Part VI (§29-33) Extension Fields

Satya Mandal

University of Kansas, Lawrence KS 66045 USA

January 22

29 Introduction to Extension Fields

Example 29.1. The polynomial $f(x) = x^2 + 1$ does not have a solution in \mathbb{R} , but it has a solution in the bigger field \mathbb{C} .

The author has been working to develop similar theorems for any field F.

Definition 29.2. Let F, E be two fields. If F is a subfield of E, then E is called an extension field of F. I write $\hookrightarrow E$ is an extension of fields to mean the same.

Examples:

- 1. \mathbb{R} is an extension field of \mathbb{Q} .
- 2. \mathbb{C} is an extension field of \mathbb{Q} .
- 3. \mathbb{C} is an extension field of \mathbb{R} .
- 4. Suppose F is any field and F[x] the polynomial ring. Let F(X) be the quotient field of F[x]. Then, F(X) is an extension field of F.

The following has been author's primary goal for some time.

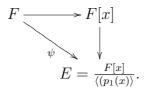
Theorem 29.3 (29.3 Kronecker's Theorem). Let F be a field and f(x) be a nonconstant polynomial in F[x]. Then there is an extension field E of F so that f(x) has a root in E.

Proof. By theorem 23.20, $f(x) = p_1(x)p_2(x)\cdots p_r(x)$, where p_i are irreducible polynomials in F[x]. Write $E = \frac{F[x]}{\langle (p_1(x)) \rangle}$. Now, $\langle (p_1(x)) \rangle$ is a maximal ideal and so E is a field.

1. The map

$$\psi: F \longrightarrow E \quad defined \ by \quad \psi(a) = a + \langle p_1(x) \rangle$$

is an injective homomorphism. In fact, ψ is the composition of two homomorphisms, as given by the commutative diagram:



To prove it is injective, we need to show that the kernel is $\{0\}$. So, let $\psi(a) = \langle p_1(x) \rangle$. This means $a + \langle p_1(x) \rangle = \langle p_1(x) \rangle$ or $a \in \langle p_1(x) \rangle$. So, $a = \lambda(x)p_1(x)$ for some $\lambda(x) \in F[x]$. Comparing degrees, we have $\lambda(x) = 0$ and hence a = 0. So, ψ is injective.

Identifying, F with $\psi(F) \subseteq E$, we have F is a subfield of E.

- 2. Important Notation: For $g \in F[x]$, we denote, its coset $\overline{g} := g + \langle p_1(x) \rangle \in E$. Because of the identification of F with $\psi(F)$, notationally, we have $\forall a \in F, a = \overline{a}$.
- 3. Now, write $p_1(x) = a_0 + a_1x + a_2x^2 + \dots + a_nx^n$ and $\alpha = \overline{x} = x + \langle p_1(x) \rangle$. We have

$$p_1(\alpha) = p_1(\overline{x}) = a_0 + a_1\overline{x} + a_2\overline{x}^2 + \dots + a_n\overline{x}^n$$
$$= \overline{a_0 + a_1x + a_2x^2 + \dots + a_nx^n} = \overline{p_1(x)} = 0$$

So, α is a zero of $p_1(x)$ in E and hence is a zero of f(x) in E.

The proof is complete.

Example 29.4 (29.4). We know $f(x) = x^2 + 1$ is irreducible in $\mathbb{R}[x]$. According to the above proof, in the field $E = \frac{\mathbb{R}[x]}{\langle x^2+1 \rangle}$ the element $\alpha = x + (f(x))$ is a root of f(x). Also establish an isomorphism

$$E = \frac{\mathbb{R}[x]}{\langle x^2 + 1 \rangle} \approx \mathbb{C}.$$

Example 29.5 (29.5). Let $f(x) = x^4 - 12x^2 + 35 \in \mathbb{Q}[x]$. We have a factorization

 $f(x) = (x^2 - 5)(x^2 - 7)$ in $\mathbb{Q}[x]$. However, f(x) does not factor any further in $\mathbb{Q}[x]$.

