Part IX (§45- 47) Factorization

Satya Mandal

University of Kansas, Lawrence KS 66045 USA

January 22

45 Unique Factorization Domain (UFD)

Abstract

We prove evey PID is an UFD. We also prove if D is a UFD, then so is $D[x]$.

Definition 45.1. *Suppose* R *is a commutative ring (as always with unity* 1*).*

- *1. Let* $a, b \in R$ *. If* $b = ac$ *for some* $c \in R$ *, we say that* a **divides** b. In this case, we write $a|b$.
- *2.* An element $u \in R$ is called an unit in R, if it has an inverse in *R*. This is same as saying $a|1$.
- *3. Two elements* $a, b \in R$ *would be called* associatates, if $a = ub$ *for some unit* $u \in R$. (Note, being associates is an equivalence relation.)

4. Assume R *is an integral domain. An nonunit* p ∈ R *is said to be and* irreducible *element, if*

 $p = ab \implies a \text{ or } b \text{ is a unit.}$

Note, if p is irreducible and $q = ub$ for some unit $u \in R$, then q is also irreducible. In other words, if p, q are assocites then p is irreducible if and only if q is irreducible.

Now, we define Unique Factorization domain.

Definition 45.2. *Suppose* D *is an integral domain. We day* D *is an* Unique Factorization domain (UFD)*, if*

- *1. Each nonzero, nonunit element* $a \in D$ *is a product of irreducible elemnets.*
- 2. **(Uniqueness):** *For such a nonzero, nonunit element* $a \in D$ *, if*

 $a = p_1 p_2 \cdots p_r = q_1 q_2 \cdots q_s$ where p_i, q_j are irreducible

then $r = s$ *and* q_j *can be relabeled so that* p_i, q_i *are associates.*

Example 45.3. 1. The ring of integers \mathbb{Z} is a UFD.

2. If F is a field, then the polynomial ring $F[x]$ is a UFD (see theorem 23.20).

We also define principal ideal domain (PID).

Definition 45.4. *An integral domain* D *is said to be a* principal ideal domain (PID), if every ideal is principal (i.e. any ideal $I = Dx$ for some x .)

The goal of this section is prove two theorems:

- 1. Every PID is a UFD,
- 2. If D is a UFD, so is the polynomial ring $D[x]$.

45.1 Every PID is a UFD

Lemma 45.5. Let R be a commutative ring and let

 $I_1 \subseteq I_2 \subseteq I_3 \subseteq \cdots$ is an ascending chain of ideals of R.

Then $I = \bigcup_{i=1}^{\infty} I_i$ is an ideal.

Proof. Let $a, b \in I$. Then, $a \in I_i$ and $b \in I_j$ for some i, j . We can assume $i \leq j$, and hence $a, b \in I_j$. So, $a \pm b \in I_j$, hence $a \pm b \in I$.

Also, if $a \in I$ and $c \in R$, we would like to prove $ca \in I$. First, $a \in I_i$ for some *i*. So, $ca \in I_i$. So, $ca \in I$.

The proof is complete.

Lemma 45.6. *Let* D *be a PID. Let*

 $I_1 \subseteq I_2 \subseteq I_3 \subseteq \cdots$ is an ascending chain of ideals of D.

Then, there is an integer n such that $I_i = I_n$ *for all* $i \geq n$. (We say every ascending chain of ideals terminates. We also say that ascending chain condition (ACC) holds for ideals in D.)

Proof. First, $I = \bigcup_{i=1}^{\infty} I_i$ is an ideal. Since D is a PID, $I = Da$ for some $a \in I$. So, there is an integer n such that $a \in I_n$. So, $I = Da \subseteq I_n$. So, $I_n = I$. Therefore,

$$
I_n = I \subseteq I_r \subseteq I \quad \forall \quad r \ge n. \quad So, I_n = I = I_r \quad \forall \quad r \ge n.
$$

The proof is complete.

