Part II Permutations, Cosets and Direct Product

Satya Mandal

University of Kansas, Lawrence KS 66045 USA

January 22

8 Permutations

Definition 8.1. Let A be a set.

- 1. A a permuation of A is defined to be a bijective map $\varphi : A \xrightarrow{\sim} A$. (Usually, we work with permutations of finite sets A.)
- 2. Let $\mathcal{S}(A)$ denote the set of permuations of A.
- 3. The composition, defines a binary operation on $\mathcal{S}(A)$ as follows:

 $\forall \sigma, \tau \in \mathcal{S}(A)$ define $\tau \sigma(x) = \tau(\sigma(x))$ $\forall x \in A$.

It is obvious that

$$
\tau, \sigma \in \mathcal{S}(A) \Longrightarrow \tau \sigma \in \mathcal{S}(A)
$$

So, $\mathcal{S}(A)$ is closed under composition.

Further, as always, composition is associative.

The identity map $Id_A : A \longrightarrow A$ given by $Id_A(x) = x \,\forall x \in A$, is the identity for the composition operation.

Also, a bijectiion $\sigma \in \mathcal{S}(A)$ has an inverse $\sigma^{-1} \in \mathcal{S}(A)$, defined by

$$
\sigma^{-1}(y) = x \quad \text{if} \quad \sigma(x) = y.
$$

So, $\mathcal{S}(A)$ is a group under composition.

- 4. If A is a finite set with n elements, we can take $A = \{1, 2, \ldots, n\}.$
- 5. The the group of permutations of $A = \{1, 2, \ldots, n\}$ is denoted by S_n . It is called the symmetric group on n letters. Note S_n has n! elements.

Example 8.2. Read examples 8.7 and 8.8. Example 8.7 gives the multiplication table for S_3 . Note S_3 has $3! = 6$ elements. Read about **dihedral** groups. You and I would write down all six elements of S_3 on the board.

Definition 8.3. For a positive integer $n \geq 2$, the **Dihedral group** D_n is defined to be the group of symmetries of an regular $n-gon$. By a symmetry, we mean rotation and reflection.

- 1. So, D_3 is the dihedral group of an equilateral triangle. In fact, $D_3 \approx S_3$.
- 2. So, D_4 is the dihedral group of square. For a square, four rotations $(0, \pi/2, \pi, 3\pi/2)$ are possible. With four reflections of the four, we get total of 8 elements. So, $|D_4| = 8$.

Each element $\rho \in D_4$ corresponds to a permuation in S_4 . In fact, $D_4 \leq S_4$.

Like homomorphisms of binary structures, we define homomorphisms of groups.

Definition 8.4. Suppose $\varphi : G \longrightarrow G'$ be a mapping from a group G to another group G' .

- 1. We say, φ is a **homomorphism** if $\varphi(xy) = \varphi(x)\varphi(y)$ for all $x, y \in G$.
- 2. Given a subgroup H of G, the **image of** H under φ is defined to be $\varphi(H) := \{\varphi(x) : x \in H\}$

Lemma 8.5. Suppose $\varphi: G \longrightarrow G'$ is a homomorphism of groups. Assume φ is injective. Then the image $\varphi(G)$ is a subgroup of G' and φ induces an isomorphism between G and $\varphi(G)$.

Proof. We do not have to check associativity. Suppose $x, y \in \varphi(G)$. Then $x = \varphi(a), y = \varphi(b)$ for some $a, b \in G$. So, $xy = \varphi(a) = \varphi(ab) \in \varphi(G)$. So, $\varphi(G)$ is closed under multiplication.

Let $e' \in G'$ denote the identity in G'. We calaim: $\varphi(e) = e'$. Because $\varphi(e) = \varphi(ee) = \varphi(e)\varphi(e)$. So, $e' = (\varphi(e)^{-1}(\varphi(e)\varphi(e)) = \varphi(e)$. So, it is established that $e' = \varphi(e)$. Therefore $e' \in \varphi(G)$.

