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29 Introduction to Extension Fields

Example 29.1. The polynomial f(x) = x2 + 1 does not have a solution in

R, but it has a solution in the bigger field C.

The author has been working to develop similar theorems for any field F .

Definition 29.2. Let F,E be two fields. If F is a subfield of E, then E is

called an extension field of F . I write →֒ E is an extension of fields to

mean the same.

Examples:

1. R is an extension field of Q.

2. C is an extension field of Q.

3. C is an extension field of R.

4. Suppose F is any field and F [x] the polynomial ring. Let F (X) be the
quotient field of F [x]. Then, F (X) is an extension field of F .
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The following has been author’s primary goal for some time.

Theorem 29.3 (29.3 Kronecker’s Theorem). Let F be a field and f(x) be a

nonconstant polynomial in F [x]. Then there is an extension field E of F so

that f(x) has a root in E.

Proof. By theorem 23.20, f(x) = p1(x)p2(x) · · · pr(x), where pi are irre-

ducible polynomials in F [x]. Write E = F [x]
〈(p1(x)〉

. Now, 〈(p1(x)〉 is a maximal
ideal and so E is a field.

1. The map

ψ : F −→ E defined by ψ(a) = a+ 〈p1(x)〉

is an injective homomorphism. In fact, ψ is the composition of two
homomorphisms, as given by the commutative diagram:

F //

ψ $$■
■

■

■

■

■

■

■

■

■

F [x]

��

E = F [x]
〈(p1(x)〉

.

To prove it is injective, we need to show that the kernel is {0}. So,
let ψ(a) = 〈p1(x)〉. This means a + 〈p1(x)〉 = 〈p1(x)〉 or a ∈ 〈p1(x)〉.
So, a = λ(x)p1(x) for some λ(x) ∈ F [x]. Comparing degrees, we have
λ(x) = 0 and hence a = 0. So, ψ is injective.

Identifying, F with ψ(F ) ⊆ E, we have F is a subfield of E.

2. Important Notation: For g ∈ F [x], we denote, its coset
g := g + 〈p1(x)〉 ∈ E.
Because of the identification of F with ψ(F ), notationally, we have
∀ a ∈ F, a = a.

3. Now, write p1(x) = a0 + a1x+ a2x
2 + · · ·+ anx

n and
α = x = x+ 〈p1(x)〉. We have

p1(α) = p1(x) = a0 + a1x+ a2x
2 + · · ·+ anx

n

= a0 + a1x+ a2x2 + · · ·+ anxn = p1(x) = 0

So, α is a zero of p1(x) in E and hence is a zero of f(x) in E.
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The proof is complete.

Example 29.4 (29.4). We know f(x) = x2 + 1 is irreducible in R[x].

According to the above proof, in the field E = R[x]
〈x2+1〉

the element α = x +

(f(x)) is a root of f(x). Also establish an isomorphism

E =
R[x]

〈x2 + 1〉 ≈ C.

Example 29.5 (29.5). Let f(x) = x4 − 12x2 + 35 ∈ Q[x]. We have a

factorization

f(x) = (x2 − 5)(x2 − 7) in Q[x]. However, f(x) does not factor any further

in Q[x].

1. In E = Q[x]
〈x2−5〉

, with α = x+ ((x2 − 5)), it factors as

f(x) = (x− α)(x+ α)(x2 − 7) in E[x].

2. Check, E ≈ Q[
√
5] = Q⊕Q

√
5.

3. In E ′ = E[x]
〈x2−7〉

, with β = x+ 〈x2 − 7〉, it factors as

f(x) = (x− α)(x+ α)(x− β)(x+ β),

in to linear factors, in E ′[x].

Devine Goals: In example 29.5, we started with a polynomial in Q[x] and
constructed an field extension E ′ of Q so that f(x) factors into linear factors
in E ′[x]. This is same as saying that f(x) has four roots in E ′.

1. This is a typical process that we would like to immitate for any field F
and any polynomial f(x) ∈ F [x].

2. Better still, given any field F , we would like to construct an extension
E ′, so that all polynomials in F [x] factors into linear factors in E ′[x].

