Part VI (§29-33)

Extension Fields

Satya Mandal
University of Kansas, Lawrence KS 66045 USA

January 22

29 Introduction to Extension Fields

Example 29.1. The polynomial $f(x)=x^{2}+1$ does not have a solution in \mathbb{R}, but it has a solution in the bigger field \mathbb{C}.

The author has been working to develop similar theorems for any field F.
Definition 29.2. Let F, E be two fields. If F is a subfield of E, then E is called an extension field of F. I write $\hookrightarrow E$ is an extension of fields to mean the same.

Examples:

1. \mathbb{R} is an extension field of \mathbb{Q}.
2. \mathbb{C} is an extension field of \mathbb{Q}.
3. \mathbb{C} is an extension field of \mathbb{R}.
4. Suppose F is any field and $F[x]$ the polynomial ring. Let $F(X)$ be the quotient field of $F[x]$. Then, $F(X)$ is an extension field of F.

The following has been author's primary goal for some time.
Theorem 29.3 (29.3 Kronecker's Theorem). Let F be a field and $f(x)$ be a nonconstant polynomial in $F[x]$. Then there is an extension field E of F so that $f(x)$ has a root in E.

Proof. By theorem 23.20, $f(x)=p_{1}(x) p_{2}(x) \cdots p_{r}(x)$, where p_{i} are irreducible polynomials in $F[x]$. Write $E=\frac{F[x]}{\left\langle\left\langle p_{1}(x)\right\rangle\right.}$. Now, $\left\langle\left(p_{1}(x)\right\rangle\right.$ is a maximal ideal and so E is a field.

1. The map

$$
\psi: F \longrightarrow E \quad \text { defined by } \quad \psi(a)=a+\left\langle p_{1}(x)\right\rangle
$$

is an injective homomorphism. In fact, ψ is the composition of two homomorphisms, as given by the commutative diagram:

To prove it is injective, we need to show that the kernel is $\{0\}$. So, let $\psi(a)=\left\langle p_{1}(x)\right\rangle$. This means $a+\left\langle p_{1}(x)\right\rangle=\left\langle p_{1}(x)\right\rangle$ or $a \in\left\langle p_{1}(x)\right\rangle$. So, $a=\lambda(x) p_{1}(x)$ for some $\lambda(x) \in F[x]$. Comparing degrees, we have $\lambda(x)=0$ and hence $a=0$. So, ψ is injective.
Identifying, F with $\psi(F) \subseteq E$, we have F is a subfield of E.
2. Important Notation: For $g \in F[x]$, we denote, its coset $\bar{g}:=g+\left\langle p_{1}(x)\right\rangle \in E$.
Because of the identification of F with $\psi(F)$, notationally, we have $\forall a \in F, a=\bar{a}$.
3. Now, write $p_{1}(x)=a_{0}+a_{1} x+a_{2} x^{2}+\cdots+a_{n} x^{n}$ and $\alpha=\bar{x}=x+\left\langle p_{1}(x)\right\rangle$. We have

$$
\begin{gathered}
p_{1}(\alpha)=p_{1}(\bar{x})=a_{0}+a_{1} \bar{x}+a_{2} \bar{x}^{2}+\cdots+a_{n} \bar{x}^{n} \\
=\overline{a_{0}+a_{1} x+a_{2} x^{2}+\cdots+a_{n} x^{n}}=\overline{p_{1}(x)}=0
\end{gathered}
$$

So, α is a zero of $p_{1}(x)$ in E and hence is a zero of $f(x)$ in E.

The proof is complete.
Example 29.4 (29.4). We know $f(x)=x^{2}+1$ is irreducible in $\mathbb{R}[x]$.
According to the above proof, in the field $E=\frac{\mathbb{R}[x]}{\left\langle x^{2}+1\right\rangle}$ the element $\alpha=x+$ $(f(x))$ is a root of $f(x)$. Also establish an isomorphism

$$
E=\frac{\mathbb{R}[x]}{\left\langle x^{2}+1\right\rangle} \approx \mathbb{C}
$$

Example 29.5 (29.5). Let $f(x)=x^{4}-12 x^{2}+35 \in \mathbb{Q}[x]$. We have a factorization
$f(x)=\left(x^{2}-5\right)\left(x^{2}-7\right)$ in $\mathbb{Q}[x]$. However, $f(x)$ does not factor any further in $\mathbb{Q}[x]$.