Given $x \in \varphi(G)$, $x = \varphi(a)$ for some $a \in G$. So, $x\varphi(a^{-1}) = \varphi(a)\varphi(a^{-1}) =$ $\varphi(aa^{-1}) = \varphi((e0 = e'. \text{ Similarly}, \varphi(a^{-1})x = e'. \text{ So inverse of } x \text{ is } \varphi(a^{-1}) \in$ $\varphi(G).$

This establishes that $\varphi(G)$ is subgroup of G'. Let $f: G \longrightarrow \varphi(G)$ be the mapping induced by φ . Clearly, it is onto and it is also one to one. So, f is bijective. So, G is isomorphic to $\varphi(G)$. The proof is complete.

Now, we will prove any group is isomorphic to a group of permutations.

Theorem 8.6 (Cayley's Theorem). Let G be a group. Then, G is isomorphic to a group of permutations.

Proof. Let $\mathcal{S}(G)$ denote the group of permutations of G. Given an element $a \in G$ define a mapping

$$
L_a: G \longrightarrow G
$$
 by $L_a(x) = ax \quad \forall x \in G.$

(We use notation L_a for left multiplication by a.) It is easy to see L_a is a bijection. Hence $L_a \in \mathcal{S}(G)$. Define

$$
\varphi: G \longrightarrow \mathcal{S}(G) \quad \forall \ a \in G \quad define \quad \varphi(a) = L_a
$$

It is easy to see that $\varphi(ab) = \varphi(a)\varphi(b)$. So, φ is a a group homomorphism. Now we calim that φ is one to one. Suppose $\varphi(a) = \varphi(b)$. So, $L_a = L_b$. So, $a = L_a(e) = L_b(e) = b$. So, φ is injective. The theorem is established by lemma 8.5. The proof is complete. \blacksquare

Remark. In this proof, we could have tried to use right multiplication $R_a: G \longrightarrow G$, defined by $R_a(x) = xa$. We define

$$
\psi: G \longrightarrow \mathcal{S}(G) \quad by \quad \psi(a) = R_a
$$

Then, for $x \in G$, we have

$$
\psi(ab)(x) = R_{ab}(x) = x(ab) = (xa)b = R_b(R_a(x)) = \psi(b)\psi(a)(x)
$$

 \blacksquare

 \blacksquare

So, $\psi(ab) = \psi(b)\psi(a)$.

Reading Assignment: Read Example 8.17.

9 Orbits, Cycles, the Altrnating group

9.1 Orbits

Definition 9.1. Let A be a set and σ be a (fixed) parmutation on A. We define an equivalence relation \sim on A as follows:

for $a, b \in A$ define $a \sim b$ if $b = \sigma^n(a)$ for some $n \in \mathbb{Z}$.

Then, (1) $a \sim a \ \forall a \in A$. So \sim is reflexive. (2) If $a \sim b$ then $b = \sigma^n(a)$. So, $a = \sigma^{-n}(b)$. So, $b \sim a$. This means \sim is symmetric. (3) In fact, σ is also transitive. To see this let $a \sim b \sim c$. Then $b = \sigma^n(a)$ and $c = \sigma^m(b)$ for some $m, n \in \mathbb{Z}$. Hence $c = \sigma^{m+n}(a)$. So, $a \sim c$.

Therefore, \sim is an equivalence relation.

- 1. An equivalence class of this relation \sim is called an **orbit** of σ .
- 2. For $a \in A$ the orbit of a is given by

$$
\overline{a} = \{ \sigma^n(a) : r \in \mathbb{Z} \}.
$$

If \bar{a} is finite, with r elements, then

$$
\overline{a} = \{\sigma^0(a), \sigma^1(a), \sigma^2(a), \ldots, \sigma^{r-1}(a)\}.
$$

3. For example, the identity permutation ι of A, each orbit has one element.

4.

Example 9.2 (9.3). Find the orbits of the permutation

$$
\left(\begin{array}{cccccc}1 & 2 & 3 & 4 & 5 & 6 & 7 & 8\\3 & 8 & 6 & 7 & 4 & 1 & 5 & 2\end{array}\right)
$$

Solution:

$$
1 \rightarrow 3 \rightarrow 6 \rightarrow 1
$$
, $2 \rightarrow 8 \rightarrow 2$, $4 \rightarrow 7 \rightarrow 5 \rightarrow 4$

9.2 Cycles

Now we assume $A = \{1, 2, ..., n\}$. As mentioned before, the groups of all its permutations is the symmetric group S_n .

