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29 Introduction to Extension Fields

Example 29.1. The polynomial f(x) = 2% + 1 does not have a solution in
R, but it has a solution in the bigger field C.

The author has been working to develop similar theorems for any field F'.

Definition 29.2. Let F, E be two fields. If F' is a subfield of E, then E 1is
called an extension field of F'. I write — FE is an extension of fields to

mean the same.
Examples:

1. R is an extension field of Q.
2. C is an extension field of Q.
3. C is an extension field of R.

4. Suppose F is any field and F[z] the polynomial ring. Let F'(X) be the
quotient field of F[x]. Then, F'(X) is an extension field of F.
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The following has been author’s primary goal for some time.

Theorem 29.3 (29.3 Kronecker’s Theorem). Let F' be a field and f(x) be a
nonconstant polynomial in F|x]. Then there is an extension field E of F' so
that f(x) has a root in E.

ducible polynomials in F[z]. Write E' = L}» Now, ((pi(z)) is a maximal

Proof. By theorem 23.20, f(x) = pi(z)p2(z)---p.(x), where p; are irre-
((pr(=

ideal and so F is a field.

1. The map
V. F— E defined by (a)=a+ (pi(z))

is an injective homomorphism. In fact, ¢ is the composition of two
homomorphisms, as given by the commutative diagram:

S
__F[a]
b= ((p1(z))~

To prove it is injective, we need to show that the kernel is {0}. So,

let ¢(a) = (p1(z)). This means a + (pi(x)) = (p1(x)) or a € (p1(z)).
So, a = A(z)p1(x) for some A(z) € F|z]. Comparing degrees, we have
A(xz) = 0 and hence a = 0. So, ® is injective.

Identifying, F' with ¢(F) C E, we have F' is a subfield of E.

2. Important Notation: For g € F[z], we denote, its coset

g=9+(mx) €k
Because of the identification of F' with ¢ (F'), notationally, we have
YaeF, a=a.

3. Now, write py(z) = ag + a1z + asx® + - - - + a,x" and
a=T=ux+ (pi(zr)). We have

pl(a) :pl(f) =ag+ a1T + CLQEZ 4+ 4 CLnTn

=ag+ ar+ ax?+ -+ aa® = pi(x) =0

So, av is a zero of py(x) in E and hence is a zero of f(x) in E.
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The proof is complete. |

Example 29.4 (29.4). We know f(x) = x* + 1 is irreducible in R[z].

According to the above proof, in the field E = % the element o = x +
(f(x)) is a root of f(x). Also establish an isomorphism
Rlz]
E=———=~C.
2+ 1)

Example 29.5 (29.5). Let f(z) = z* — 1222 + 35 € Q[z]. We have a
factorization

f(x) = (2?2 = 5)(2? = 7) in Q[z]. However, f(x) does not factor any further
in Q[z].

1. In E = (3%[15}5), with o = z + ((x* — b)), it factors as

f(x)=(z—a)(x+a)(z*—=7) in Elx].
2. Check, E ~ Q[v5] = Q @ Qv/5.

3. InE' = %, with B = x + (x® — 7), it factors as

flz) = (z = a)(z + a)(z = B)(z + §),
in to linear factors, in E'[x].

Devine Goals: In example 29.5, we started with a polynomial in Q[z] and
constructed an field extension £’ of Q so that f(x) factors into linear factors
in E'[z]. This is same as saying that f(z) has four roots in E’.

1. This is a typical process that we would like to immitate for any field F’
and any polynomial f(z) € Flx].

2. Better still, given any field F', we would like to construct an extension
E’, so that all polynomials in F[z| factors into linear factors in E'[z].

3. Even better is to find an extension E’ of F' so that all polynomial in
E'[z] factors in to linear factors in E'[z]. In fact, C is such an extension
of R or C. Such a field £’ will be called algebraically closed field.



29.1 Algebriac and Trancendental Elements

Definition 29.6. Let ' — E be a field extension and o € E.

1. We say that o is algebraic over F, if
fla)=0 for some 0# f(x)€ Flz].

2. We say a 1s trancendental over F', if it is not algebraic over F.

Example 29.7. Reading Assignment: §29 all Ezamples.

1. (29.7) V2 is algebraic over Q.
2. (29.9) 7, e are trancendetal over Q.

Definition 29.8. Let a € C. We say « is an algebraic number, if it is

algebraic over Q.

Theorem 29.9. Let F' — E be a field extension and o € E. Define the

evaluation map
Yo Fla] — E by @a(f(x)) = fla).
Then « s trnacedental if and only if ¢, is injective.

