. Let R be a commutative ring and N 6= R is an ideal of R.

Then,

N is a prime ideal ⇐⇒
R

N
is an integral domain

Proof. (⇒): Suppose N is a prime ideal. Let (a + N)(b + N) = 0. Then,
ab + N = N . So, ab ∈ N . This implies a ∈ N or b ∈ N . So, a + N = 0 or
b+N = 0. So, R/N is an integral domain.

(⇐): Assume R/N is an integral domain. Suppose ab ∈ N . Then, (a +
N)(b + N) = ab + N = 0 = N . So, (a + N) = 0 or (b + N) = 0. Therefore
a ∈ N or b ∈ N . The proof is complete.

Corollary 27.13. Let R be a commutative ring. Then, any maximal ideal

is a prime ideal.

Proof. Let M be a maximal ideal. Then, R/M is a field. So, R/M is an
integra domain. So, M is a prime ideal
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27.3 Prime Fields

Theorem 27.14. Suppose R is a ring. Then there is a homomorphism

ϕ : Z −→ R defined by ϕ(n) = n · 1

Since, we assume any homomorphism sends 1 7→ 1 this is the only homo-

morphism Z −→ R.

Proof. We saw this in §18.

Recall the following definition from §19.

Definition 27.15. Let R ba a ring with unity 1 (as always). If n · 1 6= 0 for

all integsers n ≥ 2, we say R has characteristic 0.

If n ·1 = 0 for some integser n ≥ 2 then the the characteristic is defined

to be

char(R) = min{n ≥ 2 : n · 1 = 0}.

So, Z,Q,R have characteristic zero. Zn has characteristic n.

Corollary 27.16. Suppose R is a ring with char(R) = n. Then, R contains

a subring isomorphic to Zn. In particular, if char(R) = n = 0 then R

contains a subring isomorphic to Z.

Proof. Consider the homomorphism

ϕ : Z −→ R defined by ϕ(n) = n · 1

Then kernel ker(ϕ) is a sugroup (in fact ideal). So, ker(ϕ) = mZ, where (from
the proof) m is the smallest positive integer in ker(ϕ). Which means m is the
smallest positive integer such that m · 1 = 0. By definition of characterisitic
m = n = char(R).

By the fundamental theorem, there is an injective homomorphism

f :
Z

nZ
−→ R.
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So the image of f is a subring of R that is isomorphic to Zn.

When char(R) = n = 0 then ker(ϕ) = {0}. So, image of f is isomorphic
to Z. The proof is complete.

Theorem 27.17. Suppose L is a field. Then, char(L) = p is a prime or

zero.

1. If char(L) = p is prime, then L contains the field Zp.

2. If char(L) = 0, then L contains the field Q.

Proof. Again consider the homomorphism

ϕ : Z −→ L defined by ϕ(n) = n · 1

First, assume char(L) = n > 0. Let ker(ϕ) = nZ. We claim n is prime. To
see this let n = rs, with r > 0, s > 0 integers. Then 0 = ϕ(n) = ϕ(r)ϕ(s).
So, 0 = (r · 1)(r · 1). Since, L is integral domain, r · 1 = 0 or s · 1 = 0. By
minimality of n, we have r = n or s = n. So, n is a prime. So, Zn is a field.
So, R contains a field isomorphic of the field Zn.

If char(L) = 0 then ϕ : Z −→ R is injective. As we have seen in §21,
there ϕ extends to a injective homomorphism ψ : Q −→ L such that the
diagram

Z
� � //� o

ϕ
��❄

❄❄
❄❄

❄❄
❄ Q� _

ψ

��
✤
✤
✤

L

commutes and r/s 7→ (r · 1)(s · 1)−1.

The proof is complete.

Definition 27.18. Zp (with p prime) and Q are called prime fields.
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27.4 Ideals in F [x]

Definition 27.19. Follwing are some definitions.

1. Suppose R is a commutative ring and a ∈ R. The ideal

Ra = {ra : r ∈ R} is called the principal ideal generated by a. In

this textbook it is denoted by 〈a〉. (In fact, Ra is more commonly used

notation).

2. An ideal N is called a principal ideal if N = 〈a〉 for some a ∈ R.

3. A commutative ring R is called a Prinicipal Ideal Ring, if evary ideal

of R is principal.