Definition 9.3. Let $r_1, r_2, \ldots r_k$ be k distinct elements in $A = \{1, 2, \ldots, n\}.$ The **notation** $(r_1, r_2, \ldots r_k)$ denotes a permutation $\sigma \in S_n$ defined as follows:

$$
\begin{cases}\n\sigma(r_1) = r_2, \sigma(r_2) = r_3, \dots, \sigma(r_{k-1}) = r_k, \sigma(r_k) = r_1, \\
\sigma(r) = r \quad \forall r \neq r_i\n\end{cases}
$$

In particular,

$$
\forall 2 \le i \le k \quad r_i = \sigma^{i-1}(r_1) \quad and \quad \sigma^k = I_A.
$$

Definition 9.4. Let $\sigma \in S_n$.

- 1. We say σ is a cycle, if it has at most one orbit with more than one element.
- 2. Also, define length of a cycle to be the number of elements in the largest cycle.
- 3. Suppose $\sigma \in S_n$ is a cycle, with length k.
	- (a) Fix any a in the largest orbit of σ . Then this largest orbit is

$$
\overline{a} = \{\sigma^0(a), \sigma^1(a), \sigma^2(a), \ldots, \sigma^{k-1}(a)\}.
$$

- (b) Since σ has only one orbit of length more than 1, $\sigma(r) = r$ for $r \neq \sigma^i(a)$.
- (c) We conclude

$$
\sigma = (\sigma^0(a), \sigma^1(a), \sigma^2(a), \dots, \sigma^{r-1}(a))
$$

So, any cycle can be described in this form.

Reading Assignment:Examples 9.7

Theorem 9.5. Let $\sigma \in S_n$. Then

$$
\sigma = \sigma_1 \sigma_2 \cdots \sigma_t
$$

is a product of disjoint cycles σ_i .

Proof. Let B_1, B_2, \ldots, B_r be the orbits of σ . Define cycles σ_i as follows:

$$
\sigma_i(x) = \begin{cases} \sigma(x) & \text{if } x \in B_i \\ x & \text{otherwise} \end{cases}
$$

Clearly, $\sigma = \sigma_1 \sigma_2 \cdots \sigma_r$. They are disjoint too. The proof is complete. ٠

Example 9.6 (9.9). Find the orbits of the permutation

$$
\sigma = \left(\begin{array}{cccccc} 1 & 2 & 3 & 4 & 5 & 6 \\ 6 & 5 & 2 & 4 & 3 & 1 \end{array}\right)
$$

Write σ as product of cycles.

Example 9.7 (9.10). Compute

$$
(1, 4, 5, 6)(2, 1, 5)
$$
 and $(2, 1, 5)(1, 4, 5, 6)$

9.3 Even and odd Permutations

Definition 9.8. A cycle of length two is called a transposition. So, $\sigma = (1, 2) \in S_n$ is a transposition. It maps

$$
\begin{cases}\n1 \mapsto 2, \\
2 \mapsto 1 \quad \text{and} \\
r \mapsto r \quad \forall \ r \ge 3.\n\end{cases}
$$

Lemma 9.9. Any cycle is a product of transpositions.

Proof. We have

$$
(1, 2, \dots, r) = (1, n)(1, n - 1) \cdots (1, 3)(1, 2)
$$

It goes as follows:

1. $1 \mapsto 2$ 2. $2 \mapsto 1 \mapsto 3$ 3. $3 \mapsto 1 \mapsto 4$ 4. so on.

The proof is complete.

Corollary 9.10. Any permutation $\sigma \in S_n$ is product of transpostions.

Proof. σ is product of cycles and each cycle is product of transpostions. The proof is complete.

Theorem 9.11. Let $\sigma \in S_n$. Then, σ can be written as product of either even number of transpositions or odd number of transpositions, not both.

Proof. (This proof seems cheating.)