Proof. Execise.

The following is "irreducible polynomial" of a.

Theorem 29.10 (Thm29p13). Let F — E be a field extension and o € E be
algebraic over F. Then, there is a polynomial p(x) € Flx|, with the following

properties:

1. p(a) = 0.

2. p(x) is irreducible.



3. For any polinomial f(z) € Flz], f(a) = 0= p(x)|f(z) in F|x].

4. This trreducible polynomial p is determined uniquely upto a unit in F'.
In fact, any polynomial g of minimal degree, with the property ¢(a) = 0

will satisfy the above properties of p.

Proof. Since « is algebraic over F', there are nonzero polynomials f(x) €
Flz] such that f(a) = 0. Let

d=min{n € Z* : f(a) =0, for some f € Flz] with deg(f)=n}.
Let p(z) be one with minimal degree (i.e. deg(p) = d) such the p(a) = 0.

1. To see that p(x) is irreducible, use contrapositive argment. Write
p(z) = q(z)g(x) where q,g € F[z] are nonconstant. Then 0 = p(a) =
q(a)g(a) So, either (o) = 0 or g(a) = 0. Since degree of both are less
than d, it contradicts the minimality of degree of p. So, (1), (2) are
established.

2. Suppose f(a) = 0 for some f(z) € flz]. By division algorithm
f(x) = q(z)p(x) +r(x) for some q(z),r(z) € Flz]

and r(z) =0 or degree(r(z)) < d.
By substituting:

By minimality of p, r(z) = 0. So f(x) = q(z)p(z). So, (3), is estab-
lished.

3. Now, if ¢(z) € Flz] is another irreducible polynomial, wirh ¢((«)) = 0,

then by (3), ¢(x) = u(x)p(x). Since ¢(x) is irreducible u(z) = u € F
must be a unit.

The proof is complete. |



Definition 29.11. Let F' be a field.

1. A polynomial f(x) € F[z] with degree(f) = n is called a monic poly-
nomial, if the coefficient of the top-degree term z™ is 1. So a monic

polnomial looks like
fx)=a"+a, 12" '+ +ax +ag

2. Let F — FE be a extension of fields. and o € E be algebraic over F.
The monic irreducible polynomial p(x) give by theorem 29.10 is called
the irreducible polynomial for o over F.

It 1s also called the minimal monic polynomial of o over F'.
It is denoted by irr(a, F).

3. The degree of this polynomial is also called the degree of o over F
and denoted by deg(a, F').

Example 29.12 (19p14). We have

irr(vV2,Q) =22 — 2, irr(vV2,R) = x — V2.

Exercise. Find the irreducible polynomila of v = v/1 + v/3 over Q.

29.2 Simple Extensions

Definition 29.13. Let F' — E be a field extension. We say E is a simple
extension of F, if there is an o € E such that E is the smallest subfield of
E generated by F and . This means, if K is a subfield of E:

FCK, acK =— K=E.

Theorem 29.14 (page 270). Let F' — E be a field extension and a € E.

Define the evaluation map
po: Fla] — E by @a(f(x) = fla).
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Then image of pq is given by
Pa(F(z]) = {f(a): f(z) € Fla]} C E
We also denote
Fla] := o Flz]) = {f(a) : | € Flz]}
={a,0" + ap_10" '+ Faatag:a; € F}

Caution: F'[a] is not to be confused with a polynomial ring.

1. If « is algebraic over F then F[a] is a field.
2. If a is trancendental, then @, is injective. So, Flz] — F[a]

Proof. Let I = ker(y). Then, I is an ideal of F[z]. By a theorem in §21,

I = Flz|p(x). In fact, p(x) = irr(«a, F') (because the generator of the ideal is

the polynomial with minimal degree). It follows, from Group Theory, that
Flx]

Flalp@)

is an isomorphism. Since p is irreducible, % is a field (see §27).

When « is trancendental, by definition the statement is true. The proof
is complete. |

Definition 29.15. Use all the notations as in (29.14}). Let F — E be an
extension of fields and o € E. Recall that F'(«) denotes the smallest subfieled
of E generated by F' and a.

1. If « is algebraic over F, then F[a] is a field. Therefore, Fla| = F(a).

2. If « is trancendental over F', then F[z] ~ Fla] is ONLY an integral
doamian, not a field. In this case, the field of quotients of F[a] is
= F(a).