Remark. Any ring R that satisfies ACC for ideals is called a Noetherian ring. Noetherian rings are the main focus of higher level algebra courses at KU.

Lemma 45.7. *Let* D *be an integral domain.*

1. For elements $a, b \in D$,

$$
Da \subseteq Bb \qquad \Longleftrightarrow \qquad b|a.
$$

2. For elements $a, b \in D$,

 $Da = Db$ \iff a, b are associates.

Proof. (1) is obvious. For (2), $Da = Db$. Since $a \in Db$, we have $a = \lambda b$ for some $\lambda \in D$. Similarly, $b = \mu a$ for some $\mu \in D$. So,

$$
a = \lambda b = \lambda \mu a
$$
. So, $\lambda \mu = 1$.

So, λ is an unit. Therefore, a, b are associates. The proof is complete. Remark. A lot of properties we studied about the polynomial rings $F[x]$ are also enjoyed by any PID, as follows.

Theorem 45.8 (45.11). *Let D be a PID. For* $a \in D$ *, if* $a \neq 0$ *and not a unit, then* a *is product of irreducible elements in* D*.*

Proof.

Claim: a has an irreducible factor.

If a is irreducible then the claim is established. If a is not irreducible, $a = a_1b_1$, for some nonzero nonunits a_1, b_1 . If one of them is irreducible, then the claim is established. So, assume both are reducible. So,

$$
Da \subset Da_1 \quad and \quad Da \neq Da_1.
$$

Now we apply the same argument to a_1 . Since a_1 is reducible, a_1 = a_2b_2 for or some nonzero nonunits a_2, b_2 . If one of them is irreducible, then the claim is established, because $a = b_1 a_2 b_2$. If both are reducible, this process continues an we have a chain

$$
Da \subset Da_1 \subset Da_2 \cdots
$$

Since ACC for ideals holds in D , this process must terminate. So, a_r is irreducible, and $a = b_1b_2 \cdots b_{r-q}a_r$. So, the claim is established.

Now write $a = p_1 c_1$, where p_1 is irreducible. If c_1 is irreducible, then the proof is complete. If not $c_1 = p_2c_2$, where p_2 is irreducible. This way we get a chain of ideals

$$
Da \subset Dc_1 \subset Dc_2 \cdots
$$

again, since ACC for ideals holds in D , this process must terminate. So, c_k irreducible, for some k and $a = p_1p_2\cdots p_{r-1}c_r$ is a product of irreducible factors. The proof is complete.

Lemma 45.9 (45.12). Let D be a PID and $p \in D$. Then, p is irre*ducible if and only if* Dp *is a maximal ideal.*

Proof. (\Rightarrow): Suppose p is irreducible. Since p is not a unit, $Dp \neq D$. If Dp is not maximal, then there is an ideal I such that $Dp \subset I$ and $Dp \neq I$. Since D is a PID $I = Da$ for some nonunit $a \in D$. Noe $p \in I = Da$. So, $p = ba$ for some b. Since $I \neq Dp$, b is also a nonunit. This contradicts that p is irreducible. This establishes that Dp is maximal.

 (\Leftarrow) : Suppose Dp is maximal. Suppose $p = ab$. Assume a is not an unit. Then $Dp \subseteq Da$. Since Dp is maximal, $Dp = Da$. By the lemma above p, a are associates. So, p is irreducible. The proof is complete.

Theorem 45.10 (45.13). *Suppose* D *is a PID and* $p \in D$ *is an irreducible element.* Now, for $a, b \in D$ we have

$$
p|ab \qquad \Longrightarrow \qquad (p|a \quad or \quad p|b).
$$

Proof. Since p is irreducible, Dp is maximal ideal. So, Dp is a prime ideal. Since $p|ab$ we have $ab = \lambda p \in Dp$. Since Dp is prime, either $a \in Dp$ or $b \in Dp$. Which is same as saying either $p|a$ or $p|b$. The proof is complete.