1. In $E=\frac{\mathbb{Q}[x]}{\left\langle x^{2}-5\right\rangle}$, with $\alpha=x+\left(\left(x^{2}-5\right)\right)$, it factors as

$$
f(x)=(x-\alpha)(x+\alpha)\left(x^{2}-7\right) \text { in } E[x] .
$$

2. Check, $E \approx \mathbb{Q}[\sqrt{5}]=\mathbb{Q} \oplus \mathbb{Q} \sqrt{5}$.
3. In $E^{\prime}=\frac{E[x]}{\left\langle x^{2}-7\right\rangle}$, with $\beta=x+\left\langle x^{2}-7\right\rangle$, it factors as

$$
f(x)=(x-\alpha)(x+\alpha)(x-\beta)(x+\beta)
$$

in to linear factors, in $E^{\prime}[x]$.
Devine Goals: In example 29.5, we started with a polynomial in $\mathbb{Q}[x]$ and constructed an field extension E^{\prime} of \mathbb{Q} so that $f(x)$ factors into linear factors in $E^{\prime}[x]$. This is same as saying that $f(x)$ has four roots in E^{\prime}.

1. This is a typical process that we would like to immitate for any field F and any polynomial $f(x) \in F[x]$.
2. Better still, given any field F, we would like to construct an extension E^{\prime}, so that all polynomials in $F[x]$ factors into linear factors in $E^{\prime}[x]$.
3. Even better is to find an extension E^{\prime} of F so that all polynomial in $E^{\prime}[x]$ factors in to linear factors in $E^{\prime}[x]$. In fact, \mathbb{C} is such an extension of \mathbb{R} or \mathbb{C}. Such a field E^{\prime} will be called algebraically closed field.

29.1 Algebriac and Trancendental Elements

Definition 29.6. Let $F \hookrightarrow E$ be a field extension and $\alpha \in E$.

1. We say that α is algebraic over F, if

$$
f(\alpha)=0 \quad \text { for some } \quad 0 \neq f(x) \in F[x] .
$$

2. We say α is trancendental over F, if it is not algebraic over F.

Example 29.7. Reading Assignment: §29 all Examples.

1. (29.7) $\sqrt{2}$ is algebraic over \mathbb{Q}.
2. (29.9) π, e are trancendetal over \mathbb{Q}.

Definition 29.8. Let $\alpha \in \mathbb{C}$. We say α is an algebraic number, if it is algebraic over \mathbb{Q}.

Theorem 29.9. Let $F \hookrightarrow E$ be a field extension and $\alpha \in E$. Define the evaluation map

$$
\varphi_{\alpha}: F[x] \longrightarrow E \quad \text { by } \quad \varphi_{\alpha}(f(x))=f(\alpha) .
$$

Then α is trnacedental if and only if φ_{α} is injective.
Proof. Execise.
The following is "irreducible polynomial" of α.
Theorem 29.10 (Thm29p13). Let $F \hookrightarrow E$ be a field extension and $\alpha \in E$ be algebraic over F. Then, there is a polynomial $p(x) \in F[x]$, with the following properties:

1. $p(\alpha)=0$.
2. $p(x)$ is irreducible.
3. For any polinomial $f(x) \in F[x], f(\alpha)=0 \Longrightarrow p(x) \mid f(x)$ in $F[x]$.
4. This irreducible polynomial p is determined uniquely upto a unit in F. In fact, any polynomial q of minimal degree, with the property $q(\alpha)=0$ will satisfy the above properties of p.

Proof. Since α is algebraic over F, there are nonzero polynomials $f(x) \in$ $F[x]$ such that $f(\alpha)=0$. Let

$$
d=\min \left\{n \in \mathbb{Z}^{+}: f(\alpha)=0, \text { for some } \quad f \in F[x] \quad \text { with } \quad \operatorname{deg}(f)=n\right\}
$$

Let $p(x)$ be one with minimal degree (i.e. $\operatorname{deg}(p)=d$) such the $p(\alpha)=0$.

