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8 Permutations

Definition 8.1. Let A be a set.

1. A a permuation of A is defined to be a bijective map ϕ : A
∼

−→ A.

(Usually, we work with permutations of finite sets A.)

2. Let S(A) denote the set of permuations of A.

3. The composition, defines a binary operation on S(A) as follows:

∀σ, τ ∈ S(A) define τσ(x) = τ(σ(x)) ∀x ∈ A.

It is obvious that

τ, σ ∈ S(A) =⇒ τσ ∈ S(A)

So, S(A) is closed under composition.

Further, as always, composition is associative.
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The identity map IdA : A −→ A given by IdA(x) = x ∀x ∈ A, is the

identity for the composition operation.

Also, a bijectiion σ ∈ S(A) has an inverse σ−1 ∈ S(A), defined by

σ−1(y) = x if σ(x) = y.

So, S(A) is a group under composition.

4. If A is a finite set with n elements, we can take A = {1, 2, . . . , n}.

5. The the group of permutations of A = {1, 2, . . . , n} is denoted by Sn. It

is called the symmetric group on n letters. Note Sn has n! elements.

Example 8.2. Read examples 8.7 and 8.8. Example 8.7 gives the multi-

plication table for S3. Note S3 has 3! = 6 elements. Read about dihedral

groups. You and I would write down all six elements of S3 on the board.

Definition 8.3. For a positive integer n ≥ 2, the Dihedral group Dn is

defined to be the group of symmetries of an regular n−gon. By a symmetry,

we mean rotation and reflection.

1. So, D3 is the dihedral group of an equilateral triangle. In fact, D3 ≈ S3.

2. So, D4 is the dihedral group of square. For a square, four rotations

(0, π/2, π, 3π/2) are possible. With four reflections of the four, we get

total of 8 elements. So, |D4| = 8.

Each element ρ ∈ D4 corresponds to a permuation in S4. In fact,

D4 ≤ S4.

Like homomorphisms of binary structures, we define homomorphisms of
groups.

Definition 8.4. Suppose ϕ : G −→ G′ be a mapping from a group G to

another group G′.
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1. We say, ϕ is a homomorphism if ϕ(xy) = ϕ(x)ϕ(y) for all x, y ∈ G.

2. Given a subgroup H of G, the image of H under ϕ is defined to be

ϕ(H) := {ϕ(x) : x ∈ H}

Lemma 8.5. Suppose ϕ : G −→ G′ is a homomorphism of groups. Assume

ϕ is injective. Then the image ϕ(G) is a subgroup of G′ and ϕ induces an

isomorphism between G and ϕ(G).

Proof. We do not have to check associativity. Suppose x, y ∈ ϕ(G). Then
x = ϕ(a), y = ϕ(b) for some a, b ∈ G. So, xy = ϕ(a) = ϕ(ab) ∈ ϕ(G). So,
ϕ(G) is closed under multiplication.

Let e′ ∈ G′ denote the identity in G′. We calaim: ϕ(e) = e′. Because
ϕ(e) = ϕ(ee) = ϕ(e)ϕ(e). So, e′ = (ϕ(e)−1(ϕ(e)ϕ(e)) = ϕ(e). So, it is
established that e′ = ϕ(e). Therefore e′ ∈ ϕ(G).

Given x ∈ ϕ(G), x = ϕ(a) for some a ∈ G. So, xϕ(a−1) = ϕ(a)ϕ(a−1) =
ϕ(aa−1) = ϕ((e0 = e′. Similarly, ϕ(a−1)x = e′. So inverse of x is ϕ(a−1) ∈
ϕ(G).

This establishes that ϕ(G) is subgroup of G′. Let f : G −→ ϕ(G) be the
mapping induced by ϕ. Clearly, it is onto and it is also one to one. So, f is
bijective. So, G is isomorphic to ϕ(G). The proof is complete.

Now, we will prove any group is isomorphic to a group of permutations.

Theorem 8.6 (Cayley’s Theorem). Let G be a group. Then, G is isomorphic

to a group of permutations.

Proof. Let S(G) denote the group of permutations of G. Given an element
a ∈ G define a mapping

La : G −→ G by La(x) = ax ∀ x ∈ G.

(We use notation La for left multiplication by a.) It is easy to see La is a
bijection. Hence La ∈ S(G). Define

ϕ : G −→ S(G) ∀ a ∈ G define ϕ(a) = La
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It is easy to see that ϕ(ab) = ϕ(a)ϕ(b). So, ϕ is a a group homomorphism.
Now we calim that ϕ is one to one. Suppose ϕ(a) = ϕ(b). So, La = Lb. So,
a = La(e) = Lb(e) = b. So, ϕ is injective. The theorem is established by
lemma 8.5. The proof is complete.