Important Remark: Suppose F' — FE is a field extension. Then FE is a
vector space over F'. More generally, for a field F', and a ring R, any ring
homomorphism F' — R provides an F'—vector space structure on R. (The
author avoided stating this at this stage, becasue he is introducing Vector
Space in next section §30.)

Theorem 29.16 (29.18). Suppose F — FE be a field extension and o € E
be algebraic over F. As said above, then F(a) = F[a]. Let

degree(irr(a, F)) = n.

La,o% ...,a" " forms a Vector Space basis of F'(a) over F.

Proof. As before, let ¢, : F[z] — E be the evaluation map. Then,
F(a) = Fla] = image(pq,).
Let
irr(o, F) = p(x) = 2" + ap_12" ' + - +ayx +ap with a; € F.

By definition, p(a) = 0. Let 8 € F(a) = F[a]. Then, there is a polynomial
f € Flx] such that § = f(«). By division algorithm,

f(z) = p(x)q(x)+r(x) with q,re€ Flz] and r=0 or degree(r)<n.

r(z) = by + bz + box® + - 4 byt b € F.

B = fla) =pla)g(e) + r(a) = by + b+ bpa® + -+ + by

"=1 and hence this set spans

is linearly independent, let

So, is a (3 is F-linear combination of 1, ..., «
Fla]. To prove, 1,a,...,a"!

ap + a1+ axd® + -4+ a1 =0 with @ € F.



Write
r(x) = ap + a17 + agx® + -+ + a,_12" ' then r(a) = 0.
By minimality of p(z), we have r(z) = 0. That means, ay = a; = -+ =

a,—1 = 0. Hence the above set is linearly independent; hence a basis. The
proof is complete. |

Reading Assignment:Read Example 29.19, page 271.



30 Vector Spaces

Refer to Math 790.
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31 Algebraic Extension

Abstract

Given a field F' and a non-constant f € Flz]|, we want to find

extension F' < F so that f(x) has a root in E

31.1 Finite Extensions

Definition 31.1. Let F — FE be an extension of fields.

1. Recall, an element o € F is said to be algebraic over F', if there

is a non-constant f € F'[z] so that f(a) = 0.

2. The extension F' — E is said to be an algebraic extension, if

every a € E is algebraic over F.

3. Given an extension F — E of fields, we can consider E as a

vector space over F. Define
[E : F] :=dimp(FE) = the vector space dimension of E over F.
This [E : F] can be finite of cc.

4. If [E: F] =n < oo, then we is say F is a finite extension of

degree n over F.
Examples. Here are some:

1. Given any field F', F' is a finite extension over itself, of degree
[F: F]=1.

2. R < C is a finite extension of degree 2 over R. (Give a basis.).

3. Let Q — Q(v/2) is a finite extension of degree 2 over Q. (Give a

basis.).

4. Give a positive integer n let (,, = e’ and
27
E=Q(6)=Q(e).

The Q((,) is a finite extension of degree n over Q. (Give a

basis.).
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Theorem 31.2 (31.3). Let F — E be a finite field extension. Then,

if is an algebraic field extension. Let me display
FINITE — ALGEBRAIC.

Proof. Let [F: F] =n < co. Let a € E be any element. Then,

La,o?,...,a" cannot be linearly independent over F.

So, there are ag, a1,...,a, € F, not all of them zero, such that
ag+ara+ - +apa™ =0. Write f(x) =ap+ a1z + -+ apa”.

Then, f(z) € F(x) is nonzero and f(a) = 0. So, « is algebraic over
F'. The proof is complete. [

Theorem 31.3 (31.4). Let F — E, E — K be two finite field exten-

sion. Then, F — K 1is a finite extension, and
[K: F]=[K:E|E:F|.

Proof. Let
[K:E]=m, [E:F]=n.

We will prove [K : F| = mn. Let

at,a9,...,a, € E be abasis of E overk

and B1,B2,...,8m € K be a basis of K overE.

We will prove {e;3; :i=1,...,n; j=1,...,m} forms a basis of K

over F'. First, I will show they span K over F. Let v € K. Then,
m
’y:b151+b2ﬁ2+---+bmﬁm:ijﬁj for some b € E.
j=1
Again, since b; € E we have

n
bj = arjoq + agjoe + - - + anjoy, = g A5 for some aj; € F.
i=1
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So,
y=) bifi=) (Z “ijo‘i) By =D aij(ciy).
j=1 j=1 \i=1 Jj=11i=1

So, v is an F'—linear combination of «;(3;. So,
{aifji=1,...,n; j=1,...,m} spans K over F.