1. To see that $p(x)$ is irreducible, use contrapositive argment. Write $p(x)=q(x) g(x)$ where $q, g \in F[x]$ are nonconstant. Then $0=p(\alpha)=$ $q(\alpha) g(\alpha)$ So, either $q(\alpha)=0$ or $g(\alpha)=0$. Since degree of both are less than d, it contradicts the minimality of degree of p. So, (1), (2) are established.
2. Suppose $f(\alpha)=0$ for some $f(x) \in f[x]$. By division algorithm

$$
\begin{gathered}
f(x)=q(x) p(x)+r(x) \quad \text { for some } \quad q(x), r(x) \in F[x] \\
\text { and } \quad r(x)=0 \text { or degree }(r(x))<d .
\end{gathered}
$$

By substituting:

$$
0=f(\alpha)=q(\alpha) p(\alpha)+r(\alpha)=r(\alpha) .
$$

By minimality of $p, r(x)=0$. So $f(x)=q(x) p(x)$. So, (3), is established.
3. Now, if $q(x) \in F[x]$ is another irreducible polynomial, wirh $q((\alpha))=0$, then by (3), $q(x)=u(x) p(x)$. Since $q(x)$ is irreducible $u(x)=u \in F$ must be a unit.

The proof is complete.

Definition 29.11. Let F be a field.

1. A polynomial $f(x) \in F[x]$ with degree $(f)=n$ is called a monic polynomial, if the coefficient of the top-degree term x^{n} is 1. So a monic polnomial looks like

$$
f(x)=x^{n}+a_{n-1} x^{n-1}+\cdots+a_{1} x+a_{0}
$$

2. Let $F \hookrightarrow E$ be a extension of fields. and $\alpha \in E$ be algebraic over F. The monic irreducible polynomial $p(x)$ give by theorem 29.10 is called the irreducible polynomial for α over F.
It is also called the minimal monic polynomial of α over F.
It is denoted by $\operatorname{irr}(\alpha, F)$.
3. The degree of this polynomial is also called the degree of α over F and denoted by $\operatorname{deg}(\alpha, F)$.

Example 29.12 (19p14). We have

$$
\operatorname{irr}(\sqrt{2}, \mathbb{Q})=x^{2}-2, \quad \operatorname{irr}(\sqrt{2}, \mathbb{R})=x-\sqrt{2}
$$

Exercise. Find the irreducible polynomila of $\alpha=\sqrt{1+\sqrt{3}}$ over \mathbb{Q}.

29.2 Simple Extensions

Definition 29.13. Let $F \hookrightarrow E$ be a field extension. We say E is a simple extension of F, if there is an $\alpha \in E$ such that E is the smallest subfield of E generated by F and α. This means, if K is a subfield of E :

$$
F \subseteq K, \alpha \in K \quad \Longrightarrow \quad K=E .
$$

Theorem 29.14 (page 270). Let $F \hookrightarrow E$ be a field extension and $\alpha \in E$. Define the evaluation map

$$
\varphi_{\alpha}: F[x] \longrightarrow E \quad \text { by } \quad \varphi_{\alpha}(f(x)=f(\alpha) .
$$

Then image of φ_{α} is given by

$$
\varphi_{\alpha}(F(x])=\{f(\alpha): f(x) \in F[x]\} \subseteq E
$$

We also denote

$$
\begin{gathered}
F[\alpha]:=\varphi_{\alpha}(F[x])=\{f(\alpha): f \in F[x]\} \\
=\left\{a_{n} \alpha^{n}+a_{n-1} \alpha^{n-1}+\cdots+a_{1} \alpha+a_{0}: a_{i} \in F\right\}
\end{gathered}
$$

Caution: $F[\alpha]$ is not to be confused with a polynomial ring.

1. If α is algebraic over F then $F[\alpha]$ is a field.
2. If α is trancendental, then φ_{α} is injective. So, $F[x] \xrightarrow{\sim} F[\alpha]$

Proof. Let $I=\operatorname{ker}(\varphi)$. Then, I is an ideal of $F[x]$. By a theorem in $\S 21$, $I=F[x] p(x)$. In fact, $p(x)=\operatorname{irr}(\alpha, F)$ (because the generator of the ideal is the polynomial with minimal degree). It follows, from Group Theory, that

$$
\frac{F[x]}{F[x] p(x)} \xrightarrow{\sim} F[\alpha]
$$

is an isomorphism. Since p is irreducible, $\frac{F[x]}{F[x] p(x)}$ is a field (see $\S 27$).
When α is trancendental, by definition the statement is true. The proof is complete.

Definition 29.15. Use all the notations as in (29.14). Let $F \hookrightarrow E$ be an extension of fields and $\alpha \in E$. Recall that $F(\alpha)$ denotes the smallest subfieled of E generated by F and α.