Remark. In this proof, we could have tried to use right multiplication
Ra : G −→ G, defined by Ra(x) = xa. We define

ψ : G −→ S(G) by ψ(a) = Ra

Then, for x ∈ G, we have

ψ(ab)(x) = Rab(x) = x(ab) = (xa)b = Rb(Ra(x)) = ψ(b)ψ(a)(x)

So, ψ(ab) = ψ(b)ψ(a).

Reading Assignment: Read Example 8.17.

4



9 Orbits, Cycles, the Altrnating group

9.1 Orbits

Definition 9.1. Let A be a set and σ be a (fixed) parmutation on A. We

define an equivalence relation ∼ on A as follows:

for a, b ∈ A define a ∼ b if b = σn(a) for some n ∈ Z.

Then, (1) a ∼ a ∀a ∈ A. So ∼ is reflexive. (2) If a ∼ b then b = σn(a). So,

a = σ−n(b). So, b ∼ a. This means ∼ is symmetric. (3) In fact, σ is also

transitive. To see this let a ∼ b ∼ c. Then b = σn(a) and c = σm(b) for some

m,n ∈ Z. Hence c = σm+n(a). So, a ∼ c.

Therefore, ∼ is an equivalence relation.

1. An equivalence class of this relation ∼ is called an orbit of σ.

2. For a ∈ A the orbit of a is given by

a = {σn(a) : r ∈ Z}.

If a is finite, with r elements, then

a = {σ0(a), σ1(a), σ2(a), . . . , σr−1(a)}.

3. For example, the identity permutation ι of A, each orbit has one ele-

ment.

4.

Example 9.2 (9.3). Find the orbits of the permutation
(

1 2 3 4 5 6 7 8

3 8 6 7 4 1 5 2

)

Solution:

1 → 3 → 6 → 1, 2 → 8 → 2, 4 → 7 → 5 → 4
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9.2 Cycles

Now we assume A = {1, 2, . . . , n}. As mentioned before, the groups of all its
permutations is the symmetric group Sn.

Definition 9.3. Let r1, r2, . . . rk be k distinct elements in A = {1, 2, . . . , n}.

The notation (r1, r2, . . . rk) denotes a permutation σ ∈ Sn defined as follows:

{

σ(r1) = r2, σ(r2) = r3, . . . , σ(rk−1) = rk, σ(rk) = r1,

σ(r) = r ∀r 6= ri

In particular,

∀ 2 ≤ i ≤ k ri = σi−1(r1) and σk = IA.

Definition 9.4. Let σ ∈ Sn.

1. We say σ is a cycle, if it has at most one orbit with more than one

element.

2. Also, define length of a cycle to be the number of elements in the

largest cycle.

3. Suppose σ ∈ Sn is a cycle, with length k.

(a) Fix any a in the largest orbit of σ. Then this largest orbit is

a = {σ0(a), σ1(a), σ2(a), . . . , σk−1(a)}.

(b) Since σ has only one orbit of length more than 1, σ(r) = r for

r 6= σi(a).

(c) We conclude

σ =
(

σ0(a), σ1(a), σ2(a), . . . , σr−1(a)
)

So, any cycle can be described in this form.
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Reading Assignment:Examples 9.7

Theorem 9.5. Let σ ∈ Sn. Then

σ = σ1σ2 · · · σt

is a product of disjoint cycles σi.

Proof. Let B1, B2, . . . , Br be the orbits of σ. Define cycles σi as follows:

σi(x) =

{

σ(x) if x ∈ Bi

x otherwise

Clearly, σ = σ1σ2 · · · σr. They are disjoint too. The proof is complete.

Example 9.6 (9.9). Find the orbits of the permutation

σ =

(

1 2 3 4 5 6

6 5 2 4 3 1

)

Write σ as product of cycles.

Example 9.7 (9.10). Compute

(1, 4, 5, 6)(2, 1, 5) and (2, 1, 5)(1, 4, 5, 6)

9.3 Even and odd Permutations

Definition 9.8. A cycle of length two is called a transposition.

So, σ = (1, 2) ∈ Sn is a transposition. It maps











1 7→ 2,

2 7→ 1 and

r 7→ r ∀ r ≥ 3.