Example 27.20 (27.22). Every ideal of Z is of the form nZ = 〈n〉. So Z is

a principal ideal ring.

Question: How did we prove it? We used the Division Algorithm. The
polynomial ring F [x] over any files F , has a Division Algorithm. So, we have
the following.

Theorem 27.21. Suppose F is a field. Then every ideal of F [x] is principal.

In other words, F [x] is a principal ideal ring.

Proof. (We will repeat the proof of (6.4) on subgroups of Z.) Let N be an
ideal of F [x]. If N = {0}, then N is principal. Assume N 6= {0}. Consider
the set,

S = {n ∈ Z : ∃ f ∈ N ∋ f 6= 0 and degree(f) = n}.

Let
d = minS, let g(x) ∈ N ∋ degree(f) = n.

If d = 0 then g is a nonzero constant in F . So, N = F [x] = 〈1〉 is principal.
So, assume d ≥ 1. We claim N = F [x]g. Since g ∈ N , we have F [x]g ⊆ N .
To see the other inclusion, let f(x) ∈ N . Then, by division algorithm

f(x) = q(x)g(x) for some q(x), r(x) ∈ F [x]
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with r(x) = 0 or degree(r(x) < d = degree(g).

Note r(x) ∈ N . By minimality of d = degree(g), we have r(x) = 0. So,
f(x) = q(x)g(x) ∈ F [x]g. Therefore N ⊆ F [x]g.

Therefore, N = F [x]g is principal. The proof is complete.

Theorem 27.22. Let F is a field and p(x) ∈ F [x] be a nonzero non-constant

polynomial. Then the principal ideal,

〈p(x)〉 is maximal ⇐⇒ p(x) is irreducible in F [x].

Proof. (⇒): Suppose 〈p(x)〉 is maximal, hence also is a prime ideal. Then
F [x]p(x) 6= F [x]. So, p(x) /∈ F . Now suppose p(x) = f(x)g(x). We need
to prove that either f(x) of g(x) is a unit. Since f(x)g(x) ∈ 〈p(x)〉, either
f(x) ∈ 〈p(x)〉 of g(x) ∈ 〈p(x)〉. Assume f(x) ∈ 〈p(x)〉. So, either f(x) =
p(x)h(x) for some h ∈ F [x]. So, p(x) = f(x)g(x) = p(x)h(x)g(x). Cancelling
h(x)g(x) = 1. So, g(x) is an unit. So, p(x) is irreducible.

(⇐): Suppose p(x) is irreducible in F [x]. Suppose N is an ideal of F [x] and
〈p(x)〉 ⊆ N . Since F [x] is principal ideal ring (see 27.21), N = 〈g(x)〉 for
some g(x) ∈ N . So, p(x) ∈ N = 〈g(x)〉. Therefore p(x) = g(x)f(x) for some
f(x). Since p(x) is irreducible, either g(x) ∈ F is a unit or f(x) ∈ F is a
unit. In the first case, N = Fx and in the second case, 〈p(x)〉 = 〈g(x)〉 = N .
So, 〈p(x)〉 is a maximal ideal. The proof is complete.

Easy translation: For any commutative ring R and r ∈ R,

x ∈ 〈r〉 ⇐⇒ r|x ⇐⇒ x is a multiple of r.

In §23 we stated the following thoerem without proof.

Theorem 27.23. Let p(x) be an irreducible polinomial in F [x]. Then, for

r(x), s(x) ∈ F [x] we have

p(x)|(r(x)s(x)) =⇒ either p(x)|r(x) or p(x)|s(x).

Proof. Suppose p(x)|(r(x)s(x)). Then r(x)s(x) = q(x)p(x) for some q(x) ∈
F [x]. So, r(x)s(x) ∈ 〈p(x)〉. Since 〈p(x)〉 is a prime ideal (in fact maximal
ideal) either r(x) ∈ 〈p(x)〉 or s(x) ∈ 〈p(x)〉. Assume r(x) ∈ 〈p(x)〉. Then
r(x) = p(x)h(x). So, p(x)|r(x). The proof is complete.
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28 Göbner Bases for ideals

Skip.
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