3. Even better is to find an extension E ′ of F so that all polynomial in
E ′[x] factors in to linear factors in E ′[x]. In fact, C is such an extension
of R or C. Such a field E ′ will be called algebraically closed field.
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29.1 Algebriac and Trancendental Elements

Definition 29.6. Let F →֒ E be a field extension and α ∈ E.

1. We say that α is algebraic over F , if

f(α) = 0 for some 0 6= f(x) ∈ F [x].

2. We say α is trancendental over F , if it is not algebraic over F .

Example 29.7. Reading Assignment: §29 all Examples.

1. (29.7)
√
2 is algebraic over Q.

2. (29.9) π, e are trancendetal over Q.

Definition 29.8. Let α ∈ C. We say α is an algebraic number, if it is

algebraic over Q.

Theorem 29.9. Let F →֒ E be a field extension and α ∈ E. Define the

evaluation map

ϕα : F [x] −→ E by ϕα(f(x)) = f(α).

Then α is trnacedental if and only if ϕα is injective.

Proof. Execise.

The following is "irreducible polynomial" of α.

Theorem 29.10 (Thm29p13). Let F →֒ E be a field extension and α ∈ E be

algebraic over F . Then, there is a polynomial p(x) ∈ F [x], with the following

properties:

1. p(α) = 0.

2. p(x) is irreducible.
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3. For any polinomial f(x) ∈ F [x], f(α) = 0 =⇒ p(x)|f(x) in F [x].

4. This irreducible polynomial p is determined uniquely upto a unit in F .

In fact, any polynomial q of minimal degree, with the property q(α) = 0

will satisfy the above properties of p.

Proof. Since α is algebraic over F , there are nonzero polynomials f(x) ∈
F [x] such that f(α) = 0. Let

d = min{n ∈ Z+ : f(α) = 0, for some f ∈ F [x] with deg(f) = n}.

Let p(x) be one with minimal degree (i.e. deg(p) = d) such the p(α) = 0.

1. To see that p(x) is irreducible, use contrapositive argment. Write
p(x) = q(x)g(x) where q, g ∈ F [x] are nonconstant. Then 0 = p(α) =
q(α)g(α) So, either q(α) = 0 or g(α) = 0. Since degree of both are less
than d, it contradicts the minimality of degree of p. So, (1), (2) are
established.

2. Suppose f(α) = 0 for some f(x) ∈ f [x]. By division algorithm

f(x) = q(x)p(x) + r(x) for some q(x), r(x) ∈ F [x]

and r(x) = 0 or degree(r(x)) < d.

By substituting:

0 = f(α) = q(α)p(α) + r(α) = r(α).

By minimality of p, r(x) = 0. So f(x) = q(x)p(x). So, (3), is estab-
lished.

3. Now, if q(x) ∈ F [x] is another irreducible polynomial, wirh q((α)) = 0,
then by (3), q(x) = u(x)p(x). Since q(x) is irreducible u(x) = u ∈ F

must be a unit.

The proof is complete.
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Definition 29.11. Let F be a field.

1. A polynomial f(x) ∈ F [x] with degree(f) = n is called a monic poly-

nomial, if the coefficient of the top-degree term xn is 1. So a monic

polnomial looks like

f(x) = xn + an−1x
n−1 + · · ·+ a1x+ a0

2. Let F →֒ E be a extension of fields. and α ∈ E be algebraic over F .

The monic irreducible polynomial p(x) give by theorem 29.10 is called

the irreducible polynomial for α over F .

It is also called the minimal monic polynomial of α over F .

It is denoted by irr(α, F ).

3. The degree of this polynomial is also called the degree of α over F

and denoted by deg(α, F ).

Example 29.12 (19p14). We have

irr(
√
2,Q) = x2 − 2, irr(

√
2,R) = x−

√
2.

Exercise. Find the irreducible polynomila of α =
√

1 +
√
3 over Q.

29.2 Simple Extensions

Definition 29.13. Let F →֒ E be a field extension. We say E is a simple

extension of F , if there is an α ∈ E such that E is the smallest subfield of

E generated by F and α. This means, if K is a subfield of E:

F ⊆ K, α ∈ K =⇒ K = E.