1. If α is algebraic over F, then $F[\alpha]$ is a field. Therefore, $F[\alpha]=F(\alpha)$.
2. If α is trancendental over F, then $F[x] \approx F[\alpha]$ is ONLY an integral doamian, not a field. In this case, the field of quotients of $F[\alpha]$ is $=F(\alpha)$.

Important Remark: Suppose $F \hookrightarrow E$ is a field extension. Then E is a vector space over F. More generally, for a field F, and a ring R, any ring homomorphism $F \longrightarrow R$ provides an F-vector space structure on R. (The author avoided stating this at this stage, becasue he is introducing Vector Space in next section §30.)

Theorem 29.16 (29.18). Suppose $F \hookrightarrow E$ be a field extension and $\alpha \in E$ be algebraic over F. As said above, then $F(\alpha)=F[\alpha]$. Let

$$
\operatorname{degree}(\operatorname{irr}(\alpha, F))=n
$$

In fact,

$$
1, \alpha, \alpha^{2}, \ldots, \alpha^{n-1} \quad \text { forms a Vector Space basis of } F(\alpha) \text { over } F \text {. }
$$

Proof. As before, let $\varphi_{\alpha}: F[x] \longrightarrow E$ be the evaluation map. Then,

$$
F(\alpha)=F[\alpha]=\operatorname{image}\left(\varphi_{\alpha}\right) .
$$

Let

$$
\operatorname{irr}(\alpha, F)=p(x)=x^{n}+a_{n-1} x^{n-1}+\cdots+a_{1} x+a_{0} \quad \text { with } \quad a_{i} \in F .
$$

By definition, $p(\alpha)=0$. Let $\beta \in F(\alpha)=F[\alpha]$. Then, there is a polynomial $f \in F[x]$ such that $\beta=f(\alpha)$. By division algorithm,
$f(x)=p(x) q(x)+r(x) \quad$ with $\quad q, r \in F[x] \quad$ and $\quad r=0 \quad$ or degree $(r)<n$.
Write

$$
r(x)=b_{0}+b_{1} x+b_{2} x^{2}+\cdots+b_{n-1} x^{n-1} \quad b_{i} \in F .
$$

So,

$$
\beta=f(\alpha)=p(\alpha) q(\alpha)+r(\alpha)=b_{0}+b_{1} \alpha+b_{2} \alpha^{2}+\cdots+b_{n-1} \alpha^{n-1} .
$$

So, is a β is F-linear combination of $1, \alpha, \ldots, \alpha^{n-1}$ and hence this set spans $F[\alpha]$. To prove, $1, \alpha, \ldots, \alpha^{n-1}$ is linearly independent, let

$$
a_{0}+a_{1} \alpha+a_{2} \alpha^{2}+\cdots+a_{n-1} \alpha^{n-1}=0 \quad \text { with } \quad a_{i} \in F .
$$

Write

$$
r(x)=a_{0}+a_{1} x+a_{2} x^{2}+\cdots+a_{n-1} x^{n-1} . \text { then } r(\alpha)=0 .
$$

By minimality of $p(x)$, we have $r(x)=0$. That means, $a_{0}=a_{1}=\cdots=$ $a_{n-1}=0$. Hence the above set is linearly independent; hence a basis. The proof is complete.

Reading Assignment:Read Example 29.19, page 271.

30 Vector Spaces
Refer to Math 790.

31 Algebraic Extension

Abstract

Given a field F and a non-constant $f \in F[x]$, we want to find extension $F \hookrightarrow E$ so that $f(x)$ has a root in E

31.1 Finite Extensions

Definition 31.1. Let $F \hookrightarrow E$ be an extension of fields.

1. Recall, an element $\alpha \in E$ is said to be algebraic over F, if there is a non-constant $f \in F[x]$ so that $f(\alpha)=0$.
2. The extension $F \hookrightarrow E$ is said to be an algebraic extension, if every $\alpha \in E$ is algebraic over F.
3. Given an extension $F \hookrightarrow E$ of fields, we can consider E as a vector space over F. Define
$[E: F]:=\operatorname{dim}_{F}(E)=$ the vector space dimension of E over F.
This $[E: F]$ can be finite of ∞.
4. If $[E: F]=n<\infty$, then we is say E is a finite extension of degree n over F.