Let C be the matrix obtained by applying σ to the rows of the identity matrix. If σ is product of even number of transpositions, then det $C = 1$. If σ is product of odd number of transpositions, then det $C = -1$. So, it cannot be both. The proof is complete.

Definition 9.12. Let $\sigma \in S_n$. We say σ is an even permutation, if it is product of even number of transpositions. We say σ is an odd permutation, if it is product of odd number of transpositions.

9.4 Alternating Groups

Proposition 9.13. Let

 $A_n = \{ \sigma \in S_n : \sigma \text{ is an even permutation} \}$

and

 $B_n = \{ \sigma \in S_n : \sigma \text{ is an odd permutation} \}.$

Then, A_n and B_n have same number of elements.

Proof. We define a map

 $\lambda: A_n \longrightarrow B_n$ by $\lambda(\sigma) = (1, 2)\sigma$

Define

$$
\mu: B_n \longrightarrow A_n \qquad by \quad \lambda(\sigma) = (1,2)\sigma
$$

Then, $\mu\lambda(\sigma) = (1, 2)(1, 2)\sigma = \sigma$. So, $\mu\lambda = ID$. Similarly, $\lambda\mu = ID$. So, λ is bijective. The proof is complete.

Theorem 9.14. A_n is a subgroup of S_n . The order of A_n is $n!/2$.

Proof. A_n is closed under composition. The identity $\iota = (1, 2)(2, 1) \in A_n$. The inverse of an even permutation is even. So, A_n is a subgroup.

Also, $S_n = A_n \cup B_n$, $A_n \cap B_n = \emptyset$ and A_n, B_n have same number of elements. So, order of A_n is $n!/2$. The proof is complete.

Definition 9.15. A_n is called the **Alternating group on** n objects.

10 Coset and order of subgroups

Abstract

For (finite) groups $H \leq G$, we will provide a partition of G and prove the order of H divides order of G.

10.1 Cosets

Theorem 10.1. Let G be a group and H be a subgroup of G. Define relations \sim_L and \sim_R as follows:

∀ $a, b \in G$ define $a \sim_L b$ if $a^{-1}b \in H$

and

$$
\forall a, b \in G \quad define \quad a \sim_R b \quad if \quad ab^{-1} \in H.
$$

Then, \sim_L and \sim_R are equivalence relations on G.

Proof. We only show \sim_R is an equivalence relations on G (other one left as exercise).

1. (Reflexive:)

$$
\forall a \in G, \quad aa^{-1} = e \in H. \quad So, \quad a \sim_R a.
$$

So, \sim_R is reflexive.

2. (**Symmetric:**) For $a, b \in G$ we have

 $a \sim_R b \Longrightarrow ab^{-1} \in H \Longrightarrow (ab^{-1})^{-1} \in H \Longrightarrow ba^{-1} \in H \Longrightarrow b \sim_R a$.

So, \sim_R is symmetric.

3. (Transitive:) For $a, b, c \in G$ we have

 $a \sim_R b \sim_R c \Longrightarrow ab^{-1}, bc^{-1} \in H \Longrightarrow ac^{-1} = (ab^{-1})(bc^{-1}) \in H \Longrightarrow a \sim_R c.$ So, \sim_R is transitive.

So, \sim_R is an equivalence relation.

Now we compute the equivalence classes (the cells) for \sim_L and \sim_R .

1. For $a \in G$ define

$$
\begin{cases}\nHa = \{xa : x \in H\} & \text{called the right coset of } a \\
aH = \{ax : x \in H\} & \text{called the left coset of } a\n\end{cases}
$$

2. The map $f : H \longrightarrow Ha$ defined by $f(x) = xa$ is bijective. Similalry, $q: H \longrightarrow aH$ defined by $q(x) = ax$ is bijective. So, H, Ha, aH have same cardinality. Notationally,

$$
|H| = |Ha| = |aH|
$$

3. If G is abelian then $Ha = aH$ for all $a \in G$.

Lemma 10.2. For the relation \sim_R , the equivalence class of $a \in G$ is the right coset Ha. For the relation \sim_L , the equivalence class of $a \in G$ is the left coset aH .