- 1. In $E = \frac{\mathbb{Q}[x]}{\langle x^2 5 \rangle}$, with $\alpha = x + ((x^2 5))$, it factors as $f(x) = (x \alpha)(x + \alpha)(x^2 7)$ in E[x].
- 2. Check, $E \approx \mathbb{Q}[\sqrt{5}] = \mathbb{Q} \oplus \mathbb{Q}\sqrt{5}$.
- 3. In $E' = \frac{E[x]}{\langle x^2 7 \rangle}$, with $\beta = x + \langle x^2 7 \rangle$, it factors as $f(x) = (x - \alpha)(x + \alpha)(x - \beta)(x + \beta),$

in to linear factors, in E'[x].

Devine Goals: In example 29.5, we started with a polynomial in $\mathbb{Q}[x]$ and constructed an field extension E' of \mathbb{Q} so that f(x) factors into linear factors in E'[x]. This is same as saying that f(x) has four roots in E'.

- 1. This is a typical process that we would like to immitate for any field F and any polynomial $f(x) \in F[x]$.
- 2. Better still, given any field F, we would like to construct an extension E', so that all polynomials in F[x] factors into linear factors in E'[x].
- 3. Even better is to find an extension E' of F so that all polynomial in E'[x] factors in to linear factors in E'[x]. In fact, \mathbb{C} is such an extension of \mathbb{R} or \mathbb{C} . Such a field E' will be called **algebraically closed field**.

29.1 Algebriac and Trancendental Elements

Definition 29.6. Let $F \hookrightarrow E$ be a field extension and $\alpha \in E$.

1. We say that α is algebraic over F, if

 $f(\alpha) = 0$ for some $0 \neq f(x) \in F[x]$.

2. We say α is trancendental over F, if it is not algebraic over F.

Example 29.7. Reading Assignment: §29 all Examples.

- 1. (29.7) $\sqrt{2}$ is algebraic over \mathbb{Q} .
- 2. (29.9) π , e are trancendetal over \mathbb{Q} .

Definition 29.8. Let $\alpha \in \mathbb{C}$. We say α is an algebraic number, if it is algebraic over \mathbb{Q} .

Theorem 29.9. Let $F \hookrightarrow E$ be a field extension and $\alpha \in E$. Define the evaluation map

$$\varphi_{\alpha}: F[x] \longrightarrow E \quad by \quad \varphi_{\alpha}(f(x)) = f(\alpha).$$

Then α is tracedental if and only if φ_{α} is injective.

Proof. Execise.

The following is "irreducible polynomial" of α .

Theorem 29.10 (Thm29p13). Let $F \hookrightarrow E$ be a field extension and $\alpha \in E$ be algebraic over F. Then, there is a polynomial $p(x) \in F[x]$, with the following properties:

1.
$$p(\alpha) = 0$$
.

2. p(x) is irreducible.

- 3. For any polynomial $f(x) \in F[x], f(\alpha) = 0 \Longrightarrow p(x)|f(x)$ in F[x].
- 4. This irreducible polynomial p is determined uniquely upto a unit in F. In fact, any polynomial q of minimal degree, with the property q(α) = 0 will satisfy the above properties of p.

Proof. Since α is algebraic over F, there are nonzero polynomials $f(x) \in F[x]$ such that $f(\alpha) = 0$. Let

$$d = \min\{n \in \mathbb{Z}^+ : f(\alpha) = 0, for some \quad f \in F[x] \quad with \quad \deg(f) = n\}.$$

Let p(x) be one with minimal degree (i.e. deg(p) = d) such the $p(\alpha) = 0$.

