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18 Rings and Fields

Groups dealt with only one binary operation.
You are used to working with two binary operation,
in the usual objects you work with: Z,R.
Now we will study with such objects,
with two binary operations: additions and multiplication.

18.1 Defintions and Basic Properties

Definition 18.1. A Ring 〈R,+, ·〉 is a set with two binary operations +, ·,

which we call addition and multiplication, defined on R such that

1. 〈R,+, ·〉 is an abelian group. The additive identiy is denoted by zero 0.

2. Multiplication is associative.

3. The distributive property is satiesfied as follows:

∀ a, b, c ∈ R a(b+ c) = ab+ ac and (b+ c)a = ba+ ca.
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Further, A ring 〈R,+, ·〉 is called a commutative ring, if the multipli-

cation is commutative. That means, if

∀ a, b ∈ R ab = ba.

Definition 18.2. Let 〈R,+, ·〉 be a ring. If R has a multiplicative identity,

then we has 〈R,+, ·〉 is a ring with unity. The multiplicative unit is denoted

by 1. Recall, it means

∀ x ∈ R 1 · x = x · 1 = x.

Barring some exceptions (if any), we consider rings with unity only.

Lemma 18.3. Suppose 〈R,+, ·〉 is a ring with unity. Suppse 0 = 1. then

R = {0}.

Proof. Suppose x ∈ R. Then,

x = x · 1 = x · 0 = x · (0 + 0) = x · 0 + x · 0 = x · 1 + x · 1 = x+ x.

So, x + x = x and hence x = 0. So, R ⊆ {0} and hence So, R = {0}. The
proof is complete.

Remark. The ring R = {0} is not interesting. So, we consider R 6= {0}
only. Hence we will always have 0 6= 1.

Example 18.4 (18.2). Following are rings:

〈Z,+, ·〉, 〈Q,+, ·〉, 〈R,+, ·〉, 〈C,+, ·〉

Example 18.5 (18.3). Let R be any ring. Then, the set Mn(R) of all square

matrices, with coefficients in R is a ring under the matrix addition and matrix

multiplication.

1. Question: What is the additive identity of Mn(R)?

2. Question: What is the multiplicative identity of Mn(R)?

2



In particular

Mn(Z),Mn(Q),Mn(R),Mn(C) are rings.

Remark. For n ≥ 2 these rings are not commutative. In group theory, we

gave examples.

Example 18.6 (18.4). Let F be a set of all functions f : R −→ R. For

f, g ∈ F define addition and multiplication as follows:

(f + g)(x) = f(x) + g(x) and (fg)(x) = f(x)g(x)

Then, F is a ring under this addition and multiplication.

1. Question: What is the additive identity of this ring?

2. Question: What is the multiplicative identity of this ring?

Example 18.7 (18.6). For any integer n > 0, 〈Zn,+, ·〉 is a ring.

Example 18.8 (18.7). Let R1, R2, · · · , Rn be n rings. Then, the

direct product R := R1 ×R2 × · · · × Rn is a ring. For

(x1, x2, . . . , xn), (y1, y2, . . . , yn) ∈ R addition and multiplication is defined by

(x1, x2, . . . , xn) + (y1, y2, . . . , yn) = (x1 + y1, x2 + y2, . . . , xn + yn)

(x1, x2, . . . , xn) · (y1, y2, . . . , yn) = (x1y1, x2y2, . . . , xnyn)

Theorem 18.9. Let R be a ring and a, b ∈ R. Then,

1. 0a = a0 = 0

2. a(−b) = (−a)b = −(ab)

3. (−a)(−b) = ab.
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Proof. First, −a is the notation for the additive inverse of a. The proofs are
routine:

1. 0a = (0+0)a = 0a+0a. Subtracting 0a (i.e. adding −(0a)) from both
sides we have 0a = 0. Similarly a0 = 0.

2. We have (ab)+a(−b) = a(b−b) = b0 = 0. So, −(ab) = a(−b). Similarly,
−(a) = (−a)b.

3. We have, by (2), (−a)(−b) = −((a(−b)) = −(−(ab)) = ab.

The proof is complete.
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18.2 Homomorphisms

As always, homomophism of two object with certain structure, is a mapping
that respects the structure.

Definition 18.10. Let R,R′ be two rings.

1. A map ϕ : R −→ R′ is said to be a homomorphism if, for all a, b ∈ R

we have

(a) ϕ(a+ b) = ϕ(a) + ϕ(b)

(b) ϕ(ab) = ϕ(a)ϕ(b)

(c) We also assume ϕ(1) = 1.

2. A homomorphism ϕ : R −→ R′ is said to be an isomorphism, if it is

also bijective. (I do not like this definition. Will clarify in class).

Example 18.11. As in (18.6), let F be the ring of all functions f : R −→ R.

Let a ∈ R. Then, the evaluation at a ∈ R is a homomorphism, defined as:

ϕa : F −→ R defines as ϕa(f) = f(a).

Example 18.12. The mapping

ϕ : Z −→ Zn given by ϕ(x) = x

is a homomorphism of rings.
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Lemma 18.13. Let ϕ : R −→ R′ be an isomorphism of rings. Since ϕ

is bijective, it has a set theoretic inverse ϕ−1 : R′ −→ R. In fact, ϕ−1 is

also an isomorphism (that mweans a homomorphisn, in addition to being a

bijection.).

Proof. Let y1, y2 ∈ R′, we need to prove that

ϕ−1(y1 + y2) = ϕ−1(y1) + ϕ−1(y2) and ϕ−1(y1y2) = ϕ−1(y1)ϕ
−1(y2)

Since ϕ is injective, it is enough to prove that they are equal after an appli-

cation of ϕ. In deed

y1 + y2 = ϕ(ϕ−1(y1) + ϕ−1(y2)) and y1y2 = ϕ(ϕ−1(y1)ϕ
−1(y2)).

The proof is complete.

18.3 Multiplicative Questions: Fields

Notations 18.14. Let R be a ring with unity (as always). Then, there is a

homomorphism

ϕ : Z −→ R defined by ∀n ≥ 0 ϕ(n) = 1 + 1 + · · ·+ 1(n summands)

and ϕ(−n) = −ϕ(n). We use the notation

n := ϕ(n) ∈ R and also n · 1 := ϕ(n).

(You can call ϕ the premitive homomorphims or cannonical homomorphism.

In the category of rings with unit, Z is considered as the innitial object, for

this reason.)

Example 18.15 (18.15). Let r, s be positive integers with gcd(r, s) = 1.

Then

ϕ : Zr × Zs −→ Zrs given by ϕ(n · 1) = n · (1, 1)

is an isomorphism. Note, both sides are cyclic groups.
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Definition 18.16. Let R be a ring with 1 6= 0.

1. An element u ∈ R is called an unit, if u has a multiplicative inverse

in R. Note, zero 0 cannot be an unit (why?).

2. We say R is a division ring (or skew field), if each nonzero element

in R is an unit.