Proof. We will give a proof only for \sim_R and the other one is left as an exercise. Let \bar{a} denote the equivlence class of a, for the relation \sim_R . Now,

$$
x \in \overline{a} \Longleftrightarrow x \sim_R a \Longleftrightarrow xa^{-1} \in H \Longleftrightarrow x \in Ha.
$$

So, $\bar{a} = Ha$. The proof is complete.

It follows from properties of equivalence classes that the left cosets (respectively right cosets) partitions G. This means

$$
G = \bigcup_{a \in G} aH \quad and \quad \forall a, b \in G \quad either \quad (aH = bH \quad or \quad aH \cap bH = \phi).
$$

Theorem 10.3 (Theorem of Lagrange). Let G be a finite group and H be subgroup of G . Then, the order of H divides the order of G .

Proof. Let r be the number of left cosets of H. Let $m = |H|, n = |G|$. Then $m = |aH|$ for all $a \in G$. Since the left cosets partions G we have

$$
|G| = |H| \, r = mr.
$$

The proof is complete. \blacksquare

п

Corollary 10.4. Suppose G is a group of prime order. Then G is cyclic.

Proof. Let $a \in G$ and $a \neq e$. Then, $H = \langle a \rangle$ is subgroup of order at least two. Since |H| divides |G|, we have $|G| = |H|$. So, $G = H = \langle a \rangle$ is cyclic. The proof is complete. П

Corollary 10.5. Suppose G is a group of prime order p. Then $G \approx \mathbb{Z}_p$.

Proof. First $G = \langle a \rangle$ is cyclic. We showed before, the map

$$
\varphi : \mathbb{Z}_p \longrightarrow G \qquad \overline{r} \mapsto a^r
$$

is an isomprphism. The proof is complete.

Definition 10.6. Let G be a group and $a \in G$. Then the **order of** a is defined to be the order of the cyclic group $\langle a \rangle$. Order of a is denoted by $o(a)$. So,

$$
o(a):=|\langle a\rangle|.
$$

In fact,

$$
o(a) = \min\{n > 0 : a^n = 1\}
$$

Corollary 10.7. Let G be a finite group and $a \in G$. The order of a divides the order of G.

Proof. Trivial.

Here is an important number.

Definition 10.8. Let G be a finite group and H be a subgroup of G. The number of left cosets of H in G is defined to be the index of H in G. The index of H in G, is denoted by $(G : H)$. So,

$$
(G:H)=\frac{|G|}{|H|}.
$$

Note this this is also the number of right cosets of H.

Theorem 10.9. Let G be a finite group and H, K are subgroup of G . Assume $K \leq H \leq G$. Then

$$
(G:K) = (G:H)(H:K).
$$

Proof. We have

$$
(G:K) = \frac{|G|}{|K|}, \quad (G:H) = \frac{|G|}{|H|}, \quad and \quad (H:K) = \frac{|H|}{|K|}
$$

The proof is complete.

 \blacksquare

11 Direct Product

Direct product could be defined in any category. Here we do it in the category of groups.

Definition 11.1. We define direct product of groups.

1. Let G_1 and G_2 be two groups. We define a binary product on $G_1 \times G_2$ as follows:

 $\forall (a_1, a_2), (b_1, b_2) \in G_1 \times G_2$ define $(a_1, a_2) \cdot (b_1, b_2) := (a_1b_1, a_2b_2)$

Then, $(G_1 \times G_2, \cdot)$ is a group, to be called the **direct product** of G_1 and G_2 . Here

- (a) $e = (e_1, e_2) \in G_1 \times G_2$ is the identity of this product, where e_i is the identity of G_i .
- (b) Also $(a_1, a_2)^{-1} = (a_1^{-1}, a_2^{-1}).$
- 2. More generally, let G_1, G_2, \ldots, G_n be finitely many groups. Define a binary product on the cartesian product $G_1 \times G_2 \times \cdots \times G_n$ as follows

 $\forall (a_1, a_2, \ldots, a_n), (b_1, b_2, \ldots, b_n) \in G_1 \times G_2 \times \cdots \times G_n$ define