Examples. Here are some:

1. Given any field F, F is a finite extension over itself, of degree $[F: F]=1$.
2. $\mathbb{R} \hookrightarrow \mathbb{C}$ is a finite extension of degree 2 over \mathbb{R}. (Give a basis.).
3. Let $\mathbb{Q} \hookrightarrow \mathbb{Q}(\sqrt{2})$ is a finite extension of degree 2 over \mathbb{Q}. (Give a basis.).
4. Give a positive integer n let $\zeta_{n}=e^{\frac{2 \pi i}{n}}$ and

$$
E=\mathbb{Q}\left(\zeta_{n}\right)=\mathbb{Q}\left(e^{\frac{2 \pi i}{n}}\right) .
$$

The $\mathbb{Q}\left(\zeta_{n}\right)$ is a finite extension of degree n over \mathbb{Q}. (Give a basis.).

Theorem 31.2 (31.3). Let $F \hookrightarrow E$ be a finite field extension. Then, if is an algebraic field extension. Let me display

$$
\text { FINITE } \quad \Longrightarrow \quad A L G E B R A I C
$$

Proof. Let $[E: F]=n<\infty$. Let $\alpha \in E$ be any element. Then,

$$
1, \alpha, \alpha^{2}, \ldots, \alpha^{n} \quad \text { cannot be linearly independent over } \quad F .
$$

So, there are $a_{0}, a_{1}, \ldots, a_{n} \in F$, not all of them zero, such that
$a_{0}+a_{1} \alpha+\cdots+a_{n} \alpha^{n}=0 . \quad$ Write $\quad f(x)=a_{0}+a_{1} x+\cdots+a_{n} x^{n}$.
Then, $f(x) \in F(x)$ is nonzero and $f(\alpha)=0$. So, α is algebraic over F. The proof is complete.

Theorem 31.3 (31.4). Let $F \hookrightarrow E, E \hookrightarrow K$ be two finite field extension. Then, $F \hookrightarrow K$ is a finite extension, and

$$
[K: F]=[K: E][E: F]
$$

Proof. Let

$$
[K: E]=m, \quad[E: F]=n
$$

We will prove $[K: F]=m n$. Let

$$
\alpha_{1}, \alpha_{2}, \ldots, \alpha_{n} \in E \quad \text { be a basis of } E \text { over } F
$$

and $\beta_{1}, \beta_{2}, \ldots, \beta_{m} \in K \quad$ be a basis of K over E.
We will prove $\left\{\alpha_{i} \beta_{j}: i=1, \ldots, n ; \quad j=1, \ldots, m\right\}$ forms a basis of K over F. First, I will show they span K over F. Let $\gamma \in K$. Then,

$$
\gamma=b_{1} \beta_{1}+b_{2} \beta_{2}+\cdots+b_{m} \beta_{m}=\sum_{j=1}^{m} b_{j} \beta_{j} \quad \text { for some } \quad b_{j} \in E
$$

Again, since $b_{j} \in E$ we have
$b_{j}=a_{1 j} \alpha_{1}+a_{2 j} \alpha_{2}+\cdots+a_{n j} \alpha_{n}=\sum_{i=1}^{n} a_{i j} \alpha_{i} \quad$ for some $\quad a_{i j} \in F$.

So,

$$
\gamma=\sum_{j=1}^{m} b_{j} \beta_{j}=\sum_{j=1}^{m}\left(\sum_{i=1}^{n} a_{i j} \alpha_{i}\right) \beta_{j}=\sum_{j=1}^{m} \sum_{i=1}^{n} a_{i j}\left(\alpha_{i} \beta_{j}\right) .
$$

So, γ is an F-linear combination of $\alpha_{i} \beta_{j}$. So,

$$
\left\{\alpha_{i} \beta_{j}: i=1, \ldots, n ; \quad j=1, \ldots, m\right\} \quad \text { spans } \quad K \text { over } F .
$$

Now, I will show $\left\{\alpha_{i} \beta_{j}: i=1, \ldots, n ; j=1, \ldots, m\right\}$ is linearly independent over F. So, suppose

$$
\sum_{j=1}^{m} \sum_{i=1}^{n} a_{i j}\left(\alpha_{i} \beta_{j}\right)=0 \quad \text { for some } \quad a_{i j} \in F
$$

Then, we have

$$
\sum_{j=1}^{m} \sum_{i=1}^{n} a_{i j}\left(\alpha_{i} \beta_{j}\right)=\sum_{j=1}^{m}\left(\sum_{i=1}^{n} a_{i j} \alpha_{i}\right) \beta_{j}=0 .
$$