Lemma 9.9. Any cycle is a product of transpositions.
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Proof. We have

(1, 2, . . . , r) = (1, n)(1, n− 1) · · · (1, 3)(1, 2)

It goes as follows:

1. 1 7→ 2

2. 2 7→ 1 7→ 3

3. 3 7→ 1 7→ 4

4. so on.

The proof is complete.

Corollary 9.10. Any permutation σ ∈ Sn is product of transpostions.

Proof. σ is product of cycles and each cycle is product of transpostions. The
proof is complete.

Theorem 9.11. Let σ ∈ Sn. Then, σ can be written as product of either

even number of transpositions or odd number of transpositions, not both.

Proof. (This proof seems cheating.)
Let C be the matrix obtained by applying σ to the rows of the identity
matrix. If σ is product of even number of transpositions, then detC = 1. If
σ is product of odd number of transpositions, then detC = −1. So, it cannot
be both. The proof is complete.

Definition 9.12. Let σ ∈ Sn. We say σ is an even permutation, if it is

product of even number of transpositions. We say σ is an odd permutation,

if it is product of odd number of transpositions.
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9.4 Alternating Groups

Proposition 9.13. Let

An = {σ ∈ Sn : σ is an even permutation}

and

Bn = {σ ∈ Sn : σ is an odd permutation}.

Then, An and Bn have same number of elements.

Proof. We define a map

λ : An −→ Bn by λ(σ) = (1, 2)σ

Define
µ : Bn −→ An by λ(σ) = (1, 2)σ

Then, µλ(σ) = (1, 2)(1, 2)σ = σ. So, µλ = ID. Similarly, λµ = ID. So,
λ is bijective. The proof is complete.

Theorem 9.14. An is a subgroup of Sn. The order of An is n!/2.

Proof. An is closed under composition. The identity ι = (1, 2)(2, 1) ∈ An.
The inverse of an even permutation is even. So, An is a subgroup.

Also, Sn = An ∪ Bn, An ∩ Bn = φ and An, Bn have same number of
elements. So, order of An is n!/2. The proof is complete.

Definition 9.15. An is called the Alternating group on n objects.
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10 Coset and order of subgroups

Abstract

For (finite) groups H ≤ G, we will provide a partition of G and

prove the order of H divides order of G.

10.1 Cosets

Theorem 10.1. Let G be a group and H be a subgroup of G. Define

relations ∼L and ∼R as follows:

∀ a, b ∈ G define a ∼L b if a−1b ∈ H

and

∀ a, b ∈ G define a ∼R b if ab−1 ∈ H.

Then, ∼L and ∼R are equivalence relations on G.

Proof. We only show ∼R is an equivalence relations on G (other one

left as exercise).

1. (Reflexive:)

∀ a ∈ G, aa−1 = e ∈ H. So, a ∼R a.

So, ∼R is reflexive.

2. (Symmetric:) For a, b ∈ G we have

a ∼R b =⇒ ab−1 ∈ H =⇒ (ab−1)−1 ∈ H =⇒ ba−1 ∈ H =⇒ b ∼R a.

So, ∼R is symmetric.

3. (Transitive:) For a, b, c ∈ G we have

a ∼R b ∼R c =⇒ ab−1, bc−1 ∈ H =⇒ ac−1 = (ab−1)(bc−1) ∈ H =⇒ a ∼R c.

So, ∼R is transitive.

10



So, ∼R is an equivalence relation.

Now we compute the equivalence classes (the cells) for ∼L and ∼R.

1. For a ∈ G define
{

Ha = {xa : x ∈ H} called the right coset of a

aH = {ax : x ∈ H} called the left coset of a

2. The map f : H −→ Ha defined by f(x) = xa is bijective.

Similalry, g : H −→ aH defined by g(x) = ax is bijective.

So, H,Ha, aH have same cardinality. Notationally,

|H| = |Ha| = |aH|

3. If G is abelian then Ha = aH for all a ∈ G.

Lemma 10.2. For the relation ∼R, the equivalence class of a ∈ G is

the right coset Ha. For the relation ∼L, the equivalence class of a ∈ G

is the left coset aH.

Proof. We will give a proof only for ∼R and the other one is left as an

exercise. Let a denote the equivlence class of a, for the relation ∼R.

Now,

x ∈ a ⇐⇒ x ∼R a ⇐⇒ xa−1 ∈ H ⇐⇒ x ∈ Ha.

So, a = Ha. The proof is complete.