 $(a_1, a_2 \ldots, a_n) \cdot (b_1, b_2 \ldots, b_n) := (a_1b_1, a_2b_2, \ldots, a_nb_n)$

Then, $(G_1 \times G_2 \times \cdots \times G_n, \cdot)$ is a group, to be called the **direct** product of G_1, G_2, \ldots, G_n . Here

- (a) $e = (e_1, e_2, \ldots, e_n) \in G_1 \times G_2 \times \cdots \times G_n$ is the identity of this product, where e_i is the identity of G_i .
- (b) Also $(a_1, a_2, \ldots, a_n)^{-1} = (a_1^{-1}, a_2^{-1} \ldots, a_n^{-1}).$
- 3. The direct product of G_1, G_2, \ldots, G_n is also denoted by

$$
\prod_{i=1}^{n} G_i
$$
 OR $G_1 \times G_2 \times \cdots \times G_n$

Proof. Trivial.

Example 11.2. 1. $\mathbb{Z}_2 \times \mathbb{Z}_3$ is a cyclic group. (see 11.3)

2. $\mathbb{Z}_3 \times \mathbb{Z}_3$ is not cyclic. (see 11.4)

Theorem 11.3. The group $\mathbb{Z}_m \times \mathbb{Z}_n$ is cyclic if and only if m and n are relatively prime.

Proof. First, note that the order $|\mathbb{Z}_m \times \mathbb{Z}_n| = mn$. (←): Assume m and n are relatively prime. Write $o(\overline{1}, \overline{1}) = k$. (Here, we use additive notation, unlike our default product notation.) So

$$
k(\overline{1},\overline{1}) = (\overline{0},\overline{0}).
$$
 or $(\overline{k},\overline{k}) = (\overline{0},\overline{0})$

[Recall, by notation $k(\overline{1}, \overline{1}) = (\overline{1}, \overline{1}) + \cdots + (\overline{1}, \overline{1}).$] So, $\overline{k} = \overline{0}$ in \mathbb{Z}_m and $\overline{k} = \overline{0}$ in \mathbb{Z}_n . So, k is divisible by m and n. Since,

 m, n are relatively prime, it follows mn divides k. Since

$$
k = o(\overline{1}, \overline{1}) \le mn = |\mathbb{Z}_m \times \mathbb{Z}_n|
$$

it follows that $k = mn$. Therefore, $\langle (\overline{1}, \overline{1}) \rangle = \mathbb{Z}_m \times \mathbb{Z}_n$. So, it is established that $\mathbb{Z}_m \times \mathbb{Z}_n$ cyclic, and is generated by $(\overline{1}, \overline{1})$. Since $\mathbb{Z}_m \times \mathbb{Z}_n$ is cyclic of order mn, it is isomorphic to \mathbb{Z}_{mn} . This completes the proof of (\Leftarrow) .

 (\Rightarrow) : Now assume that $\mathbb{Z}_m \times \mathbb{Z}_n$ is cyclic. Write $gcd(m, n) = d$. We need to prove $d=1$. Let $u=\frac{mn}{d}$ $\frac{dn}{d}$. Both m and n divide u. So,

$$
\forall a = (\overline{r}, \overline{s}) \in \mathbb{Z}_m \times \mathbb{Z}_n \Longrightarrow ua = (\overline{ur}, \overline{us}) = (\overline{0}, \overline{0}).
$$

So,

$$
\forall \qquad a \in \mathbb{Z}_m \times \mathbb{Z}_n \quad we \; have \quad o(a) \leq u.
$$

Since $\mathbb{Z}_m \times \mathbb{Z}_n = \langle x \rangle$ is cyclic, its generator x has order mn. So, $o(x) = mn \le u = \frac{mn}{d}$ $\frac{dn}{d}$. So, $d = 1$. The proof is complete.

Inductively, it follows

Corollary 11.4. $\prod_{i=1}^{n} \mathbb{Z}_{m_i}$ is cyclic if and only if the integers m_1, m_2, \ldots, m_n are pair wise relatively prime.