Theorem 29.14 (page 270). Let F →֒ E be a field extension and α ∈ E.

Define the evaluation map

ϕα : F [x] −→ E by ϕα(f(x) = f(α).
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Then image of ϕα is given by

ϕα(F (x]) = {f(α) : f(x) ∈ F [x]} ⊆ E

We also denote

F [α] := ϕα(F [x]) = {f(α) : f ∈ F [x]}

= {anαn + an−1α
n−1 + · · ·+ a1α + a0 : ai ∈ F}

Caution: F [α] is not to be confused with a polynomial ring.

1. If α is algebraic over F then F [α] is a field.

2. If α is trancendental, then ϕα is injective. So, F [x]
∼−→ F [α]

Proof. Let I = ker(ϕ). Then, I is an ideal of F [x]. By a theorem in §21,
I = F [x]p(x). In fact, p(x) = irr(α, F ) (because the generator of the ideal is
the polynomial with minimal degree). It follows, from Group Theory, that

F [x]

F [x]p(x)

∼−→ F [α]

is an isomorphism. Since p is irreducible, F [x]
F [x]p(x)

is a field (see §27).

When α is trancendental, by definition the statement is true. The proof
is complete.

Definition 29.15. Use all the notations as in (29.14). Let F →֒ E be an

extension of fields and α ∈ E. Recall that F (α) denotes the smallest subfieled

of E generated by F and α.

1. If α is algebraic over F , then F [α] is a field. Therefore, F [α] = F (α).

2. If α is trancendental over F , then F [x] ≈ F [α] is ONLY an integral

doamian, not a field. In this case, the field of quotients of F [α] is

= F (α).
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Important Remark: Suppose F →֒ E is a field extension. Then E is a
vector space over F . More generally, for a field F , and a ring R, any ring
homomorphism F −→ R provides an F−vector space structure on R. (The
author avoided stating this at this stage, becasue he is introducing Vector
Space in next section §30.)

Theorem 29.16 (29.18). Suppose F →֒ E be a field extension and α ∈ E

be algebraic over F . As said above, then F (α) = F [α]. Let

degree(irr(α, F )) = n.

In fact,

1, α, α2, . . . , αn−1 forms a V ector Space basis ofF (α) over F.

Proof. As before, let ϕα : F [x] −→ E be the evaluation map. Then,

F (α) = F [α] = image(ϕα).

Let

irr(α, F ) = p(x) = xn + an−1x
n−1 + · · ·+ a1x+ a0 with ai ∈ F.

By definition, p(α) = 0. Let β ∈ F (α) = F [α]. Then, there is a polynomial
f ∈ F [x] such that β = f(α). By division algorithm,

f(x) = p(x)q(x)+r(x) with q, r ∈ F [x] and r = 0 or degree(r) < n.

Write
r(x) = b0 + b1x+ b2x

2 + · · ·+ bn−1x
n−1 bi ∈ F.

So,

β = f(α) = p(α)q(α) + r(α) = b0 + b1α + b2α
2 + · · ·+ bn−1α

n−1.

So, is a β is F -linear combination of 1, α, . . . , αn−1 and hence this set spans
F [α]. To prove, 1, α, . . . , αn−1 is linearly independent, let

a0 + a1α + a2α
2 + · · ·+ an−1α

n−1 = 0 with ai ∈ F.
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Write

r(x) = a0 + a1x+ a2x
2 + · · ·+ an−1x

n−1. then r(α) = 0.

By minimality of p(x), we have r(x) = 0. That means, a0 = a1 = · · · =
an−1 = 0. Hence the above set is linearly independent; hence a basis. The
proof is complete.

Reading Assignment:Read Example 29.19, page 271.

9



30 Vector Spaces

Refer to Math 790.
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31 Algebraic Extension

Abstract

Given a field F and a non-constant f ∈ F [x], we want to find

extension F →֒ E so that f(x) has a root in E

31.1 Finite Extensions

Definition 31.1. Let F →֒ E be an extension of fields.

1. Recall, an element α ∈ E is said to be algebraic over F , if there

is a non-constant f ∈ F [x] so that f(α) = 0.

2. The extension F →֒ E is said to be an algebraic extension, if

every α ∈ E is algebraic over F .