- 1. To see that p(x) is irreducible, use contrapositive argment. Write p(x) = q(x)g(x) where $q, g \in F[x]$ are nonconstant. Then $0 = p(\alpha) = q(\alpha)g(\alpha)$ So, either $q(\alpha) = 0$ or $g(\alpha) = 0$. Since degree of both are less than d, it contradicts the minimality of degree of p. So, (1), (2) are established.
- 2. Suppose $f(\alpha) = 0$ for some $f(x) \in f[x]$. By division algorithm

 $f(x) = q(x)p(x) + r(x) \quad for \ some \quad q(x), r(x) \in F[x]$ and $r(x) = 0 \ or \ degree(r(x)) < d.$

By substituting:

$$0 = f(\alpha) = q(\alpha)p(\alpha) + r(\alpha) = r(\alpha).$$

By minimality of p, r(x) = 0. So f(x) = q(x)p(x). So, (3), is established.

3. Now, if $q(x) \in F[x]$ is another irreducible polynomial, with $q((\alpha)) = 0$, then by (3), q(x) = u(x)p(x). Since q(x) is irreducible $u(x) = u \in F$ must be a unit.

The proof is complete.

Definition 29.11. Let F be a field.

1. A polynomial $f(x) \in F[x]$ with degree(f) = n is called a **monic polynomial**, if the coefficient of the top-degree term x^n is 1. So a monic polnomial looks like

$$f(x) = x^{n} + a_{n-1}x^{n-1} + \dots + a_{1}x + a_{0}$$

- 2. Let F → E be a extension of fields. and α ∈ E be algebraic over F. The monic irreducible polynomial p(x) give by theorem 29.10 is called the irreducible polynomial for α over F. It is also called the minimal monic polynomial of α over F. It is denoted by irr(α, F).
- 3. The degree of this polynomial is also called the degree of α over F and denoted by $deg(\alpha, F)$.

Example 29.12 (19p14). We have

$$irr(\sqrt{2}, \mathbb{Q}) = x^2 - 2, \quad irr(\sqrt{2}, \mathbb{R}) = x - \sqrt{2}.$$

Exercise. Find the irreducible polynomial of $\alpha = \sqrt{1 + \sqrt{3}}$ over \mathbb{Q} .

29.2 Simple Extensions

Definition 29.13. Let $F \hookrightarrow E$ be a field extension. We say E is a simple extension of F, if there is an $\alpha \in E$ such that E is the smallest subfield of E generated by F and α . This means, if K is a subfield of E:

$$F \subseteq K, \ \alpha \in K \implies K = E.$$

Theorem 29.14 (page 270). Let $F \hookrightarrow E$ be a field extension and $\alpha \in E$. Define the evaluation map

$$\varphi_{\alpha}: F[x] \longrightarrow E \quad by \quad \varphi_{\alpha}(f(x) = f(\alpha)).$$

Then image of φ_{α} is given by

$$\varphi_{\alpha}(F(x]) = \{f(\alpha) : f(x) \in F[x]\} \subseteq E$$

We also denote

$$F[\alpha] := \varphi_{\alpha}(F[x]) = \{f(\alpha) : f \in F[x]\}$$
$$= \{a_n \alpha^n + a_{n-1} \alpha^{n-1} + \dots + a_1 \alpha + a_0 : a_i \in F\}$$

Caution: $F[\alpha]$ is not to be confused with a polynomial ring.

- 1. If α is algebraic over F then $F[\alpha]$ is a field.
- 2. If α is trancendental, then φ_{α} is injective. So, $F[x] \xrightarrow{\sim} F[\alpha]$

Proof. Let $I = \ker(\varphi)$. Then, I is an ideal of F[x]. By a theorem in §21, I = F[x]p(x). In fact, $p(x) = irr(\alpha, F)$ (because the generator of the ideal is the polynomial with minimal degree). It follows, from Group Theory, that

$$\frac{F[x]}{F[x]p(x)} \xrightarrow{\sim} F[\alpha]$$

is an isomorphism. Since p is irreducible, $\frac{F[x]}{F[x]p(x)}$ is a field (see §27).

When α is trancendental, by definition the statement is true. The proof is complete.

Definition 29.15. Use all the notations as in (29.14). Let $F \hookrightarrow E$ be an extension of fields and $\alpha \in E$. Recall that $F(\alpha)$ denotes the smallest subfieled of E generated by F and α .