3. We say R is a field, if it is a division ring and if R is commutative.

Example 18.17 (18.17). What are the units of Zn? Answer: all r such that

gcd(r, n) = 1.

(See §20).

Example 18.18 (18.18). A few examples of fields:

1. Z is not a field. Why not? What are the units of Z?

2. Q, R, C are fields.

3. At this time I do not have too many examples of a division ring that

is not a field. I will write down the example of Quaternion Algebra, on

the board.

Definition 18.19. 1. Suppose R is a ring. A subring of R is a subset S

of R, such that S is ring under the addition and multiplication inherited

from R.

2. Let E be a field. A subfield of E is a subset F of E, such that

F is field under the addition and multiplication inherited from F .

3. So, Z is a subring of R. Q is a subfield of R.

4. Such "sub"-structues are defined routinely in mathematics, whenever

some kind of structures are defined.
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(a) For example, we define subspaces W of vector spaces.

(b) We define subgroups.

(c) In topology, we define subspaces of topological spaces.

(d) Differential topology, we define submanifoldN of a given manofold.

For example, the unit disc is a submanifold of C.
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19 Integral Domains

In Z, ab = 0 =⇒ a = 0 or b = 0.

Example 19.1 (19.1). Consider the ring Z12.

1. Here 3 · 4 = 0 but none of the factors are zero.

2. Consider the equation (x − 2)(x − 3) = 0. Its solutions in Z12 are

2, 3, 6, 11.

This is strange because, we are used to the idea that quadratics should

have at most two root. Such strange things happen, because in this

ring product of two nonzero elements can be zero.

Definition 19.2. We give two definitions.

1. Let R be a ring. Let a ∈ R. We say that a is a zero divisor, if a 6= 0

and ∃ b ∈ R with b 6= 0 such that ab = 0.

2. A commutative ring D is called an integral domain, if D does not

have any zero divizor.

So, a cmmutative ring R is an integral domain if and only if

∀ a, b ∈ D (ab = 0 =⇒ a = 0 or b = 0).

Theorem 19.3. Consider the ring Zn. An element r ∈ Zn is a zero divisor

if and only if gcd(r, n) 6= 1 (i.e. r, n are NOT relatively prime).

Proof. Suppose r ∈ Zn.

1. (⇐): Suppose gcd(r, n) = d 6= 1 or d ≥ 2, So, r = dr0, n = dn0 with
1 ≤ n0 ≤ n− 1. So, rn0 = dn and r n0 = 0. Since, n0 6= 0, r is a zero
divisor.
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2. (⇒): Suppose r is a zero divisor. So, there is 0 ≤ m ≤ n − 1 such
that r m = 0. So, n divides rm. If gcd(r, n) = 1 then it follows that n
divides m, and so m = 0. This is a contradiction. So, gcd(r, n) 6= 1.

The proof is complete.

Definition 19.4. Suppose R is a commutative ring. We say that

cancellation law holds in R if

for a, b, c ∈ R with a 6= 0 (ab = ac =⇒ b = c).

Theorem 19.5. Let R be commutative ring. Then, R is an integral domain

if and only if cancellation law holds in R.

Proof. (⇒): Suppose R is an integral domain. Suppose

for some a, b, c ∈ R with a 6= 0 ab = ac.

Then, a(b − c) = 0. Since a 6= 0 we have b − c = 0 or b = c. So, the
cancellation holds.

(⇐): Suppose cancellation holds. Suppose ab = 0 and a 6= 0 for some
a, b ∈ R. So, ab = a0. By cancellation b = 0. So, a is not a zero divisor. So,
R has no zero divisor and R is an integral domain. The proof is complete.

Example 19.6 (19.7). Few examples:

1. Z is an integral domain.

2. Zp is an integral domain, if p is prime.

3. Zn is NOT and an integral domain, unless n is a prime.

4. Let F be the ring of all continuous real valued functions on R. Then,

F is NOT and an integral domain. (why not?)

5. Let R, S be two rings. Then the direct product R × S NOT and an

integral domain. This is because (1, 0)(0, 1) = (0, 0).
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Example 19.7 (19.8). Let R be any commutative ring. Then, M2(R) is

NOT and an integram domain. This is because M2(R) is not commutative.

Theorem 19.8. Every field F is an integral domain.

Proof. Let a ∈ F and a 6= 0. Suppose ab = 0. Since a has an inverse
a−1(ab) = a−10 = 0 gives b = 0. So, F is an integral domain. The proof is
complete.

Theorem 19.9. Every finite integral domain R is a field.

Proof. Write R = {0, 1, a1, a2, . . . , an}. Suppose a ∈ R and a 6= 0. We need
to show that a has an inverse. Consider the list:

a1, aa1, aa2, . . . , aan.

Since cancellation holds ths is a list are n+1 DISTINCT non zero elements in
R. But R has only n+1 distinct elements, including 1. So, one of them must
be 1 or aar = 1 for some r. So, a has an inverse. The proof is complete.

Corollary 19.10. Zp is a field, when p is a prime.

Proof. Exercise.

Definition 19.11. Let R ba a ring with unity 1 (as always). If n · 1 6= 0 for

all integers n ≥ 2, we say R has characteristic zero. If n · 1 = 0 for some

integer n ≥ 2 then the the characteristic is defined to be

char(R) = min{n ≥ 2 : n · 1 = 0}.

So, Z,Q,R have characteristic zero. Zn has characteristic n.

Theorem 19.12. Let R be a ring of characteristic n. Then n ·a = 0 ∀a ∈ R.

Proof. We have n · 1 = 0. So, for a ∈ R we have n · a = (n · 1)a = 0 · a = 0
The proof is complete.
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20 Farmat’s and Euler’s Theorem

In this section we do some number game.

Lemma 20.1. Let F be a field and F ∗ be the set of all nonzero elements in

F . Then F ∗ is a group under multiplication.

Proof. Trivial.

Theorem 20.2 (Little Theorem of Fermat). Let p be a prime number and

a ∈ Z be an integer that is not divisible by p. Then,

ap−1 ≡ 1 (modulo p).

Proof. Since Zp is a field,

Z∗

p = {1, 2, . . . , p− 1}

is a group under multiplication. This group has order p− 1. So, ∀x ∈ Z∗

p we

have xp−1 = 1. So, ap−1 = 1. This means,

ap−1 ≡ 1 (modulo p).

The proof is complete.

Corollary 20.3. For a ∈ Z and prime number p we have ap ≡ a (modulo p).

Proof. If a is divisible by p then ap ≡ a ≡ 0 (modulo p). If a is not divisible
by p then by the above theorem

ap−1 ≡ 1 (modulo p).

and so
ap ≡ a (modulo p).

The proof is complete.
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Example 20.4 (20.3). We compute the remainder of 8103 when devided by

13.

First, 108 = 12 ∗ 8 + 7. So,

8103 = (812)887 ≡ 1887 ≡ (−5)7 ≡ (25)3(−5) ≡ (−1)3(−5) ≡ 5 (modulo 13).

So, the remainder would be 5.

Example 20.5 (20.4). Show 211,213 − 1 is not divisible by 11.