Corollary 45.11. *Suppose* D *is a PID and* $p \in D$ *is an irreducible element.* For $a_i \in D$ *we have*

 $p|a_1a_2\cdots a_n \qquad \Longrightarrow \qquad p|a_i \quad for \; some \quad i=1,\ldots,n.$

Proof. Use induction. The proof is complete.

Definition 45.12. *Let* R *be an integral domain. A nonzero nonunit* $p \in R$ *is called a* prime element *if for* $a, b \in D$ *we have*

$$
p|ab \qquad \Longrightarrow \qquad (p|a \quad or \quad p|b).
$$

Lemma 45.13. *Let* D *be a PID. Then,*

an element $p \in D$ is irreducible $\iff p$ is prime.

Proof. Suppose p is irreducible. Then, by theorem 45.10, p is prime.

Now suppose p is a prime. Suppose p is not reducible. So, $p = ab$. So, $p|a$ or $p|b$. Without loss of generality, assume $p|a$. So, $a = \lambda p$. So, $p = ab = \lambda pb$. So, $\lambda b = 1$. Hence, b is a unit. The proof is complete.

Following theorem is analogous to theorem 23.20 on polynomial rings $F[x]$.

Theorem 45.14 (45.17). *Suppose* D *is a PID. Then* D *is a UFD.*

Proof. By theorem 45.8, any nonzero element $a \in D$ is product of irreducible element.

The proof of the uniquenss of such factorization is exactly same as that of theorem 23.20. I leave it as an exercise. The proof is complete.

Remark.

- 1. Suppose F is a field F .
	- (a) We proved that the polynomial ring $F[x]$ is a PID.
	- (b) We also proved $F[x]$ is a UFD, independently. The same follows from the above theorem.
	- (c) However, polynomial ring $F[x, y]$ in two indeterminates is not a PID. The ideal $(x, y) := F[x, y]x + F[x, y]y$ is not principal.
- 2. The ring of integers Z is a PID and a UFD.

45.2 If D is a UFD, then so is $D[x]$

We start with the definition of gcd.

Definition 45.15. *Let D be a UFD and* $a_1, a_2, \ldots, a_n \in D$ *. An element* $d \in D$ *is called a* greatest common divisor (gcd, *if*

- *1.* $d|a_i$ *for all* $i = 1, 2, ..., n$ *.*
- 2. If there is another element $c \in D$ such that $c|a_i$ for all $i =$ $1, 2, \ldots, n$, then $c|d$.

Usually, there are more than one gcds for any given $a_1, a_2, \ldots, a_n \in D$. However, if c, d are two gcds of $a_1, a_2, \ldots, a_n \in D$, then

 $c|d$ and $d|c$. So, c, d are associates.

For integers $a_1, a_2, \ldots, a_n \in \mathbb{Z}$ if $d = \gcd(a_1, a_2, \ldots, a_n)$ then so is −d, according to this definition. At high school, the positive gcd is refered to as "the gcd".

45.3 Premitive Polynomial

In §23 discussed when a polynomial with integer coefficients is called primitive. We extend the same as follows.

Definition 45.16. *Suppose* D *is a UFD. A non constant polynomial*

$$
f(x) = a_0 + a_1x + \dots + a_nx^n \in D[x]
$$

is called premitive *if*

$$
gdc(a_0, a_1, \ldots, a_n) = 1.
$$

Lemma 45.17 (45.22). *Suppose* D *is a UFD and*

 $f(x) = a_0 + a_1x + \cdots + a_nx^n \in D[x]$ be a polynomial.

Then

- *1.* Definition: $c = \gcd(a_0, a_1, \ldots, a_n)$ *is called the* content of f. *The content is unique only upto associates.*
- 2. $f(x) = cg(x)$ *where* $g(x) \in D[x]$ *is a primitive polynomial.*

Proof. Obvious.