It follows from properties of equivalence classes that the left cosets

(respectively right cosets) partitions G. This means

G =
⋃

a∈G

aH and ∀ a, b ∈ G either (aH = bH or aH∩bH = φ).

Theorem 10.3 (Theorem of Lagrange). Let G be a finite group and

H be subgroup of G. Then, the order of H divides the order of G.

Proof. Let r be the number of left cosets of H. Let m = |H| , n = |G|.

Then m = |aH| for all a ∈ G. Since the left cosets partions G we have

|G| = |H| r = mr.

The proof is complete. ‘
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Corollary 10.4. Suppose G is a group of prime order. Then G is

cyclic.

Proof. Let a ∈ G and a 6= e. Then, H = 〈a〉 is subgroup of order at

least two. Since |H| divides |G|, we have |G| = |H|. So, G = H = 〈a〉

is cyclic. The proof is complete.

Corollary 10.5. Suppose G is a group of prime order p. Then G ≈ Zp.

Proof. First G = 〈a〉 is cyclic. We showed before, the map

ϕ : Zp −→ G r 7→ ar

is an isomprphism. The proof is complete.

Definition 10.6. Let G be a group and a ∈ G. Then the order of a

is defined to be the order of the cyclic group 〈a〉. Order of a is denoted

by o(a). So,

o(a) := |〈a〉|.

In fact,

o(a) = min{n > 0 : an = 1}

Corollary 10.7. Let G be a finite group and a ∈ G. The order of a

divides the order of G.

Proof. Trivial.

Here is an important number.

Definition 10.8. Let G be a finite group and H be a subgroup of G.

The number of left cosets of H in G is defined to be the

index of H in G. The index of H in G, is denoted by (G : H). So,

(G : H) =
|G|

|H|
.

Note this this is also the number of right cosets of H.
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Theorem 10.9. Let G be a finite group and H,K are subgroup of G.

Assume K ≤ H ≤ G. Then

(G : K) = (G : H)(H : K).

Proof. We have

(G : K) =
|G|

|K|
, (G : H) =

|G|

|H|
, and (H : K) =

|H|

|K|

The proof is complete.
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11 Direct Product

Direct product could be defined in any category. Here we do it in the

category of groups.

Definition 11.1. We define direct product of groups.

1. Let G1 and G2 be two groups. We define a binary product on

G1 ×G2 as follows:

∀ (a1, a2), (b1, b2) ∈ G1×G2 define (a1, a2)·(b1, b2) := (a1b1, a2b2)

Then, (G1 × G2, ·) is a group, to be called the direct product

of G1 and G2. Here

(a) e = (e1, e2) ∈ G1 ×G2 is the identity of this product, where

ei is the identity of Gi.

(b) Also (a1, a2)
−1 =

(

a−1
1 , a−1

2

)

.

2. More generally, let G1, G2, . . . , Gn be finitely many groups. De-

fine a binary product on the cartesian product G1×G2×· · ·×Gn

as follows

∀ (a1, a2, . . . , an), (b1, b2, . . . , bn) ∈ G1 ×G2 × · · · ×Gn define

(a1, a2 . . . , an) · (b1, b2 . . . , bn) := (a1b1, a2b2, . . . , anbn)

Then, (G1 ×G2 × · · · ×Gn, ·) is a group, to be called the direct

product of G1, G2, . . . , Gn. Here

(a) e = (e1, e2, . . . , en) ∈ G1 × G2 × · · · × Gn is the identity of

this product, where ei is the identity of Gi.

(b) Also (a1, a2, . . . , an)
−1 =

(

a−1
1 , a−1

2 . . . , a−1
n

)

.

3. The direct product of G1, G2, . . . , Gn is also denoted by

n
∏

i=1

Gi OR G1 ×G2 × · · · ×Gn

Proof. Trivial.
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Example 11.2. 1. Z2 × Z3 is a cyclic group. (see 11.3)

2. Z3 × Z3 is not cyclic. (see 11.4)

Theorem 11.3. The group Zm × Zn is cyclic if and only if m and n

are relatively prime.

Proof. First, note that the order |Zm × Zn| = mn.

(⇐): Assume m and n are relatively prime. Write o(1, 1) = k. (Here,

we use additive notation, unlike our default product notation.) So

k(1, 1) = (0, 0). or (k, k) = (0, 0)

[Recall, by notation k(1, 1) = (1, 1) + · · ·+ (1, 1).]