- 1. If α is algebraic over F, then $F[\alpha]$ is a field. Therefore, $F[\alpha] = F(\alpha)$.
- 2. If α is trancendental over F, then $F[x] \approx F[\alpha]$ is ONLY an integral doamian, not a field. In this case, the field of quotients of $F[\alpha]$ is $= F(\alpha)$.

Important Remark: Suppose $F \hookrightarrow E$ is a field extension. Then E is a vector space over F. More generally, for a field F, and a ring R, any ring homomorphism $F \longrightarrow R$ provides an F-vector space structure on R. (The author avoided stating this at this stage, becasue he is introducing Vector Space in next section §30.)

Theorem 29.16 (29.18). Suppose $F \hookrightarrow E$ be a field extension and $\alpha \in E$ be algebraic over F. As said above, then $F(\alpha) = F[\alpha]$. Let

$$degree(irr(\alpha, F)) = n.$$

In fact,

$$1, \alpha, \alpha^2, \ldots, \alpha^{n-1}$$
 forms a Vector Space basis of $F(\alpha)$ over F

Proof. As before, let $\varphi_{\alpha}: F[x] \longrightarrow E$ be the evaluation map. Then,

$$F(\alpha) = F[\alpha] = image(\varphi_{\alpha}).$$

Let

$$irr(\alpha, F) = p(x) = x^n + a_{n-1}x^{n-1} + \dots + a_1x + a_0 \quad with \quad a_i \in F.$$

By definition, $p(\alpha) = 0$. Let $\beta \in F(\alpha) = F[\alpha]$. Then, there is a polynomial $f \in F[x]$ such that $\beta = f(\alpha)$. By division algorithm,

$$f(x) = p(x)q(x) + r(x) \quad with \quad q, r \in F[x] \quad and \quad r = 0 \quad or \quad degree(r) < n.$$

Write

$$r(x) = b_0 + b_1 x + b_2 x^2 + \dots + b_{n-1} x^{n-1}$$
 $b_i \in F.$

So,

$$\beta = f(\alpha) = p(\alpha)q(\alpha) + r(\alpha) = b_0 + b_1\alpha + b_2\alpha^2 + \dots + b_{n-1}\alpha^{n-1}.$$

So, is a β is *F*-linear combination of $1, \alpha, \ldots, \alpha^{n-1}$ and hence this set spans $F[\alpha]$. To prove, $1, \alpha, \ldots, \alpha^{n-1}$ is linearly independent, let

$$a_0 + a_1\alpha + a_2\alpha^2 + \dots + a_{n-1}\alpha^{n-1} = 0$$
 with $a_i \in F$.

Write

$$r(x) = a_0 + a_1 x + a_2 x^2 + \dots + a_{n-1} x^{n-1}$$
. then $r(\alpha) = 0$.

By minimality of p(x), we have r(x) = 0. That means, $a_0 = a_1 = \cdots = a_{n-1} = 0$. Hence the above set is linearly independent; hence a basis. The proof is complete.

Reading Assignment:Read Example 29.19, page 271.

30 Vector Spaces

Refer to Math 790.

31 Algebraic Extension

Abstract

Given a field F and a non-constant $f \in F[x]$, we want to find extension $F \hookrightarrow E$ so that f(x) has a root in E

31.1 Finite Extensions

Definition 31.1. Let $F \hookrightarrow E$ be an extension of fields.

- 1. Recall, an element $\alpha \in E$ is said to be **algebraic over** F, if there is a non-constant $f \in F[x]$ so that $f(\alpha) = 0$.
- 2. The extension $F \hookrightarrow E$ is said to be an algebraic extension, if every $\alpha \in E$ is algebraic over F.
- 3. Given an extension $F \hookrightarrow E$ of fields, we can consider E as a vector space over F. Define

 $[E:F] := \dim_F(E) = the vector space dimension of E over F.$

This [E:F] can be finite of ∞ .