The following is an analogue of a theorem (not in the textboo; but I did) in §23 on polynomials with integer coefficients.

Lemma 45.18 (45.25 Gauss Lemma). *Suppose* D *is a UFD. Then the product of two premitive polynomial in* D[x] *is primitive.*

Proof. (*It will exactly same as that in §23. I will copy and paste.*) Write

$$
f(x) = a_0 + a_1x + \dots + a_nx^n
$$
 and $g(x) = b_0 + b_1x + \dots + b_mx^m$

where $a_i, b_j \in D$. Suppose $p \in D$ is an irreducible element. We will show p does not divide some coefficient of $f(x)g(x)$. Since f is primitive p does not divide some coefficient of f. Let a_i be the first one:

$$
p|a_0, p|a_1, \ldots, p|a_{j-1}, p \nmid a_j.
$$

Similarly, there is a k such that

$$
p|b_0, p|b_1, \ldots, p|b_{k-1}, p \not| b_k.
$$

Now, coefficient c_{j+k} of x^{j+k} in $f(x)g(x)$ is give by c_{j+k}

 $a_j b_k + (a_{j+1}b_{k-1}+a_{j+2}b_{k-2}+\cdots+a_{j+k}b_0) + (a_{j-1}b_{k+1}+a_{j-2}b_{k+2}+\cdots+a_0b_{j+k})$

Now, p $a_j b_k$ and all the other terms are divisible by p. So, p c_{j+k} . The proof is complete.

Corollary 45.19. *Suppose* D *is a UFD. Then product of finitely many premitive polynomials in* D[x] *is primitive.*

Proof. Use Induction.

Before we proceed, let me remind you again, for a field F , the polynomial ring $F[x]$ is a UFD (in fact a PID).

Lemma 45.20 (45.27). *Let* D *be a UFD and* F *be the field of fractions of* D. Let $f(x) \in D[x]$ *be a nonconstant polynomial.*

- *1. If* $f(x)$ *is irreducible in* $D[x]$ *, then* $f(x)$ *is also irreducible in* $F[x]$ *.*
- 2. If $f(x)$ is premitive in $D[x]$ and is irreducible in $F[x]$, then $f(x)$ *is irreducible in* D[x]*.*

Proof. To prove the first point, assume $f(x)$ is irreducible in $D[x]$. Now suppose

$$
f(x) = r(x)s(x) \quad where \ r(x), s(x) \in F[x]; \ \deg(r) < \deg(f), \ \deg(s) < \deg(f).
$$

We do the process of "clearing denominators" as follows: Write

$$
r(x) = \frac{a_0 + a_1 x + a_2 x^2 + \dots + a_t x^t}{d_1} = \frac{r_1(x)}{d_1} = \frac{c_1 r_2(x)}{d_1}
$$

where $a_i, d_1 \in D$ and r_1 is the numerator, $c_1 = content(r_1)$ and r_2 is a primitive polynomial. Similarly,

$$
s(x) = \frac{c_2 s_2(x)}{d_2} \quad where \ c_2, d_2 \in D, \quad s_2(x) \in D[x] \quad is \ primitive.
$$

Write $f(x) = cg(x)$, where $c = content(f)$ and g is primitive. So, we have

$$
f(x) = cg(x) = r(x)s(x) = \frac{(c_1c_2)r_2(x)s_2(x)}{d_1d_2}
$$

or

$$
(cd1d2)g(x) = (c1c2)(r2(x)s2(x)).
$$

Since $2(x)$, $s_2(x)$ are primitive, so is the product $r_2(x)s_2(x)$. Since the content of two sides must be associates,

$$
c_1c_2 = ucd_1d_2
$$
 for some unit $u \in D$.