First, we will do (modulo 11) computations. So, divide the exponent by

10: we have 11, 213 = 1121 ∗ 10 + 3. So,

211,213 − 1 ≡ (210)112123 − 1 = 111218− 1 ≡ 7 (modulo 11).

Example 20.6 (20.5). For any integer n, the number n33 − n is divisible by

15.

Proof. We will show it is divisible by 3 and 5. First, we do (modulo 3)

computation:

n33 − n ≡ (n2)16n− n = 132n− n = 0(modulo 3).

Now, we do (modulo 5) computat ion:

n33 − n ≡ (n4)8n− n = 18n− n = 0(modulo 5).

The proof is complete.
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20.1 Euler’s Generalization

Theorem 20.7. Let Gn be the nonzero divizors of Zn. Then Gn forms a

group under multiplication.

Proof. First, Gn is closed under multiplication: Let x, y ∈ Gn. Then xy 6= 0.
Then

(xy)z = 0 =⇒ yz = 0 =⇒ z = 0.

So, xy ∈ Gn, meaning it is a nonzero divizor. Obviously, 1 ∈ Gn. We need
to prove that, each element in Gn has an inverse. The proof of this part is
exactly similar to the proof of (19.9). (Complete it.) The proof is complete.

Corollary 20.8. If r ∈ Zn is a nonzero divisor, then it is invertible. So,

Gn = {r ∈ Zn : 1 ≤ r ≤ n− 1, and gcd(r, n) = 1.}

Proof. The first statement is immediate from the theorem. For the second
statement note, that r ∈ Zn is invertible if and only id gcd(r, n) = 1. The
proof is complete.

Definition 20.9. For integers n ≥ 1, let ϕ(n) be defined as the number of

integers 1 ≤ r ≤ n− 1 such that gcd(r, n) = 1. So,

ϕ(n) = |Gn| .

Theorem 20.10 (Euler’s Theorem). For any integer a, relatively prime to

n we have

aϕ(n) ≡ 1 (modulo n).

Proof. For such an integer a, the element a ∈ Gn. Since order of Gn is ϕ(n),
we have aϕ(a) = 1. This means,

aϕ(n) ≡ 1 (modulo n).

Example 20.11 (20.9). Let n = 12. Then, 1, 5, 7, 11 the positive integers

less than 12 that are relatively prime to 12. So, ϕ(12) = 4.

14



So, for any integer a, relatively prime to 12, we have

a4 ≡ 1 (modulo 12).

For example 3025 = 52112 is relatively prime to 12. So,

(3025)4 ≡ 1 (modulo 12).
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20.2 Application to ax ≡ b (modulo m)

Theorem 20.12. Let m be a positive intger and let a ∈ Zm be relatively

prime to m. Then for each b ∈ Zm, the equation ax = b has a unique

solution.

Proof. It follows, a has an inverse in Zm. So, x = a−1b is the unique solution.
The proof is complete.

This theorem can be restated as follows.

Corollary 20.13. If a,m are relatively prime integers, then for any integer

b, the equation

ax ≡ b (modulo m)

has solutions. Further all solutions are in the same equivalence class. Namely

solutions are the member of the class a−1b.

We skip the rest of the section. It is becoming technical.
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21 The Field of Quotients of an Integral Do-

main

Soppose D is an integral domain. We want to enlarge D to a field, by adding
inverses of all the nonzero elements of D. In a sense, we repeat the process
how, we get the field of rationals Q, by adding inverses of nonzero elements
in Z.

21.1 The construction

Let D be an integral domain.

1. Consider the set
S = {(a, b) : a, b ∈ D, b 6= 0}

We will define an equivalence relation, so that the equivalence class of
(a, b) will represent a/b. Intuitively, think of (a, b) as a representation
of a/b.

2. Define a relationship as follows:

Definition 21.1. For (a, b), (c, d) ∈ S, define

(a, b) ∼ (c, d) if ad = bc.

Lemma 21.2. The relation ∼ is an equivalence relation.

Proof. We check the three conditions:

(a) (Reflexive): For all (a, b) ∈ S we have (a, b) ∼ (a, b) because
ab = ba.

(b) (Symmetric): Suppose (a, b) ∼ (c, d). Then, ad = bc. So, cb =
ad and hence (c, d) ∼ (a, b).

(c) (Transitive): Suppose (a, b) ∼ (c, d) ∼ (u, v). Then, ad = bc
and cv = du. So, (ad)u = (bc)u or a(du) = bcu or a(cv) = bcu.
Cancelling c we get or av = bu. So, (a, b) ∼ (u, v). So, the relation
is transitive.
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So, it is established that ∼ is an equivalence. The proof is complete.

3. The set of all equivalence classes will be denoted by F and the equiva-
lence class of (a, b) will be denoted by [(a, b)]. So,

F = {[(a, b)] : (a, b) ∈ S}.

4. Intuitively, we think
[(a, b)] =: a

b
and define addition and multiplication of equivalence classes,

in F , as in the lemma.

Lemma 21.3. For [(a, b)], [(c, d)] ∈ F define

[(a, b)] + [(c, d)] := [(ad+ bc, bd)] and [(a, b)][(c, d)] := [(ac, bd)]

We assert that these are well-define operations (to be called addition

and multiplication).

Proof. First, since (a, b), (c, d) ∈ S, we have b 6= 0, d 6= 0. Since D
is an integral domain, bd 6= 0. So, (ad + bc, bd) ∈ S and (ac, bd) ∈ S.
So, the right handsides are in F , or F is closed under additing and
multiplication.

We need to prove well defined-ness. Suppose [(a, b)] = [(a1, b1)] and
(c, d) = (c1, d1). That means, (a, b) ∼ (a1, b1) and (c, d) ∼ (c1, d1). So,

ab1 = ba1, cd1 = dc1 (∗).

Multiply thse two equations, we get

ab1cd1 = ba1dc1. So, (ac, bd) ∼ (a1c1, b1d1).

So, the multiplication is well defined. (I am "thinking" fractions a/b
and so on.)

For addition, I want "common denominators" (the second coordinate):
So, multiply the first equation by dd1 and the second equation by bb1.
We have

ab1dd1 = ba1dd1, cd1bb1 = dc1bb1

Adding, we get

(ad+cb)b1d1 = (a1d1+c1b1)db. So, (ad+cb, bd) ∼ (a1d1+c1b1, b1d1).

So, the addition is well defined. The proof is complete.
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5. Notation. Now on, we will use the notation

a/b =
a

b
:= [(a, b)].

6. Now, we prove F is a field.

(a) 〈F,+〉 is a abelian group. Proof.

i. We have

([(a, b)]+[(c, d)])+[(x, y)] = [(ad+bc, bd)]+[(x, y)] = [(ady+bcy+bdx, bdy)]

Similarly,

[(a, b)] + ([(c, d)] + [(x, y)]) = [(ady + bcy + bdx, bdy)].

So, ([(a, b)]+ [(c, d)])+ [(x, y)] = ([(a, b)]+ [(c, d)])+ [(x, y)].