If [E : F] = n < ∞, then we is say E is a finite extension of degree n over F.

Examples. Here are some:

- 1. Given any field F, F is a finite extension over itself, of degree [F:F] = 1.
- 2. $\mathbb{R} \hookrightarrow \mathbb{C}$ is a finite extension of degree 2 over \mathbb{R} . (*Give a basis.*).
- 3. Let $\mathbb{Q} \hookrightarrow \mathbb{Q}(\sqrt{2})$ is a finite extension of degree 2 over \mathbb{Q} . (*Give a basis.*).
- 4. Give a positive integer n let $\zeta_n = e^{\frac{2\pi i}{n}}$ and

$$E = \mathbb{Q}\left(\zeta_n\right) = \mathbb{Q}\left(e^{\frac{2\pi i}{n}}\right).$$

The $\mathbb{Q}(\zeta_n)$ is a finite extension of degree *n* over \mathbb{Q} . (*Give a basis.*).

Theorem 31.2 (31.3). Let $F \hookrightarrow E$ be a finite field extension. Then, if is an algebraic field extension. Let me display

 $FINITE \implies ALGEBRAIC.$

Proof. Let $[E:F] = n < \infty$. Let $\alpha \in E$ be any element. Then,

 $1, \alpha, \alpha^2, \ldots, \alpha^n$ cannot be linearly independent over F.

So, there are $a_0, a_1, \ldots, a_n \in F$, not all of them zero, such that

$$a_0 + a_1 \alpha + \dots + a_n \alpha^n = 0.$$
 Write $f(x) = a_0 + a_1 x + \dots + a_n x^n$.

Then, $f(x) \in F(x)$ is nonzero and $f(\alpha) = 0$. So, α is algebraic over F. The proof is complete.

Theorem 31.3 (31.4). Let $F \hookrightarrow E$, $E \hookrightarrow K$ be two finite field extension. Then, $F \hookrightarrow K$ is a finite extension, and

$$[K:F] = [K:E][E:F].$$

Proof. Let

$$[K:E] = m, \quad [E:F] = n.$$

We will prove [K:F] = mn. Let

 $\alpha_1, \alpha_2, \ldots, \alpha_n \in E$ be a basis of E over F

and $\beta_1, \beta_2, \dots, \beta_m \in K$ be a basis of K over E.

We will prove $\{\alpha_i\beta_j : i = 1, ..., n; j = 1, ..., m\}$ forms a basis of K over F. First, I will show they span K over F. Let $\gamma \in K$. Then,

$$\gamma = b_1\beta_1 + b_2\beta_2 + \dots + b_m\beta_m = \sum_{j=1}^m b_j\beta_j \quad \text{for some} \quad b_j \in E.$$

Again, since $b_j \in E$ we have

$$b_j = a_{1j}\alpha_1 + a_{2j}\alpha_2 + \dots + a_{nj}\alpha_n = \sum_{i=1}^n a_{ij}\alpha_i \quad for \ some \quad a_{ij} \in F.$$

So,

$$\gamma = \sum_{j=1}^{m} b_j \beta_j = \sum_{j=1}^{m} \left(\sum_{i=1}^{n} a_{ij} \alpha_i \right) \beta_j = \sum_{j=1}^{m} \sum_{i=1}^{n} a_{ij} (\alpha_i \beta_j).$$

So, γ is an *F*-linear combination of $\alpha_i \beta_j$. So,

 $\{\alpha_i\beta_j: i=1,\ldots,n; j=1,\ldots,m\}$ spans K over F.