There fore

$$
(cd_1d_2)g(x) = (ucd_1d_2)(r_2(x)s_2(x)). \t or \t f(x) = cg(x) = ucr_2(x)s_2(x).
$$

So, we have shown that $f(x)$ is has a nontrivial factorization in $D[x]$, which contradicts the hypothesis. So, $f(x)$ is irreducible in $F[x]$. This completes the proof of (1).

Remark. *In fact,* f(x) *factors in to polynomials of same degree in* $D[x]$ *.*

To prove (2), assume that f is primitive and irreducible in $F[x]$. Let $f(x) = r(x)s(x)$ be non trivial factorization in $F[x]$. Since f is primitive, neither r nor s are constant (in fact both are premitive. This means $0 < \deg(r) < \deg(f)$, $0 < \deg(s) < \deg(f)$. So, $f(x)$ factors into two polynomials of degree less than $\deg(f)$ in $F[x]$, which is a contradiction. The proof is complete.

Corollary 45.21 (45.28). *Suppose* D *is a UFD and* F *is the field of its fractions.* Let $f(x) \in D[x]$ *be a nonconstant polynomial. Suppose*

$$
f(x) = r(x)s(x)
$$
 for some $r, s \in F[x]$ with $\deg(r) < \deg(f), \deg(s) < \deg(f)$.

Then

 $f(x) = r_1(x)s_1(x)$ for some $r_1, s_1 \in D[x]$ with $\deg(r_1) = \deg(r), \deg(s_1) = \deg(s)$.

Proof. See the remark in the proof of 45.20.

Before we state our main theorem, I want to settle *Who are the irreducible elements in* D[x]*.*

Lemma 45.22 (Extra). *Let* D *be a UFD.*

- 1. Suppose $p \in D$ *is irreducible in* D. Then, p *is irreducible in* $D[x]$ *.*
- 2. Let F be the field of fractions of D. Suppose $f(x) \in D[x]$ with $deg(f) > 0$ *. Then, f is irreducible in* $D[x]$ *if and only if* f *is premitive and* f *is irreducible in* F[x]*.*

Proof. Suppose $p \in D$ is irreducible. If p has a nontrivial factorization in $D[x]$, by degree comparison, factor must be constants. So, that will give a nontrivial factorization of p in D. So, p is irreducible in $D[x]$.

To prove (2), first suppose f is irreducible in $D[x]$. Write $f(x) =$ $cg(x)$ where $c = content(f) \in D$ and g is premitive. If c is nonunit, then $f(x) = cg(x)$ is a nontrivial factorization. So, c is a unit. This means f is premitive.

Now if $f(x)$ has a nontrivial factorization in $F[x]$, it factors into polynomials of smaller degree. By (45.21) , then f will also factors into polynomials of smaller degree in $D[x]$. Which would contradicts the hypothesis. So, f is irreducible in $F[x]$.

Now, we prove the converse. Suppose f is premitive and f is irreducible in $F[x]$. Suppose $f(x) = r(x)s(x)$ be a nontrivial factorization of f in $D[x]$. Since f is premitive, $r(x)$, $s(x)$ are nonconstant polynomials. So, $f(x) = r(x)s(x)$ is a nontrivial factorization of f in $F[x]$. This would be a contradicts the hypothesis. So, f is irreducible in $D[x]$.

The proof is complete.

Theorem 45.23 (45p29). *Suppose* D *is a UFD. Then, the polynomial ring* D[x] *is a UFD.*

Proof. (Existance of factorization): Suppose $f \in D[x]$ be nonunit. Write $f(x) = cg(x)$ where $c = content(f) \in D$ and g is a premitive polynomials. Since D is UFD

$$
c=p_1p_2\cdots p_m
$$

where $p_i \in D$ is irreducible in D and hence irreducible in $D[x]$.