So, k = 0 in Zm and k = 0 in Zn. So, k is divisible by m and n. Since,

m,n are relatively prime, it follows mn divides k. Since

k = o(1, 1) ≤ mn = |Zm × Zn|

it follows that k = mn. Therefore, 〈(1, 1)〉 = Zm × Zn. So, it is

established that Zm × Zn cyclic, and is generated by (1, 1). Since

Zm×Zn is cyclic of order mn, it is isomorphic to Zmn. This completes

the proof of (⇐).

(⇒): Now assume that Zm × Zn is cyclic. Write gcd(m,n) = d.

We need to prove d = 1. Let u = mn
d

. Both m and n divide u. So,

∀ a = (r, s) ∈ Zm × Zn =⇒ ua = (ur, us) = (0, 0).

So,

∀ a ∈ Zm × Zn we have o(a) ≤ u.

Since Zm × Zn = 〈x〉 is cyclic, its generator x has order mn.

So, o(x) = mn ≤ u = mn
d

. So, d = 1. The proof is complete.

Inductively, it follows

Corollary 11.4.
∏n

i=1 Zmi
is cyclic if and only if the integers m1,m2, . . . ,mn

are pair wise relatively prime.
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Example 11.5 (11.7). Let n = pn1

1 pn2

2 · · · pnr

r , where pi are distinct

primes. Then,

Zn =
r
∏

i=1

Zp
ni

i

Exercise 11.6. Find the order of (8, 4, 10) in Z12 × Z60 × Z24. (see

11.10)

Answer is the lcm of the order of these three.

11.1 Extra

We discusss some properties direct product, which applies to other

categories.

Lemma 11.7. Let G1, G2 be two groups.

1. Then, the projections

{

π1 : G1 ×G2 −→ G1 sending (g1, g2) 7→ g1

π2 : G1 ×G2 −→ G2 sending (g1, g2) 7→ g2

are group homomorphisms.

2. Also, the maps

{

ι1 : G1 −→ G1 ×G2 sending g 7→ (g, e2)

ι2 : G2 −→ G1 ×G2 sending g 7→ (e1, g)

are injective group homomorphism.

More Generally:

Example 11.8. Suppose G1, G2, . . . , Gn are groups.

1. Prove the projection map

πi : G1×G2× · · · ×Gn 7→ Gi sending (g1, g2, · · · , gn) 7→ gi

is a group homomorphism.
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2. Consider the map

ιi : Gi −→: G1×G2×· · ·×Gn sending g 7→ (e1, e2, . . . , g, . . . en)

where g is at the ith−coordinate. Prove ιi is an injective homo-

morphism.

Proof.

1. Let x = (g1, g2, . . . , gn), y = (h1, h2, . . . , hn) be in Gi −→: G1 ×

G2 × · · · ×Gn. Then

πi(xy) = π(g1h1, g2h2, . . . , gnhn) = gihi = π(x)π(y).

So, by definition, π is a homomorphism.

2. Let g, h ∈ Gi. Then

ιi(gh) = ((e1, e2, . . . , gh, . . . en) = (e1, e2, · · · , g, . . . en)(e1, e2, · · · , h, . . . en) = ι(g)ι(h).

So, by definition, ι is a homomorphism. To prove injectivity, let

ιi(g) = ι(h). Then, (e1, e2, · · · , g, . . . en) = (e1, e2, · · · , h, . . . en)

So, g = h.

The proof is complete.

The direct product has the following "universal property":

Lemma 11.9. Let G1, G2 and H be groups. For i = 1, 2, let

For i = 1, 2

{

πi : G1 ×G2 −→ Gi be the projections

pi : H −→ Gi any two group homomorphims

Then, there is a a unique group homomorphims ∆ : H −→ G1 × G2

such that π1∆ = p1 and π2∆ = p2. Diagramtically:

H

∆

∃!
$$■

■

■

■

■ p1

&&

p2

  

G1 ×G2 π1

//

π2

��

G1

G2

commutes.
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11.2 Structure of finitely generate abelian groups

Usually, theory of abelian groups is easier than that of non-commutative

groups. We can say more about abelian groups.

Theorem 11.10 (Fundamental Theorem of Abelian Groups). Let G

be a finitely generated abelian groups. Then G is isomorphis to the

product of cyclic groups:

Zp
n1

1

× Zp
n2

2

× · · · × Zp
nr
r

× Z× Z× · · · × Z

where pi are prime numbers, not necessarily distinct and ni are positive

integers.

Proof. Omitted.
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12 Plane Isometries

We skip.
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