Now, I will show $\{\alpha_i\beta_j : i = 1, ..., n; j = 1, ..., m\}$ is linearly independent over F. So, suppose

$$\sum_{j=1}^{m} \sum_{i=1}^{n} a_{ij}(\alpha_i \beta_j) = 0 \quad for \ some \quad a_{ij} \in F.$$

Then, we have

$$\sum_{j=1}^{m} \sum_{i=1}^{n} a_{ij}(\alpha_i \beta_j) = \sum_{j=1}^{m} \left(\sum_{i=1}^{n} a_{ij} \alpha_i \right) \beta_j = 0.$$

Since, β_1, \ldots, β_m are linearly independent over E, for each j we have

$$\sum_{i=1}^{n} a_{ij} \alpha_i = 0.$$

Since $\alpha_1, \ldots, \alpha_n$ are lineraly independent ove F we have

$$a_{ij} = 0$$
 for all $i = 1, \dots, n; j = 1, \dots, m.$

So, $\{\alpha_i\beta_j : i = 1, ..., n; j = 1, ..., m\}$ is also linearly independent over F. So, $\{\alpha_i\beta_j : i = 1, ..., n; j = 1, ..., m\}$ is a basis of K over F. So,

$$[K:F] = nm = [K:E][E:F].$$

The proof is complete.

Corollary 31.4 (31.6). Suppose

 $F_1 \hookrightarrow F_2 \hookrightarrow F_3 \cdots F_{r-1} \hookrightarrow F_r$ be finite field extensions.

Then,

$$[F_r:F_1] = [F_r:F_{r-1}]\cdots[F_3:F_2][F_2:F_1]$$

Proof. By induction,

$$[F_r:F_1] = [F_r:F_{r-1}][F_{r-1}:F_1] = [F_r:F_{r-1}](F_{r-1}:f_{r-2}]\cdots[F_3:F_2][F_2:F_1]$$

The proof is complete.

Corollary 31.5 (31.7). Let $F \hookrightarrow E$ be a field extension and $\alpha \in E$ be algebraic over F. Let $\beta \in F(\alpha)$. Then

$$deg(\beta, F)|deg(\alpha, F).$$

Proof. Recall, $deg(\alpha, F)$ is the degree of the irreducible polynomial of α and

$$deg(\alpha, F) = [F(\alpha) : F].$$

So, we have

$$deg(\alpha, F) = [F(\alpha) : F] = [F(\alpha) : F(\beta)][F(\beta) : F] = [F(\alpha) : F(\beta)]deg(\beta, F) = [F(\alpha) : F(\beta)]deg(\beta$$

The proof is complete.

Reading Assignment:Read Example 31.7-31.10.

Theorem 31.6 (31.11). Let $F \hookrightarrow E$ be an algebraic extension and $E = F(\alpha_1, \alpha_2, \ldots, \alpha_n)$ for finitely many elements $\alpha_1, \alpha_2, \ldots, \alpha_n \in E$. Then, $F \hookrightarrow E$ is finite field extension.

The converse of this theorem is also true (by (31.2)).

Proof. Suppose $E = F(\alpha_1, \alpha_2, \dots, \alpha_n)$ is algebraic. Write

$$E_0 = F, E_1 = F(\alpha_1), E_2 = F(\alpha_1, \alpha_2), \dots, E_{n-1} = F(\alpha_1, \alpha_2, \dots, \alpha_{n-1}),$$

$$E_n = E = F(\alpha_1, \alpha_2, \dots, \alpha_n).$$

Note $E_{r-1} \hookrightarrow E_r = E_{r-1}(\alpha_r)$ and α_r is algebraic over E_{r-1} . So,

 $[E_r: E_{r-1}] = \deg(\alpha_r, E_{r-1}) =: m_r.$

Then, we have a chain

$$F = E_0 \hookrightarrow E_1 \hookrightarrow E_2 \dots E_{n-1} \hookrightarrow E_n = E$$

of algebraic field extensions. So,

$$[E:F] = [E_n:E_0] = [E_n:E_{n-1}][E_{n-1}:E_{n-2}]\cdots [E_2:E_1][E_1:E_0]$$
$$= m_n m_{n-1} \cdots m_2 m_1 < \infty.$$

So, first part of the theorem is established.

For the converse, let $F \hookrightarrow E$ be a finite field extension and [E : F] = n. Let $\alpha_1, \ldots, \alpha_n$ be a basis of E over F. Then, $E = F(\alpha_1, \ldots, \alpha_n)$. Also, by (31.2), it is an algebraic extension. The proof is complete. \blacksquare .