So, the addition is associative.
Alternately, If we are comfortable using the notations above,
then

(a

b
+
c

d

)

+
x

y
=
ad+ bc

bd
+
x

y
=
ady + bcy + bdx

bdy
.

Similarly,

a

b
+

(

c

d
+
x

y

)

=
a

b
+
cy + dx

dy
=
ady + bcy + bdx

bdy
.

ii. We have

[(a, b)] + [(c, d)] = [(ad+ bc, bd)] = [(c, d)] + [(a, b)]

So, the addition is commutative.

iii. [(0, 1)] is the additive identity (zero):

[(0, 1)] + [(a, b)] = [(a, b)] = [(a, b)] + [(0, 1)]

In fact, [(0, 1)] = [(0, d)] for all d 6= 0 ∈ D.

iv. The additive inverse of [(a, b)] = [(−a, b)], because

[(a, b)] + [(−a, b)] = [(0, b)].
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This completes th eproof that 〈F,+〉 is a abelian group.

(b) The multiplication is associative, with an unity.

Proof.

i. (Associativity)

([(a, b)][(c, d)])[(x, y)] = [(ac, bd)][(x, y)]

= [(acx, bdy)] = [(a, b)]([(c, d)][(x, y)]).

ii. The multiplicative identity is ((1, 1)] = [(d, d)] for all d 6= 0 ∈
D, as follows:

[(a, b)][(1, 1)] = [(a, b)] = [(1, 1)][(a, b)]

This completes the proof that F is a ring.

(c) In fact, F is a commutative ring (because so isD), as shown below:

[(a, b)][(x, y)] = [(ax, by)] = [(xa, yb)] = [(x, y)][(a, b)].

7. Every nonzero element in F has an inverse:

Let (a, b)] ∈ F be nonzero. So, a 6= 0 and (b, a) ∈ F . Now, [(a, b)][(b, a)] =
[(ab, ab)] = [(1, 1)].

This completes the proof that F is a field. The proof is complete.
Now, final question is whether D is a subring of F? Answer is "yes", in the
follwing sense.

Lemma 21.4. The map i : D −→ F given by i(a) = [(a, 1)] = a
1

is an

injective homomorphism of rings.

Proof. Clearly i(a+b) = [(a+b, 1)] = [(a, 1)]+[(b, 1)] = i(a)+i(b). Similarly,
i(ab) = i(a)i(b). So, i is a ring homomorphism.

Now, we prove i is injective, meaning one to one. In group theory, we
learned that it is enough to check that the kernel is zero. So, let i(a) = [(0, 1)].
That means [(a, 1)] = [(0, 1)]. By definition of the equivalence relation, it
follows a = 0. The proof is complete.
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Theorem 21.5. Let D be an integral domain. Then D can be enlarged to a

field F , such that every element is a quotient of two elements of D.

Proof. Take the injective homomorphism i : D −→ F , as above. Now we
identify D by its image i(D), which is an isomorphic "copy" of D. The proof
is complete.

21.2 Uniqueness

In fact, this field of quotient is "smallest" in the sense of the following the-
orem. This theorem can be called an "universal property" of the homomor-
phism i : D −→ F .

Theorem 21.6. Let F be the field of quotients of an integral domain D. Let

i : D −→ F denote the "inclusion" homorphism. Let L be a field and j :

D −→ L be an injective homomorphism. Then there is a unique injective

homomorphism ψ : F −→ L such that ψi(a) = j(a). If we consider

D ⊆ F , then ψ(a) = j(a). Diagramatically:

D � � i //� o

j
  ❅

❅❅
❅❅

❅❅
❅ F� _

ψ
��
✤

✤

✤

L

commutes and a/b 7→ (j(a))(j(b))−1.

Proof. We define ψ : F −→ L as follows: Let a
b
= [(a, b)] ∈ F . Since b 6= 0

and j is injective j(b) has an inverse in L. Define

ψ
(a

b

)

= j(a)(j(b))−1

To see ψ is well defined, let [(a, b)] = [(c, d)]. This means ad = bc. So,
j(a)j(d) = j(b)j(c). So, j(a)j(b)−1 = j(c)j(d)−1. So, ψ is well defined.

Now, it is easy it check that

ψ(x+ y) = ψ(x) + ψ(y) ψ(xy) = ψ(x)ψ(y).
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Now to see ψ is injective, let ψ([(a, b)]) = 0 ∈ L. So, j(a)j(b)−1 = 0. So,
j(a) = 0. Since j is injective a = 0. So, [(a, b)] = 0 ∈ F . So, ker(ψ) = {0}
and ψ is injective.

Uniqueness: Suppose there is another homomorphism ϕ : F −→ L such
that ϕi(a) = j(a) for all a ∈ D. Since ϕ is a homomorphism,

ϕ([(1, b)]) = ϕ([(b, 1)]−1) = ϕ([(b, 1)])−1 = ϕ(i(b)])−1 = j(b)−1.

So,
ϕ([(a, b)) = ϕ([(a, 1)][(1, b)]) = ϕ([(a, 1)]])ϕ([(1, b)])

= ϕ(i(b)])−1ϕ(i(b)])−1 = j(a)j(b)−1 = ψ([(a, b)).

So, ϕ = ψ. The proof is complete.

Interpretation: The injecitivity is intepreted as follows:

For any field L, D ⊆ L=⇒F ⊆ L.

Exercise. Let f : K −→ L be a homomorphism of fields. Prove that f is
injective. (Use f(1) = 1.)

Definition 21.7. Suppose D is an integral domain. Any field F , satisfying

the universal property, as in theorem 21.6, is called a field of quotients of

D.

Try to see the analogy with Z ⊆ Q.

Corollary 21.8. Any two fields of quotients, of an integral domain D, are

isomorphic.

Proof. Let F,L be two fields of quotients of D. Let us denote the inclusions
i : D →֒ F and j →֒ L. By theorem above there is an injective homomor-
phism ψ : F −→ L such the ψi(a) = j(a) for all a ∈ D.

We will prove that ψ is onto. Since L is also a field of quotients, any
element y ∈ L can be written as y = j(a)j(b)−1. So, ψ(i(a)i(b)−1) =
ψ(i(a))ψ(i(b)−1) = j(a)j(b)−1 = y. So, ψ is onto, hence an isomorphism.
The proof is complete.
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Alternate Proof: with Diagram:

F

ψ
��⑧
⑧
⑧
⑧

ϕψ=IF

��

D

i

77♦♦♦♦♦♦♦♦♦♦♦♦♦♦ j
//

i
''❖❖

❖❖
❖❖

❖❖
❖❖

❖❖
❖❖ L

ϕ

��❄
❄

❄
❄

F

ϕψ = IF because of uniquenness of such homomorphisms.

By "existance part" theorem 21.6, ψ, ϕ exist, so that the diagram commutes.
By the "uniqueness part" of theorem 21.6, ϕψ = IF . Similarly ψϕ = IL. So,
ψ is an isomorphism.
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22 Rings of Polynomials

We formally define polynomials.