Now, I will show {a;f; : 4 = 1,...,n; j = 1,...,m} is linearly

independent over F'. So, suppose

ZZaU(aiﬁj) =0 for some a;; € F.

j=1i=1
Then, we have

5.

n

a,-j(a,ﬂj) = Z (Z aijai> ,Bj =0.
j=1

j=11i=1 i=1
Since, B, ..., Bm are linearly independent over F, for each j we have
n
Zaijai = 0.
i=1
Since a4, ..., a, are lineraly independent ove F' we have
ai;; =0 for all 1=1,...,n;j=1,...,m.
So, {aifBj :i=1,...,n; j=1,...,m} is also linearly independent
over F. So, {a;f3; :i=1,...,n; j=1,...,m} is a basis of K over
F. So,

[K:F]=nm=[K: E|[E:F]
The proof is complete. [
Corollary 31.4 (31.6). Suppose
P — F,— Fy---F._1— F,. be finite field extensions.
Then,

[Fr . Fl] = [Fr . Frfl] cee [Fg : FQHFQ : Fl]
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Proof. By induction,
[Fr : Fl] = [Fr : Frfl][Frfl : Fl] == [Fr : Frfl](FTfl : fT,Q] ce [Fg : FQ][FQ : Fl]
The proof is complete. ]

Corollary 31.5 (31.7). Let ' — E be a field extension and o € E be
algebraic over F. Let € F(«). Then

deg(B, F)|deg(a, F).

Proof. Recall, deg(a, F') is the degree of the irreducible polynomial
of a and
deg(a, F) = [F(a) : F].

So, we have
deg(a, F) = [F(a) : F] = [F(a) : F(B)|[F(B) : F] = [F(c) : F(B)]deg (B, F).

The proof is complete. ]

Reading Assignment:Read Example 31.7-31.10.

Theorem 31.6 (31.11). Let F' — E be an algebraic extension and
E = F(ay,g,...,ap) for finitely many elements aq, g, ...,a, € E.
Then, F' — E is finite field extension.

The converse of this theorem is also true (by (31.2)).

Proof. Suppuse E = F(a1,ag,...,q,) is algebraic. Write
EO = F, E1 = F(Oq),EQ = F(Oél,OzQ), e ,En,1 = F(Oq,OQ, NN ,Oénfl),

E,=F=F(aj,ag,...,ap).

Note E,_1 — E, = E,_1(,) and «, is algebraic over E,_1. So,

[Er : Erfl] = deg(ar,Erfl) =i My.
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Then, we have a chain
F=Fy—F  —~Fy.. . E,_1—F,=F
of algebraic field extensions. So,
[E:F)=[E,: E))=[E,: En][Fn-1: En—2]--[Fs: E1]|[E1 : Ep]

= MpMp—1---Mom1 < O0.

So, first part of the theorem is established.

For the converse, let F' < E be a finite field extension and [E :
F]=n. Let aq,...,a, beabasis of E over F. Then, F = F(ay,...,q,).
Also, by (31.2), it is an algebraic extension. The proof is complete. m.

Corollary 31.7 (Extra). Suppose E = F(aq,...,ay) is finitely gen-
erateted field extension of F'. Then, F — E is algebraic field extension
if and only if F — E finite field extension.

Let me display, for finitely generated extensions
FINITE — ALGRBRAIC.

Proof. It is just reinterpretation of the above. [

Corollary 31.8 (Extra). Suppose E = F(ay,...,ap) is finitely gen-
erateted field extension of F. Assume aq,...,a, are algebraic over F.
Then E is a finite field extension of F.

Proof. Exercise [ ]
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31.2 Algebraically Closed Fields and Algebraic

Closure

Theorem 31.9 (31.12). Suppose F — E be an extension of fields.
Write
Fp={a€FE:a isalgebraic over F}.

Then, Fg is a subfield of E and F — Fg. This field Fg is called the
Algebraic Closure of F' in E.

Proof. Suppose o, 3 € Fg. Then, by (31.8), F — F(a, 3) is finite
field extension. Since a + S, — 3 € F(a, () and if § # 0 then
% € F(a, ), by (31.2), they are all algebraic over F, hence in Fg. So,
F is closed under addition, multiplication and each nonzero element

in F has an inverse in it. So, F'g is a field. The proof is complete. m

Corollary 31.10 (31.13). The set Q¢ of all algebraic numbers forms
a subfield of C.