Corollary 31.7 (Extra). Suppose $E = F(\alpha_1, \ldots, \alpha_n)$ is finitely generateted field extension of F. Then, $F \hookrightarrow E$ is algebraic field extension if and only if $F \hookrightarrow E$ finite field extension.

Let me display, for finitely generated extensions

 $FINITE \iff ALGRBRAIC.$

Proof. It is just reinterpretation of the above.

Corollary 31.8 (Extra). Suppose $E = F(\alpha_1, ..., \alpha_n)$ is finitely generateted field extension of F. Assume $\alpha_1, ..., \alpha_n$ are algebraic over F. Then E is a finite field extension of F.

Proof. Exercise

31.2 Algebraically Closed Fields and Algebraic Closure

Theorem 31.9 (31.12). Suppose $F \hookrightarrow E$ be an extension of fields. Write

 $\overline{F}_E = \{ \alpha \in E : \alpha \quad is \ algebraic \ over \quad F \}.$

Then, \overline{F}_E is a subfield of E and $F \hookrightarrow \overline{F}_E$. This field \overline{F}_E is called the Algebraic Closure of F in E.

Proof. Suppose $\alpha, \beta \in \overline{F}_E$. Then, by (31.8), $F \hookrightarrow F(\alpha, \beta)$ is finite field extension. Since $\alpha + \beta, \alpha - \beta \in F(\alpha, \beta)$ and if $\beta \neq 0$ then $\frac{\alpha}{\beta} \in F(\alpha, \beta)$, by (31.2), they are all algebraic over F, hence in \overline{F}_E . So, \overline{F}_E is closed under addition, multiplication and each nonzero element in \overline{F}_E has an inverse in it. So, \overline{F}_E is a field. The proof is complete.

Corollary 31.10 (31.13). The set $\overline{\mathbb{Q}}_{\mathbb{C}}$ of all algebraic numbers forms a subfield of \mathbb{C} .

Proof. Recall, a complex number $\alpha \in \mathbb{C}$, is called an algebraic number if it is algebraic over \mathbb{Q} . So, it is an immediate consequence of the above.

Definition 31.11. A field F is called algebraically closed, if every nonconstant polynomial $f \in F(x)$ has a zero in F.

Prime Example:

Theorem 31.12 (31.17). The field \mathbb{C} is algebraically closed.

Proof. (Skip, if you did not have course in complex analysis.) Suppose $f(x) \in \mathbb{C}[x]$ is a nonconstant polynomial. Suppose f(x) does not have any zero in \mathbb{C} . Then, 1/f(x) is an entire function (that means, holomorphic everywhere). Also, $\lim_{|x|\to\infty} |f(x)| = \infty$. So, $\lim_{|x|\to\infty} |1/f(x)| = 0$. Thus, 1/f(x) is a bounded function, which is entire. By Liouville's theorem, 1/f is constant and hence so is f. This is a contradiction.

Theorem 31.13 (31.15). A field is algebraically closed if and only if every (nonconstant) polynomial factors in to linear factor.

Proof. Suppose F is algebraically closed and $f \in F[x]$ is (nonconstant) polynomial. If $\deg(f) = 1$, then there is nothing to prove. Now let $n = \deg(f) > 1$. Since F is algebraically closed, $f(a_1) = 0$ for some $a_1 \in F$. So, $f(x) = (x - a_1)g(x)$ for some $g \in F[x]$. Since, $\deg(g) = n - 1 < \deg(f)$, by induction, g factors as $g(x) = \lambda(x - a_2)(x - a_3) \cdots (x - a_n)$ for some $\lambda, a_i \in F$. So, $f(x) = (x - a_1)g(x) = \lambda(x - a_1)g(x) = \lambda(x - a_1)(x - a_2)(x - a_3) \cdots (x - a_n)$. So, this implication is established.