Definition 22.1. Suppose R is a ring and x is an indeterminate (a symbol).

A polynomial f(x) with coefficients in R is an infinite formal sum

∞
∑

i=0

aix
i = a0 + a1x+ · · ·+ anx

n + · · · with ai ∈ R

and only finitely many ai are nonzero.

1. The an is called the coeffient of xn in f(x).

2. We use the notation xn := 1xn.

3. Also, we omit the terms 0xi. Since only finitely many ai are nonzero,

a polynomial f(x) would look like a finite sum:

f(x) = a0 + a1x+ · · ·+ anx
n,

perhaps few more terms would be missing, in this expression.

4. Suppose f(x) = a0 + a1x + · · · + anx
n is a polynomial, with an 6= 0.

Then, we say f(x) has degree n.

5. For a ∈ R the polynomial

a+ 0x+ 0x2 + · ia denoted by ”a” itself.

It is called a constant polynomial. A constant polynomial has degree

zero.

6. So, one can think of a polynomial as a sequence a0, a1, . . . , an . . . with

only finitley many nonzero terms.
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7. Suppose

f(x) = a0+a1x+· · ·+anx
n+· · · and g(x) = b0+b1x+· · ·+bnx

n+· · ·

(a) Define "addition"

f(x) + g(x) = c0 + c1x+ · · ·+ cnx
n + · · · where cn = an + bn.

(b) Define "multiplication"

f(x)g(x) = d0 + d1x+ · · ·+ dnx
n + · · · where dn =

n
∑

i=0

aibn−i.

Theorem 22.2. Let R be a ring and R[x] be the set of all polynomials in an

indeterminate x and coefficients in R.

1. Then, R[x] is a ring.

2. If R is commutative, so is R[x].

3. The ring R[x] is called the polynomial ring with coefficients in R.

Proof. The proof is routine. Verify all the properties of rings. Read it from
the textbook.

Question. What are the units of R[x]? Assume R is commutative.

Definition 22.3. Define polynomial rings with two variables, as follows.

If y is another indeterminate, then we define R[x, y] = R[x][y] to be called

the polynomial ring in two indeterminate over R.

Likewise, we define the polynomial ring R[x1, x2, . . . , xn] in n inde-

terminate x1, x2, . . . , xn.

Lemma 22.4. The map R −→ R[x] defined by a 7→ a is an injective homo-

morphism. So, we consider R ⊆ R[x] as a subset or "subring".

Proof. Trivial
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Lemma 22.5. Suppose D is an integral domain. Then, D[x] is an integral

domain.

Proof. Suppose f(x), g(x) ∈ R[x] and f(x)g(x) = 0. We will prove one of
them is zero. Assume both are nonzero. Write

f(x) = a0+a1x+· · ·+anx
n and f(x) = b0+b1x+· · ·+bmx

m with an 6= 0, bn 6= 0.

Then the coefficient of xm+n (the top degree term) is anbm. Since f(x)g(x) =
0, this coefficient anbm = 0. Since, D is an integral domain, an = 0 or bn = 0.
Which is a contradiction. So, either f(x) = 0 or g(x) = 0 The proof is
complete.

Remark. Since, D[x] is an integral domain, we can define the field of quo-
tients of D[x], whose elements are written as f(x)/g(x) with f(x) 6= 0.

22.1 The Evaluation Homomorphisms

The evaluation homomorphim is my favorite homomorphism.

Theorem 22.6. Let F be a subring of another ring E. Let α ∈ E. Define

the map

ϕα : F [x] −→ E by ϕα = f(α).

Then, ϕα is a homomorphism.

Proof. For f(x), g(x) ∈ R[x], we need to show

ϕα(f(x)+g(x)) = ϕα(f(x))+ϕα(g(x)) and ϕα(f(x)g(x)) = ϕα(f(x))ϕα(g(x))

Or, to prove

(f + g)(α) = f(α) + g(α) and (fg)(α) = f(α)g(α)

which is obvious.

Example 22.7 (22.6). Let R be any ring. Then, the homomorphism ϕ0 :

R[x] −→ R is given by

for f(x) = a0 + a1x+ · · ·+ anx
n we have ϕ0(f) = a0.
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Example 22.8 (22.7). Consider Q ⊆ R. Then,

ϕ2 : Q[x] −→ R is given by ϕ2(f) = f(2).

Note, ϕ2(x
2− 6) = 0, ϕ2(x− 2) = 0. The author is trying to amke the point:

2 is zero of these two polynomial.

So, these two polynomials are in ker(ϕ2).

Example 22.9 (22.8). Consider Q ⊆ C. Let i2 = −1. Then,

ϕi : Q[x] −→ R is given by ϕi(f) = f(i).

Note, ϕi(x
2 + 1) = 0. The author is trying to amke the point: i is zero of

x2 + 1.

So, x2 + 1 in ker(ϕi).

Definition 22.10. Let F be a subfield of a field E and α ∈ E. Consider the

evaluation homomorphism

ϕα : F [x] −→ E is given by ϕα(f) = f(α).

We say α is a zero of f if f(α) = 0. That means, if f ∈ ker(ϕα),
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23 Factorization of Polynomials over a fields

23.1 The Division algorithm

Actually, the divisio algorithm needs a proof.

Theorem 23.1 (Division Algorithm). Suppose F is a field. Let g ∈ F [x]

and g 6= 0 and degree(g) = m. Then, given any polynomial f ∈ F [x], we

can write

∃ unique r(x), q(x) ∈ R[x] ∋ f(x) = g(x)q(x) + r(x)

with r(x) = 0 or degree(r(x)) < m.

Proof. (Existance): Write

S = {f(x)− g(x)q(x) : q(x) ∈ R[x]}

If 0 ∈ S then ∃ q(x) ∈ R[x] ∋ f(x) = g(x)q(x). So, the algorithm is valid
with r(x) = 0.

Now suppose 0 /∈ S. Let

d = min{degree(ρ) : ρ ∈ S}

Pick
r(x) = f(x)− g(x)q(x) ∈ S ∋ degree(r(x)) = d.

I claim, that d < m. If not let d ≥ m. Write

f(x) = a0+a1x+· · ·+anx
n, g(x) = b0+b1x+· · ·+bmx

m, r(x) = c0+c1x+· · ·+cdx
d

with bm 6= 0, cd 6= 0. Now,

ρ(x) = r(x)− g(x)
cdx

d−m

bm
has degree ≤ d− 1.

Also,

ρ(x) = r(x)−
cdx

d−m

bm
g(x) = f(x)− g(x)

(

q(x) +
cdx

d−m

bm

)

∈ S.

28



Since 0 /∈ S, ρ(x) 6= 0. The minimality of d is contradicted, because
degree(ρ(x)) ≤ d − 1. So, it is established degree(r(x)) ≤ m − 1. So,
we have f(x) = g(x)q(x)+r(x) with degree(r(x)) ≤ d−1. So, the algorithm
holds.