Proof. Recall, a complex number o € C, is called an algebraic number
if it is algebraic over Q. So, it is an immediate consequence of the

above. [ ]

Definition 31.11. A field F' is called algebraically closed, if every

nonconstant polynomial f € F(x) has a zero in F.
Prime Example:
Theorem 31.12 (31.17). The field C is algebraically closed.

Proof. (Skip, if you did not have course in complex analysis.) Sup-
pose f(z) € C|x] is a nonconstant polynomial. Suppose f(x) does
not have any zero in C. Then, 1/f(x) is an entire function (that
means, holomorphic everywhere). Also, lim,_, |f(z)] = co. So,
lim, o0 [1/f(x)] = 0. Thus, 1/f(x) is a bounded function, which is
entire. By Liouville’s theorem, 1/f is constant and hence so is f. This

is a contradiction. ]
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Theorem 31.13 (31.15). A field is algebraically closed if and only if

every (nonconstant) polynomial factors in to linear factor.

Proof. Suppose F is algebraically closed and f € F[z] is (nonconstant)
polynomial. If deg(f) = 1, then there is nothing to prove. Now
let n = deg(f) > 1. Since F is algebraically closed, f(a;) = 0 for
some a; € F. So, f(z) = (z — a1)g(x) for some g € F[z]. Since,
deg(g) = n — 1 < deg(f), by induction, g factors as g(z) = Az —
az)(x —ag) - (x — ap) for some A\, a; € F. So, f(z) = (v —a1)g(x) =
AMz—a1)(x—az)(zr—as) - (x—ay). So, this implication is established.

Conversely, suppose every (nonconstant) polynomial factors in to
linear factors. Now, let f € F[x] be nonconstant. Then f(z) = A(z —
ar)(x—az2)(x—as) - (x—ay,) for some A, a; € F. So, each a; is a root
of f.

The proof is complete. m

Corollary 31.14 (31.16). Suppose F is an algebraically closed field
and F' — FE is an algebraic extension of fields. Then F' = E.

Proof. Suppose a € E. Since a is algebraic over F', there is a noncon-
stant polynomial f € F[z], such that f(a) = 0. So, f(z) = (r—a)g(zx)
for some g € E[z|. Since F is algebraically closed, by the above theo-
rem, f(z) = ANa —a1)(x —ag)(z —a3)--- (x — a,) for some A\, a; € F.
So,

f(@) =AMz —a1)(x —a2)(z —ag) - (z — an) = (z — a)g(z)

Since, every polynomial in E[x] has unique factorization, a = a; € F

for some i. The proof is complete. [

Theorem 31.15 (31.32). Suppose F' is a field. Then there is a field
extension F' — E such that (1) E is algebraically closed, (2) F — FE is
an algebraic extension. (Such an extension F is called the algebraic
closure of F and is denoted by F').
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Proof. By some set theoratic argument, we assume that there is a set

Q such that if F' — F is an algebraic extension then E C ). Let
E={FE:F < Eis an algebraic extension}

Then, inclusion E; C Ey gives a structure of a partially ordered set on
E. Suppose
EyCEyCE3CELC---

is a chain of field extensions in £. Write

E:UE

Then, F is a field such that F' < F is an algebraic extension. So,
E € £ and E; C E for all i. So, every chain in £ has an upper bound
in £. Therefore, by Zorn’s lemma (see §0) £ has a maximal element
K. We claim that K is algebraically closed field. So see this, let
f € Klz] be a nonconstant polynomial and f(z) does not have a zero

in K. Write the unique factorization f = pips - --p,, where p; € K|[x]

are irreducible in K[z]. So, K — I(;[f)} is an algebraic extension and
so F' — % is an algebraic extension. Since, K # I(;[lx)}, it is a

contradiction to the maximality of E. So, E is algebraically closed.

The proof is complete. ]

List of concepts we defined in this section:

1. Given field extension F' < FE and element a € E, we defined

when we say a is algebraic over F.

2. We defined when a field extension F' < FE is called algebraic

extension.
3. We defined finite field extensions F — F.

4. Given field extension F' — FE we defined Fg, the algebraic

closure of F' in E.

5. Give a field F, we defined its algebraic closure F (see 31.15).

This is the "Grand" closure.
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32 Geometric Constructions

skip
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33 Finite Fields

Theorem 33.1. Let F be a field and F — E be a finite field extention.
If F has q elements and [E : F] =n then E has ¢" elements.

Proof. Exercise. [ ]

Theorem 33.2. Suppose E is a finite field of characteristic p > 0.

Prove E has p" elements.

Proof. Follows from the fact Z, — E is finite field extension. The

proof is complete. [
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