п

Example 11.5 (11.7). Let $n = p_1^{n_1} p_2^{n_2} \cdots p_r^{n_r}$, where p_i are distinct primes. Then,

$$
\mathbb{Z}_n = \prod_{i=1}^r \mathbb{Z}_{p_i^{n_i}}
$$

Exercise 11.6. Find the order of $(8, 4, 10)$ in $\mathbb{Z}_{12} \times \mathbb{Z}_{60} \times \mathbb{Z}_{24}$. (see 11.10)

Answer is the lcm of the order of these three.

11.1 Extra

We discusss some properties direct product, which applies to other categories.

Lemma 11.7. Let G_1, G_2 be two groups.

1. Then, the projections

$$
\begin{cases} \pi_1: G_1 \times G_2 \longrightarrow G_1 & sending \pi_2: G_1 \times G_2 \longrightarrow G_2 & sending \pi_3: (g_1, g_2) \mapsto g_2 \end{cases}
$$

are group homomorphisms.

2. Also, the maps

$$
\begin{cases}\n\iota_1: G_1 \longrightarrow G_1 \times G_2 & sending \quad g \mapsto (g, e_2) \\
\iota_2: G_2 \longrightarrow G_1 \times G_2 & sending \quad g \mapsto (e_1, g)\n\end{cases}
$$

are injective group homomorphism.

More Generally:

Example 11.8. Suppose G_1, G_2, \ldots, G_n are groups.

1. Prove the projection map

$$
\pi_i: G_1 \times G_2 \times \cdots \times G_n \mapsto G_i
$$
 sending $(g_1, g_2, \cdots, g_n) \mapsto g_i$

is a group homomorphism.

2. Consider the map

$$
\iota_i: G_i \longrightarrow: G_1 \times G_2 \times \cdots \times G_n \qquad sending \quad g \mapsto (e_1, e_2, \ldots, g, \ldots e_n)
$$

where g is at the i^{th} -coordinate. Prove ι_i is an injective homomorphism.

Proof.

1. Let $x = (g_1, g_2, \ldots, g_n), y = (h_1, h_2, \ldots, h_n)$ be in $G_i \longrightarrow G_1 \times$ $G_2 \times \cdots \times G_n$. Then

$$
\pi_i(xy) = \pi(g_1h_1, g_2h_2, \dots, g_nh_n) = g_ih_i = \pi(x)\pi(y).
$$

So, by definition, π is a homomorphism.

2. Let $g, h \in G_i$. Then

$$
\iota_i(gh) = ((e_1, e_2, \dots, gh, \dots e_n) = (e_1, e_2, \dots, g, \dots, e_n)(e_1, e_2, \dots, h, \dots e_n) = \iota(g)\iota(h).
$$

п

So, by definition, ι is a homomorphism. To prove injectivity, let

$$
\iota_i(g) = \iota(h).
$$
 Then, $(e_1, e_2, \dots, g, \dots e_n) = (e_1, e_2, \dots, h, \dots e_n)$
So, $g = h.$

The proof is complete.

The direct product has the following "universal property":

Lemma 11.9. Let G_1, G_2 and H be groups. For $i = 1, 2$, let

For $i = 1, 2$ $\int \pi_i : G_1 \times G_2 \longrightarrow G_i$ be the projections $p_i: H \longrightarrow G_i$ any two group homomorphims

Then, there is a a unique group homomorphims $\Delta: H \longrightarrow G_1 \times G_2$ such that $\pi_1 \Delta = p_1$ and $\pi_2 \Delta = p_2$. Diagramtically:

11.2 Structure of finitely generate abelian groups

Usually, theory of abelian groups is easier than that of non-commutative groups. We can say more about abelian groups.

Theorem 11.10 (Fundamental Theorem of Abelian Groups). Let G be a finitely generated abelian groups. Then G is isomorphis to the product of cyclic groups:

$$
\mathbb{Z}_{p_1^{n_1}} \times \mathbb{Z}_{p_2^{n_2}} \times \cdots \times \mathbb{Z}_{p_r^{n_r}} \times \mathbb{Z} \times \mathbb{Z} \times \cdots \times \mathbb{Z}
$$

where p_i are prime numbers, not necessarily distinct and n_i are positive integers.

Proof. Omitted.

 \blacksquare

12 Plane Isometries

We skip.