Now, we prove uniqueness. Suppose

f(x) = g(x)q1(x) + r1(x) = g(x)q2(x) + r2(x)

where ri(x) = 0 or degree(ri) ≤ m− 1.

Subtracting, we have

r1(x)− r2(x) = g(x)(q1(x)− q2(x))

Since, degree(r1(x) − r2(x)) ≤ m − 1 < m = degree(g), we have q1(x) −
q2(x) = 0. Hence r1(x)− r2(x) = 0. So, q1(x) = q2(x) and r1(x) = r2(x). So,
uniqueness is established. The proof is complete.

Theorem 23.2 (Generalized Division Algorithm). Let R be a commutative

ring. Let g(x) = xm + am−1x
m−1 + · · · + a1x + a0 ∈ R[x]. (Note coefficient

of xm in G is 1. Such a polinomial is called a monic polynomial.) Then,

given any polynomial f ∈ F [x], we can write

∃ unique r(x), q(x) ∈ R[x] ∋ f(x) = g(x)q(x) + r(x)

with r(x) = 0 or degree(r(x)) < m.

Proof. Exercise

Long Division: The long division method of dividing applies in all these
cases.

Example 23.3 (23.2). in Z5[x] divide a give f(x) by g(x) = x2 − 2x+3, by

long division. Please read it.

Objective of this section is to write any polynomial f(x) over a field,
as product of "irreducible polynomials". Simplest among the irreducible
polynomials are the linear polynomial x− a.
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Corollary 23.4 (Factor Theorem). Let F be field and a ∈ F and f(x) ∈

F [x]. Then, a is a zero of f if and only if x− a is a factor of f(x).

Proof. (⇐): Suppose x − a is a factor of f(x). So, f(x) = (x − a)q(x) for
some q(x) ∈ F [x]. So, f(a) = and hence a is a zero of f(x).

(⇒): Now suppose a is a zero of f , which means f(a) = 0. Now divide f(x)
by x− a, we have

f(x) = (x− a)q(x) + r(x)

where r(x) = 0 or degree(r(x) = 0 (i.e. r(x) = r ∈ F ). Substituting a = 0
we have r = r(0) = 0. So, f(x) = (x− a)q(x). The proof is complete.

Example 23.5 (23.4). in Z5[x] use long division and apply the corollary

(23.4). Please read it.

Corollary 23.6. Let F be a field and f(x) ∈ F [x] be a nonzero polynomial

of degree n. Then f(x) can have at most n zeros.

Proof. Suppose a1 is a zero of f(x). Then,

f(x) = (x− a1)q1(x)

for some polynomial q1(x) of degree n − 1. Now, if a2 is a zero of q1 then
x− a2 is a factor of q2, which gives

f(x) = (x− a1)(x− a2)q2(x) where degree(q − 2) = n− 2.

Repeating this process, we can write

f(x) = (x− a1)(x− a2) · · · (x− ar)qr(x) where degree(q − 2) = n− r.

and qr(x) has no zero in F . Since, degree of f is n, there can be at most n
such linear factors. Also, a1, . . . , ar are theonlt zeros of f in F , because if
b 6= ai then f(b) = (b− a1)(b− a2) · · · (b− ar)qr(b) 6= 0. Hence a1, . . . , ar are
the only zeros of f9x) and r ≤ n. The proof is complete.

Corollary 23.7. Let F be a field and G be a FINITE subgroup of the mul-

tiplicative group F ∗. Then G is cyclic.

Proof. It is an application of theorem 11.12. We omit the proof.
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23.2 Irreducible Polynomials

As I mentioned above simplest of all the irreducible polynomials are linear
polynomials x− a.

Definition 23.8. Let F be a field and f(x) ∈ F [x] be nonconstant poly-

nomial. We say that f(x) is irreducible over F or is an irreducible

polynomial in F [x] if

[f(x) = g(x)h(x) with g, h ∈ F [x]] =⇒ [f ∈ F or g ∈ F ].

A nonconstant polynomial f(x) ∈ F [x] is said to be reducible, if it is

not irreducible.

Remarks. Here are some comments:

1. We restate the definition. A nonconstant polynomial f is irreducible,
if it has no nontrivial factorization f(x) = g(x)h(x). For example,
∀ a ∈ F, a 6= 0 (i.e. unit in F [x]), there is always a trivial factorization
f(x) = a(a−1f(x)).

2. All linear polynomials ax+ b, with a 6= 0, are irreducible.

3. Suppose F is a subfiled of a field E. It is possible that a polynomial
f(x) ∈ F [x] is irreducible over F , but not over E. Some examples
follows.

Example 23.9. Here are some examples.

1. (23.8) f = x2 − 2 ∈ Q[x]. Although f = x2 − 2 is irreducible in Q[x],

it is reducible in R[x].

2. f(x) = x2 + 1 is irreducible in R[x], it is reducible in C[x]. Reducible

polynomials in R[x] are linear or quadratic (why?). In fact, all irre-

ducible polynomials in C[x] are linear(why?).
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Example 23.10 (23.9). The polynomial f(x) = x3 + 3x + 2 ∈ Z5[x] is

irreducible in Z5[x].

Proof. If f(x) is reducible, then f(x) = g(x)h(x), both g(x) and h(x) are

nonconstant. So, one of them has degree 2 and other one has degree one.

Suppose g(x) = ax + b is the linear factor. Then, −ba−1 is a zero of g and

hence of f . So, we conclude that, if f is irreducible in Z5[x], then it has a

zero in Z5. But

f(0) = 2, f(1) = 1, f(2) = 1, f(3) = 3, f(4) = 3.

So, f is irreducible. The proof is complete.

Theorem 23.11. Let F be a field and f(x) ∈ F [x] be a polynomial of degree

2 or 3. Then, f(x) is reducible over F if and only if f(x) has a zero in F .

Proof. (⇐): Suppose a ∈ F is a zero of f(x). Then (x− a) is a factor of f .
So, f(x) = (x− a)h(x) is a nontrivial factorization of f . So, f is reducible.

(⇒): Suppose F is reducible. Let f(x) = g(x)h(x) be a nontrivial fac-
toriztion, with g, h ∈ F [x]. Since f has degree 2 or three, g or h has degree
one. Assume g(x) = (ax+ b) is linear, with a 6= 0. So, f(x) = (ax+ b)h(x).
So, −ba−1 is a zero of f in F . The proof is complete. .
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23.3 Irreducibility in Q[x]

I will add some material from the book of Herstein.

Definition 23.12. Suppose f(x) ∈ Z[x]. Write f(x) = a0+a1x+ · · ·+anx
n

with ai ∈ Z.

1. Define content of f as content(f) = gcd(a0, a1, . . . , an).

2. We say that f is primitive, if content(f) = 1.

Lemma 23.13. Let f(x), g(x) ∈ Z[x] be two premitive polynomials. Then,

f(x)g(x) is also a premitive polynomial.