3. Given an extension F →֒ E of fields, we can consider E as a

vector space over F . Define

[E : F ] := dimF (E) = the vector space dimension of E over F.

This [E : F ] can be finite of ∞.

4. If [E : F ] = n < ∞, then we is say E is a finite extension of

degree n over F .

Examples. Here are some:

1. Given any field F , F is a finite extension over itself, of degree

[F : F ] = 1.

2. R →֒ C is a finite extension of degree 2 over R. (Give a basis.).

3. Let Q →֒ Q(
√
2) is a finite extension of degree 2 over Q. (Give a

basis.).

4. Give a positive integer n let ζn = e
2πi

n and

E = Q (ζn) = Q

(

e
2πi

n

)

.

The Q (ζn) is a finite extension of degree n over Q. (Give a

basis.).
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Theorem 31.2 (31.3). Let F →֒ E be a finite field extension. Then,

if is an algebraic field extension. Let me display

FINITE =⇒ ALGEBRAIC.

Proof. Let [E : F ] = n < ∞. Let α ∈ E be any element. Then,

1, α, α2, . . . , αn cannot be linearly independent over F.

So, there are a0, a1, . . . , an ∈ F , not all of them zero, such that

a0 + a1α+ · · ·+ anα
n = 0. Write f(x) = a0 + a1x+ · · ·+ anx

n.

Then, f(x) ∈ F (x) is nonzero and f(α) = 0. So, α is algebraic over

F . The proof is complete.

Theorem 31.3 (31.4). Let F →֒ E, E →֒ K be two finite field exten-

sion. Then, F →֒ K is a finite extension, and

[K : F ] = [K : E][E : F ].

Proof. Let

[K : E] = m, [E : F ] = n.

We will prove [K : F ] = mn. Let

α1, α2, . . . , αn ∈ E be a basis of E overF

and β1, β2, . . . , βm ∈ K be a basis of K overE.

We will prove {αiβj : i = 1, . . . , n; j = 1, . . . ,m} forms a basis of K

over F . First, I will show they span K over F . Let γ ∈ K. Then,

γ = b1β1 + b2β2 + · · ·+ bmβm =

m
∑

j=1

bjβj for some bj ∈ E.

Again, since bj ∈ E we have

bj = a1jα1 + a2jα2 + · · ·+ anjαn =
n
∑

i=1

aijαi for some aij ∈ F.
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So,

γ =
m
∑

j=1

bjβj =
m
∑

j=1

(

n
∑

i=1

aijαi

)

βj =
m
∑

j=1

n
∑

i=1

aij(αiβj).

So, γ is an F−linear combination of αiβj . So,

{αiβj : i = 1, . . . , n; j = 1, . . . ,m} spans K over F.

Now, I will show {αiβj : i = 1, . . . , n; j = 1, . . . ,m} is linearly

independent over F . So, suppose

m
∑

j=1

n
∑

i=1

aij(αiβj) = 0 for some aij ∈ F.

Then, we have

m
∑

j=1

n
∑

i=1

aij(αiβj) =
m
∑

j=1

(

n
∑

i=1

aijαi

)

βj = 0.

Since, β1, . . . , βm are linearly independent over E, for each j we have

n
∑

i=1

aijαi = 0.

Since α1, . . . , αn are lineraly independent ove F we have

aij = 0 for all i = 1, . . . , n; j = 1, . . . ,m.

So, {αiβj : i = 1, . . . , n; j = 1, . . . ,m} is also linearly independent

over F . So, {αiβj : i = 1, . . . , n; j = 1, . . . ,m} is a basis of K over

F . So,

[K : F ] = nm = [K : E][E : F ].

The proof is complete.

Corollary 31.4 (31.6). Suppose

F1 →֒ F2 →֒ F3 · · ·Fr−1 →֒ Fr be finite field extensions.

Then,

[Fr : F1] = [Fr : Fr−1] · · · [F3 : F2][F2 : F1]
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Proof. By induction,

[Fr : F1] = [Fr : Fr−1][Fr−1 : F1] = [Fr : Fr−1](Fr−1 : fr−2] · · · [F3 : F2][F2 : F1].

The proof is complete.