Since, $\beta_{1}, \ldots, \beta_{m}$ are linearly independent over E, for each j we have

$$
\sum_{i=1}^{n} a_{i j} \alpha_{i}=0
$$

Since $\alpha_{1}, \ldots, \alpha_{n}$ are lineraly independent ove F we have

$$
a_{i j}=0 \quad \text { for } \quad \text { all } \quad i=1, \ldots, n ; j=1, \ldots, m .
$$

So, $\left\{\alpha_{i} \beta_{j}: i=1, \ldots, n ; \quad j=1, \ldots, m\right\}$ is also linearly independent over F. So, $\left\{\alpha_{i} \beta_{j}: i=1, \ldots, n ; \quad j=1, \ldots, m\right\}$ is a basis of K over F. So,

$$
[K: F]=n m=[K: E][E: F] .
$$

The proof is complete.
Corollary 31.4 (31.6). Suppose

$$
F_{1} \hookrightarrow F_{2} \hookrightarrow F_{3} \cdots F_{r-1} \hookrightarrow F_{r} \quad \text { be finite field extensions. }
$$

Then,

$$
\left[F_{r}: F_{1}\right]=\left[F_{r}: F_{r-1}\right] \cdots\left[F_{3}: F_{2}\right]\left[F_{2}: F_{1}\right]
$$

Proof. By induction,

$$
\left[F_{r}: F_{1}\right]=\left[F_{r}: F_{r-1}\right]\left[F_{r-1}: F_{1}\right]=\left[F_{r}: F_{r-1}\right]\left(F_{r-1}: f_{r-2}\right] \cdots\left[F_{3}: F_{2}\right]\left[F_{2}: F_{1}\right] .
$$

The proof is complete.
Corollary 31.5 (31.7). Let $F \hookrightarrow E$ be a field extension and $\alpha \in E$ be algebraic over F. Let $\beta \in F(\alpha)$. Then

$$
\operatorname{deg}(\beta, F) \mid \operatorname{deg}(\alpha, F) .
$$

Proof. Recall, $\operatorname{deg}(\alpha, F)$ is the degree of the irreducible polynomial of α and

$$
\operatorname{deg}(\alpha, F)=[F(\alpha): F] .
$$

So, we have

$$
\operatorname{deg}(\alpha, F)=[F(\alpha): F]=[F(\alpha): F(\beta)][F(\beta): F]=[F(\alpha): F(\beta)] \operatorname{deg}(\beta, F) .
$$

The proof is complete.
Reading Assignment:Read Example 31.7-31.10.

Theorem 31.6 (31.11). Let $F \hookrightarrow E$ be an algebraic extension and $E=F\left(\alpha_{1}, \alpha_{2}, \ldots, \alpha_{n}\right)$ for finitely many elements $\alpha_{1}, \alpha_{2}, \ldots, \alpha_{n} \in E$. Then, $F \hookrightarrow E$ is finite field extension.

The converse of this theorem is also true (by (31.2)).
Proof. Suppuse $E=F\left(\alpha_{1}, \alpha_{2}, \ldots, \alpha_{n}\right)$ is algebraic. Write

$$
\begin{gathered}
E_{0}=F, E_{1}=F\left(\alpha_{1}\right), E_{2}=F\left(\alpha_{1}, \alpha_{2}\right), \ldots, E_{n-1}=F\left(\alpha_{1}, \alpha_{2}, \ldots, \alpha_{n-1}\right), \\
E_{n}=E=F\left(\alpha_{1}, \alpha_{2}, \ldots, \alpha_{n}\right) .
\end{gathered}
$$

Note $E_{r-1} \hookrightarrow E_{r}=E_{r-1}\left(\alpha_{r}\right)$ and α_{r} is algebraic over E_{r-1}. So,

$$
\left[E_{r}: E_{r-1}\right]=\operatorname{deg}\left(\alpha_{r}, E_{r-1}\right)=: m_{r} .
$$

Then, we have a chain

$$
F=E_{0} \hookrightarrow E_{1} \hookrightarrow E_{2} \ldots E_{n-1} \hookrightarrow E_{n}=E
$$

of algebraic field extensions. So,

$$
\begin{aligned}
{[E: F]=\left[E_{n}: E_{0}\right]=} & {\left[E_{n}: E_{n-1}\right]\left[E_{n-1}: E_{n-2}\right] \cdots\left[E_{2}: E_{1}\right]\left[E_{1}: E_{0}\right] } \\
& =m_{n} m_{n-1} \cdots m_{2} m_{1}<\infty
\end{aligned}
$$

So, first part of the theorem is established.
For the converse, let $F \hookrightarrow E$ be a finite field extension and $[E$: $F]=n$. Let $\alpha_{1}, \ldots, \alpha_{n}$ be a basis of E over F. Then, $E=F\left(\alpha_{1}, \ldots, \alpha_{n}\right)$. Also, by (31.2), it is an algebraic extension. The proof is complete.