Conversely, suppose every (nonconstant) polynomial factors in to linear factors. Now, let $f \in F[x]$ be nonconstant. Then $f(x) = \lambda(x - a_1)(x - a_2)(x - a_3) \cdots (x - a_n)$ for some $\lambda, a_i \in F$. So, each a_i is a root of f.

The proof is complete.

Corollary 31.14 (31.16). Suppose F is an algebraically closed field and $F \hookrightarrow E$ is an algebraic extension of fields. Then F = E.

Proof. Suppose $a \in E$. Since a is algebraic over F, there is a nonconstant polynomial $f \in F[x]$, such that f(a) = 0. So, f(x) = (x-a)g(x) for some $g \in E[x]$. Since F is algebraically closed, by the above theorem, $f(x) = \lambda(x-a_1)(x-a_2)(x-a_3)\cdots(x-a_n)$ for some $\lambda, a_i \in F$. So,

$$f(x) = \lambda(x - a_1)(x - a_2)(x - a_3) \cdots (x - a_n) = (x - a)g(x)$$

Since, every polynomial in E[x] has unique factorization, $a = a_i \in F$ for some *i*. The proof is complete.

Theorem 31.15 (31.32). Suppose F is a field. Then there is a field extension $F \hookrightarrow E$ such that (1) E is algebraically closed, (2) $F \hookrightarrow E$ is an algebraic extension. (Such an extension E is called the **algebraic** closure of F and is denoted by \overline{F}). **Proof.** By some set theoratic argument, we assume that there is a set Ω such that if $F \hookrightarrow E$ is an algebraic extension then $E \subset \Omega$. Let

$$\mathcal{E} = \{E : F \hookrightarrow E \text{ is an algebraic extension}\}$$

Then, inclusion $E_1 \subseteq E_2$ gives a structure of a partially ordered set on \mathcal{E} . Suppose

$$E_1 \subseteq E_2 \subseteq E_3 \subseteq E_4 \subseteq \cdots$$

is a chain of field extensions in \mathcal{E} . Write

$$E = \bigcup E_i$$

Then, E is a field such that $F \hookrightarrow E$ is an algebraic extension. So, $E \in \mathcal{E}$ and $E_i \subseteq E$ for all i. So, every chain in \mathcal{E} has an upper bound in \mathcal{E} . Therefore, by Zorn's lemma (see §0) \mathcal{E} has a maximal element K. We claim that K is algebraically closed field. So see this, let $f \in K[x]$ be a nonconstant polynomial and f(x) does not have a zero in K. Write the unique factorization $f = p_1 p_2 \cdots p_r$, where $p_i \in K[x]$ are irreducible in K[x]. So, $K \hookrightarrow \frac{K[x]}{(p_1)}$ is an algebraic extension and so $F \hookrightarrow \frac{K[x]}{(p_1)}$ is an algebraic extension. Since, $K \neq \frac{K[x]}{(p_1)}$, it is a contradiction to the maximality of E. So, E is algebraically closed. The proof is complete.

List of concepts we defined in this section:

- 1. Given field extension $F \hookrightarrow E$ and element $a \in E$, we defined when we say a is algebraic over F.
- 2. We defined when a field extension $F \hookrightarrow E$ is called **algebraic** extension.
- 3. We defined finite field extensions $F \hookrightarrow E$.
- 4. Given field extension $F \hookrightarrow E$ we defined \overline{F}_E , the algebraic closure of F in E.
- 5. Give a field F, we defined its algebraic closure \overline{F} (see 31.15). This is the "Grand" closure.

32 Geometric Constructions

skip

33 Finite Fields

Theorem 33.1. Let F be a field and $F \hookrightarrow E$ be a finite field extension. If F has q elements and [E:F] = n then E has q^n elements.

Proof. Exercise.

Theorem 33.2. Suppose E is a finite field of characteristic p > 0. Prove E has p^n elements.

Proof. Follows from the fact $\mathbb{Z}_p \hookrightarrow E$ is finite field extension. The proof is complete.