Proof. Write

f(x) = a0 + a1x+ · · ·+ anx
n and g(x) = b0 + b1x+ · · ·+ bmx

m

Suppose p is a prime number. We will show p does not divide some coefficient
of f(x)g(x). Since f is primitive p does not divide some coefficient of f . Let
aj be the first one:

p|a0, p|a1, . . . , p|aj−1, p 6 |aj.

Similarly, there is a k such that

p|b0, p|b1, . . . , p|bk−1, p 6 |bk.

Now, coefficient cj+k of xj+k in f(x)g(x) is give by cj+k =

ajbk+(aj+1bk−1+aj+2bk−2+ · · ·+aj+kb0)+(aj−1bk+1+aj−2bk+2+ · · ·+a0bj+k)

Now, p 6 |ajbk and all the other terms are divisibe by p. So, p 6 |cj+k. The
proof is complete.

Alternate Proof. I will give a different proof, in class, using "modulo p"
calcualtions and the product of two monic polynomials is monic.

Theorem 23.14 (23.11). Suppose f(x) ∈ Z[x]. Suppose

f(x) = g(x)h(x) with g, h ∈ Q[x], degree(g) = r, degree(h) = s.

Then,

f(x) = λ(x)µ(x) with λ, µ ∈ Z[x], degree(λ) = r, degree(µ) = s.
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Proof. Let c = content(f). So, f(x) = cϕ(x) and ϕ(x) is premitive. We can

write g(x) = uλ(x)
v
, h(x) = u′µ(x)

v′
, where u, u′, v, v′ ∈ Z and λ, µ are premitive

polynomials in Z[x]. Writing a
b
= uu′

vv′
, the equation f(x) = g(x)h(x) reduces

to
f(x) = cϕ(x) =

a

b
λ(x)µ(x). hence cbϕ(x) = aλ(x)µ(x)

where ϕ, λ, µ are primitive. So, λ(x)µ(x) is also premitive. So, the content
of the left side is cb and content of the right side is a. So, a = cb or a

b
= c.

So,we get
f(x) = (cλ(x))µ(x).

The proof is complete.

Corollary 23.15. Suppose f(x) = xn+an−1x
n−1+ · · ·+a1x+a0 be a monic

polynomial in Z[x] with a0 6= 0. (monic means the coefficient of the to degree

term is 1). Then,

f(a) = 0 for some a ∈ Q =⇒ f(m) = 0 for some m ∈ Z and n|a0.

Proof. Suppose a ∈ Q is a zero of f . Then f(x) = (x − a)g(x), with
g(x) ∈ Q[x]. By (23.14), f(x) = (cx − m)h(x) for some h ∈ Z[x] and
c,m ∈ Z with c 6= 0. Write h(x) = bn−1x

n−1 + · · · + b1x + b0 with bi ∈ Z.
The equation f(x) = (cx−m)h(x) can be written as

xn + an−1x
n−1 + · · ·+ a1x+ a0 = (cx−m)(bn−1x

n−1 + · · ·+ b1x+ b0).

Comparing the coefficient of xn, we have cbn−1 = 1. So, c = ±1. We can
assume c = 1. So, m is a zero of f . Comparing the constant terms a0 = mb0.
So, b0 = a0/m. The proof is complete.

Example 23.16 (23.14).

We prove f(x) = x4 − 2x2 + 8x+ 1 is irreducible Q[x].

Proof. Suppose f(x) is reducible in Q[x]. Then f(x) = g(x)h(x), where
g, h ∈ Q[x], both non-constant. We deal with two cases.

1. Suppose g or h is linear. Then, f(x) has a zero in Q. By corollary
(23.15), f(x) has a zero m in Z and m divides the constant term of
f , which is 1. So, m = ±1. But f(1) = 8, f(−1) = −8, which is
impossible. So, neither g nor h is linear.
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2. Now assume both g, h are quadratic. By (23.14), f factors into two
quadratics in Z[x]. Write

f(x) = x4−2x2+8x+1 = (a0x
2+ax+b)(b0x

2+cx+d) with a0, b0, a, b, c, d ∈ Z.

Comparing coefficient of x4, we have 1 = a0b0. So, a0 = b0 = 1 or
a0 = b0 = −1. However, if a0 = b0 = −1, we can change sigms of
a, b, c, d and assume a0 = b0 = 1. So, we rewrite the above equations
as:

f(x) = x4 − 2x2 + 8x+ 1 = (x2 + ax+ b)(x2 + cx+ d)

Comparing the coefficients of x3, x2, x, x0 we have

a+ c = 0, b+ d+ ac = −2, ad+ bc = 8, bd = 1.

Fram, bd = 1 we get

b = d = 1 or b = d = −1

Substituting in ad+ bc = 8 we get

a+ c = 8 or a+ c = −8. This contradicits a+ c = 0.

So, f cannot have any quadratic factors.

Therfore, f is irreducible in Q[x]. The proof is complete.

Theorem 23.17 (Eisenstein Criterion). Let p ∈ Z be a prime. Suppose

f(x) = anx
n + an−1x

n−1 + · · ·+ a1x+ a0 ∈ Z[x], such that

p|a0, p|a1, . . . , p|an−1, but p 6 |an, and p2 6 |a0.

Then, f(x) is irreducible in Q[x].

Proof. By (23.14) we have to show, that f(x) does not factor into polyno-
mials of of lower degrees in Z[x]. Suppose,

f(x) = (brx
r+· · ·+b0)(csx

s+· · ·+c0) with br 6= 0, cs 6= 0 and r < n, s < n.

1. We have a0 = b0c0. Since p2 6 |a0 not both b0, c0 are divisible by p.
Assume p 6 |b0. Since p|a0, p|c0.
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2. Since, p 6 |an, we have p 6 |br, p 6 |cs.

3. We have p|c0, p 6 |cs. Let 1 ≤ m ≤ s be such that

p|c0, p|c1, · · · , p|cm−1, but p 6 |cm.

4. Comparing coefficient of xm we have

am = b0cm + b1cm−1 + · · ·+

{

bmc0 if r ≥ m
brcm−r if r < m.

The first term is not divisible by p and other terms are divisible by p.
So, p 6 |am. So, m = s = n, which is impossible. So, above factorization
is not possible.The proof is complete.

Example 23.18 (23.16). Use Eisenstein Criterion, to prove that f(x) =

25x5 − 9x4 − 3x2 − 12 is irreducible in Q[x].

Proof. take p = 3.

Corollary 23.19. The polynomial Φp(x) = xp−1 + xp−2 + · · · + x + 1 is

irreducible over Q for any prime p.

Proof. It is enough to prove that Φp(x+1) is irreducible (why?). First note

Φp(x) =
xp − 1

x− 1
.

So,

Φp(x+1) =
(x+ 1)p − 1

x
=

(

xp +

(

p
p− 1

)

xp−1 + · · ·+

(

p
1

)

x+ 1

)

− 1

x

= xp−1 +

(

p
p− 1

)

xp−2 + · · ·+

(

p
1

)

By Eisenstein Criterion Φp(x+1) is irreducible hence so is Φp(x). The proof
is complete.
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23.4 Unique Factorization

We use the language "g divides f" before. The textbook gives a definition:

Definition 23.20. For two elements f, g in a commutative ring R, we say

that g divides f , if f = gq for some q ∈ R. In this case, we also write g|f .