Corollary 31.7 (Extra). Suppose $E=F\left(\alpha_{1}, \ldots, \alpha_{n}\right)$ is finitely generateted field extension of F. Then, $F \hookrightarrow E$ is algebraic field extension if and only if $F \hookrightarrow E$ finite field extension.

Let me display, for finitely generated extensions

$$
\text { FINITE } \quad \Longleftrightarrow \quad A L G R B R A I C
$$

Proof. It is just reinterpretation of the above.
Corollary 31.8 (Extra). Suppose $E=F\left(\alpha_{1}, \ldots, \alpha_{n}\right)$ is finitely generateted field extension of F. Assume $\alpha_{1}, \ldots, \alpha_{n}$ are algebraic over F. Then E is a finite field extension of F.

Proof. Exercise

31.2 Algebraically Closed Fields and Algebraic

Closure

Theorem 31.9 (31.12). Suppose $F \hookrightarrow E$ be an extension of fields. Write

$$
\bar{F}_{E}=\{\alpha \in E: \alpha \quad \text { is algebraic over } \quad F\} .
$$

Then, \bar{F}_{E} is a subfield of E and $F \hookrightarrow \bar{F}_{E}$. This field \bar{F}_{E} is called the Algebraic Closure of F in E.

Proof. Suppose $\alpha, \beta \in \bar{F}_{E}$. Then, by (31.8), $F \hookrightarrow F(\alpha, \beta)$ is finite field extension. Since $\alpha+\beta, \alpha-\beta \in F(\alpha, \beta)$ and if $\beta \neq 0$ then $\frac{\alpha}{\beta} \in F(\alpha, \beta)$, by (31.2), they are all algebraic over F, hence in \bar{F}_{E}. So, \bar{F}_{E} is closed under addition, multiplication and each nonzero element in \bar{F}_{E} has an inverse in it. So, \bar{F}_{E} is a field. The proof is complete.

Corollary 31.10 (31.13). The set $\overline{\mathbb{Q}}_{\mathbb{C}}$ of all algebraic numbers forms a subfield of \mathbb{C}.

Proof. Recall, a complex number $\alpha \in \mathbb{C}$, is called an algebraic number if it is algebraic over \mathbb{Q}. So, it is an immediate consequence of the above.

Definition 31.11. A field F is called algebraically closed, if every nonconstant polynomial $f \in F(x)$ has a zero in F.

Prime Example:

Theorem 31.12 (31.17). The field \mathbb{C} is algebraically closed.
Proof. (Skip, if you did not have course in complex analysis.) Suppose $f(x) \in \mathbb{C}[x]$ is a nonconstant polynomial. Suppose $f(x)$ does not have any zero in \mathbb{C}. Then, $1 / f(x)$ is an entire function (that means, holomorphic everywhere). Also, $\lim _{|x| \rightarrow \infty}|f(x)|=\infty$. So, $\lim _{|x| \rightarrow \infty}|1 / f(x)|=0$. Thus, $1 / f(x)$ is a bounded function, which is entire. By Liouville's theorem, $1 / f$ is constant and hence so is f. This is a contradiction.

Theorem 31.13 (31.15). A field is algebraically closed if and only if every (nonconstant) polynomial factors in to linear factor.

Proof. Suppose F is algebraically closed and $f \in F[x]$ is (nonconstant) polynomial. If $\operatorname{deg}(f)=1$, then there is nothing to prove. Now let $n=\operatorname{deg}(f)>1$. Since F is algebraically closed, $f\left(a_{1}\right)=0$ for some $a_{1} \in F$. So, $f(x)=\left(x-a_{1}\right) g(x)$ for some $g \in F[x]$. Since, $\operatorname{deg}(g)=n-1<\operatorname{deg}(f)$, by induction, g factors as $g(x)=\lambda(x-$ $\left.a_{2}\right)\left(x-a_{3}\right) \cdots\left(x-a_{n}\right)$ for some $\lambda, a_{i} \in F$. So, $f(x)=\left(x-a_{1}\right) g(x)=$ $\lambda\left(x-a_{1}\right)\left(x-a_{2}\right)\left(x-a_{3}\right) \cdots\left(x-a_{n}\right)$. So, this implication is established.