Corollary 31.5 (31.7). Let F →֒ E be a field extension and α ∈ E be

algebraic over F . Let β ∈ F (α). Then

deg(β, F )|deg(α, F ).

Proof. Recall, deg(α, F ) is the degree of the irreducible polynomial

of α and

deg(α, F ) = [F (α) : F ].

So, we have

deg(α, F ) = [F (α) : F ] = [F (α) : F (β)][F (β) : F ] = [F (α) : F (β)]deg(β, F ).

The proof is complete.

Reading Assignment:Read Example 31.7-31.10.

Theorem 31.6 (31.11). Let F →֒ E be an algebraic extension and

E = F (α1, α2, . . . , αn) for finitely many elements α1, α2, . . . , αn ∈ E.

Then, F →֒ E is finite field extension.

The converse of this theorem is also true (by (31.2)).

Proof. Suppuse E = F (α1, α2, . . . , αn) is algebraic. Write

E0 = F,E1 = F (α1), E2 = F (α1, α2), . . . , En−1 = F (α1, α2, . . . , αn−1),

En = E = F (α1, α2, . . . , αn).

Note Er−1 →֒ Er = Er−1(αr) and αr is algebraic over Er−1. So,

[Er : Er−1] = deg(αr, Er−1) =: mr.
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Then, we have a chain

F = E0 →֒ E1 →֒ E2 . . . En−1 →֒ En = E

of algebraic field extensions. So,

[E : F ] = [En : E0] = [En : En−1][En−1 : En−2] · · · [E2 : E1][E1 : E0]

= mnmn−1 · · ·m2m1 < ∞.

So, first part of the theorem is established.

For the converse, let F →֒ E be a finite field extension and [E :

F ] = n. Let α1, . . . , αn be a basis of E over F . Then, E = F (α1, . . . , αn).

Also, by (31.2), it is an algebraic extension. The proof is complete. .

Corollary 31.7 (Extra). Suppose E = F (α1, . . . , αn) is finitely gen-

erateted field extension of F . Then, F →֒ E is algebraic field extension

if and only if F →֒ E finite field extension.

Let me display, for finitely generated extensions

FINITE ⇐⇒ ALGRBRAIC.

Proof. It is just reinterpretation of the above.

Corollary 31.8 (Extra). Suppose E = F (α1, . . . , αn) is finitely gen-

erateted field extension of F . Assume α1, . . . , αn are algebraic over F .

Then E is a finite field extension of F .

Proof. Exercise
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31.2 Algebraically Closed Fields and Algebraic

Closure

Theorem 31.9 (31.12). Suppose F →֒ E be an extension of fields.

Write

FE = {α ∈ E : α is algebraic over F}.

Then, FE is a subfield of E and F →֒ FE. This field FE is called the

Algebraic Closure of F in E.

Proof. Suppose α, β ∈ FE . Then, by (31.8), F →֒ F (α, β) is finite

field extension. Since α + β, α − β ∈ F (α, β) and if β 6= 0 then
α
β
∈ F (α, β), by (31.2), they are all algebraic over F , hence in FE . So,

FE is closed under addition, multiplication and each nonzero element

in FE has an inverse in it. So, FE is a field. The proof is complete.

Corollary 31.10 (31.13). The set QC of all algebraic numbers forms

a subfield of C.

Proof. Recall, a complex number α ∈ C, is called an algebraic number

if it is algebraic over Q. So, it is an immediate consequence of the

above.

Definition 31.11. A field F is called algebraically closed, if every

nonconstant polynomial f ∈ F (x) has a zero in F .

Prime Example:

Theorem 31.12 (31.17). The field C is algebraically closed.

Proof. (Skip, if you did not have course in complex analysis.) Sup-

pose f(x) ∈ C[x] is a nonconstant polynomial. Suppose f(x) does

not have any zero in C. Then, 1/f(x) is an entire function (that

means, holomorphic everywhere). Also, lim|x|→∞ |f(x)| = ∞. So,

lim|x|→∞ |1/f(x)| = 0. Thus, 1/f(x) is a bounded function, which is

entire. By Liouville’s theorem, 1/f is constant and hence so is f . This

is a contradiction.
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Theorem 31.13 (31.15). A field is algebraically closed if and only if

every (nonconstant) polynomial factors in to linear factor.