Theorem 23.21. Let F be a field and p(x) ∈ F [x] be an irreducible polyno-

mial. Suppose r(x), s(x) ∈ F [x], then

p|r(x)s(x) =⇒ either p(x)|r(x) or p(x)|s(x).

Proof. Delayed untill §27.

Corollary 23.22. Let F be a field and p(x) ∈ F [x] be an irreducible polyno-

mial and ri(x) ∈ F [x].

If p(x)|(r1(x)rn(x) · · · rn(x)) then p(x)|ri(x) for some i.

Proof. This is proved by induction. If n = 2 then the assertion holds for by
the theorem above. For the inductive step, assume the assertion holds for
product of n − 1 polynomials. Now suppose p(x)|(r1(x)rn(x) · · · rn(x)). We
can rewrite it as p(x)|[r1(x)rn(x) · · · rn−1(x)]rn(x). Since it is true for n = 2,
we have

p(x)|(r1(x)rn(x) · · · rn−1(x)) or p(x)|rn(x).

In case, p(x)|(r1(x)rn(x) · · · rn−1(x)) then by induction hypothesis p(x)|ri(x)
for some 1 ≤ i ≤ n− 1. The proof is complete.

Lemma 23.23. Suppose p(x) ∈ F [x] is an irreducible polynomial. Let u 6=

0 ∈ F . Then up(x) is irreducible.

Proof. Suppose up(x) = g(x)h(x). Then p(x) = (u−1g(x))h(x). Since p is
irreducible, either u−1g(x) ∈ F or h(x) ∈ F . This implies, either g(x) ∈ F
or h(x) ∈ F . So, up is irreducible. The proof is complete.

Lemma 23.24. Suppose p(x), q(x) ∈ F [x] ar two irreducible polynomials. If

p|q then p(x) = uq(x) for some unit u ∈ F .
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Proof. Suppose p(x) = u(x)q(x). Since p is irreducible, u(x) ∈ F .

Theorem 23.25. Let F be a field and f(x) ∈ F [x] be a nonconstant poly-

nomial. Then, f can be written as the product of irreducible polynomials.

This factorization is unique, except of the order and for units in F (same

as units in F [x]). (See the proof for better understanding of the uniqueness

statement.)

Proof. Suppose f(x) is a nonconstant polynomial. First, we prove that f(x)
can be written as product of irreducible polynomials. We use induction of
degree of f to prove this. If degree(f) = 1, then F is irreducble and the
assertion holds.

Now assume degree(f) = d ≥ 2. If f is irreducible then the assertion
holds. If f is not irreducible then f(x) = g(x)h(x) where both g(x), h(x)
are nonconstant. So, degree(g(x)) < degree(f(x)) and degree(h(x)) <
degree(f(x)). So, by induction, both g and h are product of irreducible
polynomial. So, it is established that f(x) is product of irreducible polyno-
mial.

Now, we prove that such factoriztions are unique. Suppose

f = p1p2 · · · pr = q1q2 · · · qs where pi, qi ∈ F [x] irreducible.

We will prove r = s and we can reorder (label) qi, so that pi = uiqi for some
units ui ∈ F . We assume s ≥ r.

Since p1 divides q1q2 · · · qs. By (23.22), p1|qi for some i = 1, . . . , s. By
re-labeling, we assume p1|q1. So, q1(x) = u1p1(x) for some unit u ∈ F . So,
we have

p1(p2p3 · · · pr) = u1p1(q2q3 · · · qs). So, p2p3 · · · pr = u1q2q3 · · · qs.

By similar argument (or by induction)

q2 = u2p2, . . . , qr = urpr for some units ui ∈ F.

So, we have

p1p2 · · · pr = (u1u2 . . . ur)(p1p2 · · · pr)(qr+1 · · · qs). Hence 1 = (u1u2 . . . ur)(qr+1 · · · qs).

So, qr+1, . . . , qs are units in F . This is impossible because qi are irreducible.
So, r = s. The proof is complete.

Remark. Compare this with factorization theorems in Z.
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24 Noncommutative Examples

We did not give too many examples of noncommutative rings and noncommu-
tative groups. We will not work with noncommutative situation very much.
In this section we give some example.

Example 24.1. Most commonly encountered non-commutative ring are the

ring Mn(R) of all square matrices of order n with entries in a commutative

ring R. This includes,

Mn(Z),Mn(Zn),Mn(Q),Mn(R),Mn(C)

and Mn(F ) where F is any field.

Example 24.2. Let F be a field and V be a vector space over a field F with

dimV = n. In Math 790 (or 290), we have seen that, there is a one to one

correspondance between the linear transforamtion f : V −→ V and elements

in Mn(F ).

Let EndF (V ) denotes the set of all linear transforamtion f : V −→ V .

Then EndF (V ) is a ring under addition and composition as the multiplica-

tion.

In fact, EndF (V ) is a noncommutative ring. It follows from the fact

that Mn(F ) is noncommutative, if n ≥ 2.

Likewise, we have the following.

Example 24.3. Let G be ab abelian group. Let End(G) denote the set of

all group homomorphism f : G −→ G. Then, End(G) a ring under addition

and composition as the multiplication.

In fact, End(G) is a noncommutative ring.
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24.1 Group Rings

Let G = {gi : i ∈ I} be any group, written multiplicatively and R be any
commutative ring.

1. Let R(G) denote the set of all formal sums

∑

i∈I

aigi where ai ∈ R

and only finitely many ai are nonzero.

2. Define addition:

∑

i∈I

aigi +
∑

i∈I

bigi =
∑

i∈I

(ai + bi)gi

3. Define multiplication

(

∑

i∈I

aigi

)(

∑

i∈I

bigi

)

=
∑

i∈I

∑

gjgk=gi

(ajbk) gi

4. Then, R(G) is ring. If G is nnoabelian, then R(G) is noncommutative.
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25 Ordered Rings and Fields

We know that the field of real numbers R has an order realtion ≤. In that
spirit we define ordered rings as follows.

Definition 25.1. An ordered ring R is ring R together with a nonempty

subset P ⊆ R satisfying the following two properties:

1. ∀ a, b ∈ P a+ b ∈ P and ab ∈ P

2. For each a ∈ R, one and only one of the following holds:

a ∈ P, a = 0, −a ∈ P.

The elements in P are called positive elements.

Theorem 25.2. Let R be an ordered ring, with the set P of positive ele-

ments. Let <. read "less than" be the relation defined by

a < b if b− a ∈ P

Such a relation has the following properties ∀ a.b.c ∈ R:

1. (Tricotomy): One and only one of the following holds:

a < b, a = b, b < a.

2. (Transitivity): a < b < c =⇒ a < c.

3. (Isotonicity):

(a) b < c =⇒ a+ b < a+ c

(b) b < c and 0 < a =⇒ ab < ac and ba < ca.
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