Conversely, suppose every (nonconstant) polynomial factors in to linear factors. Now, let $f \in F[x]$ be nonconstant. Then $f(x)=\lambda(x-$ $\left.a_{1}\right)\left(x-a_{2}\right)\left(x-a_{3}\right) \cdots\left(x-a_{n}\right)$ for some $\lambda, a_{i} \in F$. So, each a_{i} is a root of f.

The proof is complete.
Corollary 31.14 (31.16). Suppose F is an algebraically closed field and $F \hookrightarrow E$ is an algebraic extension of fields. Then $F=E$.

Proof. Suppose $a \in E$. Since a is algebraic over F, there is a nonconstant polynomial $f \in F[x]$, such that $f(a)=0$. So, $f(x)=(x-a) g(x)$ for some $g \in E[x]$. Since F is algebraically closed, by the above theorem, $f(x)=\lambda\left(x-a_{1}\right)\left(x-a_{2}\right)\left(x-a_{3}\right) \cdots\left(x-a_{n}\right)$ for some $\lambda, a_{i} \in F$. So,

$$
f(x)=\lambda\left(x-a_{1}\right)\left(x-a_{2}\right)\left(x-a_{3}\right) \cdots\left(x-a_{n}\right)=(x-a) g(x)
$$

Since, every polynomial in $E[x]$ has unique factorization, $a=a_{i} \in F$ for some i. The proof is complete.

Theorem 31.15 (31.32). Suppose F is a field. Then there is a field extension $F \hookrightarrow E$ such that (1) E is algebraically closed, (2) $F \hookrightarrow E$ is an algebraic extension. (Such an extension E is called the algebraic closure of F and is denoted by \bar{F}).

Proof. By some set theoratic argument, we assume that there is a set Ω such that if $F \hookrightarrow E$ is an algebraic extension then $E \subset \Omega$. Let

$$
\mathcal{E}=\{E: F \hookrightarrow E \text { is an algebraic extension }\}
$$

Then, inclusion $E_{1} \subseteq E_{2}$ gives a structure of a partially ordered set on \mathcal{E}. Suppose

$$
E_{1} \subseteq E_{2} \subseteq E_{3} \subseteq E_{4} \subseteq \cdots
$$

is a chain of field extensions in \mathcal{E}. Write

$$
E=\bigcup E_{i}
$$

Then, E is a field such that $F \hookrightarrow E$ is an algebraic extension. So, $E \in \mathcal{E}$ and $E_{i} \subseteq E$ for all i. So, every chain in \mathcal{E} has an upper bound in \mathcal{E}. Therefore, by Zorn's lemma (see $\S 0$) \mathcal{E} has a maximal element K. We claim that K is algebraically closed field. So see this, let $f \in K[x]$ be a nonconstant polynomial and $f(x)$ does not have a zero in K. Write the unique factorization $f=p_{1} p_{2} \cdots p_{r}$, where $p_{i} \in K[x]$ are irreducible in $K[x]$. So, $K \hookrightarrow \frac{K[x]}{\left(p_{1}\right)}$ is an algebraic extension and so $F \hookrightarrow \frac{K[x]}{\left(p_{1}\right)}$ is an algebraic extension. Since, $K \neq \frac{K[x]}{\left(p_{1}\right)}$, it is a contradiction to the maximality of E. So, E is algebraically closed. The proof is complete.

List of concepts we defined in this section:

1. Given field extension $F \hookrightarrow E$ and element $a \in E$, we defined when we say a is algebraic over F.
2. We defined when a field extension $F \hookrightarrow E$ is called algebraic extension.
3. We defined finite field extensions $F \hookrightarrow E$.
4. Given field extension $F \hookrightarrow E$ we defined \bar{F}_{E}, the algebraic closure of F in E.
5. Give a field F, we defined its algebraic closure \bar{F} (see 31.15). This is the "Grand" closure.

32 Geometric Constructions
skip

33 Finite Fields

Theorem 33.1. Let F be a field and $F \hookrightarrow E$ be a finite field extention. If F has q elements and $[E: F]=n$ then E has q^{n} elements.

Proof. Exercise.

Theorem 33.2. Suppose E is a finite field of characteristic $p>0$. Prove E has prements.

Proof. Follows from the fact $\mathbb{Z}_{p} \hookrightarrow E$ is finite field extension. The proof is complete.