Proof. Suppose F is algebraically closed and f ∈ F [x] is (nonconstant)

polynomial. If deg(f) = 1, then there is nothing to prove. Now

let n = deg(f) > 1. Since F is algebraically closed, f(a1) = 0 for

some a1 ∈ F . So, f(x) = (x − a1)g(x) for some g ∈ F [x]. Since,

deg(g) = n − 1 < deg(f), by induction, g factors as g(x) = λ(x −
a2)(x− a3) · · · (x− an) for some λ, ai ∈ F . So, f(x) = (x− a1)g(x) =

λ(x−a1)(x−a2)(x−a3) · · · (x−an). So, this implication is established.

Conversely, suppose every (nonconstant) polynomial factors in to

linear factors. Now, let f ∈ F [x] be nonconstant. Then f(x) = λ(x−
a1)(x−a2)(x−a3) · · · (x−an) for some λ, ai ∈ F . So, each ai is a root

of f .

The proof is complete. .

Corollary 31.14 (31.16). Suppose F is an algebraically closed field

and F →֒ E is an algebraic extension of fields. Then F = E.

Proof. Suppose a ∈ E. Since a is algebraic over F , there is a noncon-

stant polynomial f ∈ F [x], such that f(a) = 0. So, f(x) = (x−a)g(x)

for some g ∈ E[x]. Since F is algebraically closed, by the above theo-

rem, f(x) = λ(x− a1)(x− a2)(x− a3) · · · (x− an) for some λ, ai ∈ F .

So,

f(x) = λ(x− a1)(x− a2)(x− a3) · · · (x− an) = (x− a)g(x)

Since, every polynomial in E[x] has unique factorization, a = ai ∈ F

for some i. The proof is complete.

Theorem 31.15 (31.32). Suppose F is a field. Then there is a field

extension F →֒ E such that (1) E is algebraically closed, (2) F →֒ E is

an algebraic extension. (Such an extension E is called the algebraic

closure of F and is denoted by F ).
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Proof. By some set theoratic argument, we assume that there is a set

Ω such that if F →֒ E is an algebraic extension then E ⊂ Ω. Let

E = {E : F →֒ E is an algebraic extension}

Then, inclusion E1 ⊆ E2 gives a structure of a partially ordered set on

E . Suppose

E1 ⊆ E2 ⊆ E3 ⊆ E4 ⊆ · · ·

is a chain of field extensions in E . Write

E =
⋃

Ei

Then, E is a field such that F →֒ E is an algebraic extension. So,

E ∈ E and Ei ⊆ E for all i. So, every chain in E has an upper bound

in E . Therefore, by Zorn’s lemma (see §0) E has a maximal element

K. We claim that K is algebraically closed field. So see this, let

f ∈ K[x] be a nonconstant polynomial and f(x) does not have a zero

in K. Write the unique factorization f = p1p2 · · · pr, where pi ∈ K[x]

are irreducible in K[x]. So, K →֒ K[x]
(p1)

is an algebraic extension and

so F →֒ K[x]
(p1)

is an algebraic extension. Since, K 6= K[x]
(p1)

, it is a

contradiction to the maximality of E. So, E is algebraically closed.

The proof is complete.

List of concepts we defined in this section:

1. Given field extension F →֒ E and element a ∈ E, we defined

when we say a is algebraic over F .

2. We defined when a field extension F →֒ E is called algebraic

extension.

3. We defined finite field extensions F →֒ E.

4. Given field extension F →֒ E we defined FE , the algebraic

closure of F in E.

5. Give a field F , we defined its algebraic closure F (see 31.15).

This is the "Grand" closure.
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32 Geometric Constructions

skip
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33 Finite Fields

Theorem 33.1. Let F be a field and F →֒ E be a finite field extention.

If F has q elements and [E : F ] = n then E has qn elements.

Proof. Exercise.

Theorem 33.2. Suppose E is a finite field of characteristic p > 0.

Prove E has pn elements.

Proof. Follows from the fact Zp →֒ E is finite field extension. The

proof is complete.
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