Again, let F be the field of fractions of F. Since $F[x]$ is a UFD

$$
g(x) = q_1(x)q_2(x)\cdots q_n(x)
$$

where q_i are irreducible in $F[x]$. By (45.21),

$$
g(x) = P_1(x)P_2(x)\cdots P_n(x) \qquad P_i \in D[x] \quad and \quad \deg(P_i) = \deg(q_i).
$$

Since g is premitive, P_i are premitive. By uniqueness of factorization in $F[x]$, P_i , q_i are associates. So, P_i is irreducible in $F[x]$. By (45.22), P_i are irreducible in $D[x]$. So,

$$
f(x) = cg(x) = p_1p_2\cdots p_mP_1(x)P_2(x)\cdots P_n(x)
$$

is a factorization of $f(x)$ in to irreducible elements in $D[x]$.

Uniqueness of Factorization: Let $f(x) = cg(x) \in D[x]$ where $c =$ $content(f)$ and g is premitive. Suppose

$$
f(x) = p_1 p_2 \cdots p_m P_1(x) P_2(x) \cdots P_n(x) = q_1 q_2 \cdots q_s Q_1(x) Q_2(x) \cdots Q_r(x)
$$

where $p_i, q_i \in D$ are irreducible and $P_i, Q_i \in D[x]$ are irreducible polynomials of positive degree.

Comparing contents

$$
c = up_1p_2\cdots p_m = vq_1q_2\cdots q_s
$$

for some units u, v . Since D is a UFD, after relabeling (and adjusting the units), we have $m = s$ and $p_i = q_i$.

So, we have

$$
g(x) = P_1(x)P_2(x) \cdots P_n(x) = Q_1(x)Q_2(x) \cdots Q_r(x).
$$

Since $g(x)$ is premitive, P_i, Q_i are premitive. So, P_i, Q_i are irreducible in F[x]. Since F[X] is a UFD, $r = m$ and after relabeling, $P_i = \frac{a_i}{b_i}$ $\frac{a_i}{b_i}Q_i,$ where $a_i, b_i \in D$. So, $b_i P_i = a_i Q_i$. Comparing contents, $b_i = u_i a_i$. So, $u_i a_i P_i = a_i Q_i$. or $u_i P_i = Q_i$. So, P_i, Q_i are associates.

The proof is complete.

Corollary 45.24 (45.30). Let F be a field and x_1, \ldots, x_n be indeter*minates. Then the polynomial ring* $F[x_1, \ldots, x_n]$ *is a UFD.*

Proof. Inductively, $F[x_1, \ldots, x_r] = F[x_1, \ldots, x_{r-1}][x_r]$ is a UFD, by thoerem 45.23.

Exercise 45.25. Let F be a field and $R = F[x, y]$ be the polynomial *ring. Prove that the ideal* $(x, y) := Rx + Ry$ *is not principal.*

46 Euclidain Domain

Intuitively, a Euclidian Domain is a commutative ring where Division Algorithm works. We prove any Euclidian Domain is a PID.

Definition 46.1 (46.1). *A* Euclidian norm *on an integral domain* D *is a function*

$$
\nu:D\setminus\{0\}\longrightarrow\{0,1,2,3,\ldots\}
$$

such that

1. For $a, b \in D$ with $b \neq 0$, there exist $q, r \in D$ such that

 $a = bq + r$ where $r = 0$ or $\nu(r) < \nu(b)$.

2. For $a, b \in D$ *, where* $a \neq 0, b \neq 0$ *, we have*

$$
\nu(a) \le \nu(ab).
$$

An integral domain with an Euclidian norm is called a Euclidian domain*.*

- **Example 46.2.** 1. For $n \in \mathbb{Z}$ and $n \neq 0$ define $\nu(n) = |n|$. Then, ν is an Euclidian norm on $\mathbb Z$. So, $\mathbb Z$ is an Euclidian domain.
	- 2. Let F be a field and $F[x]$ be the polynomial ring. For $f \in F[x]$ and $f \neq 0$ define $\nu(n) = \deg(f)$. Then, ν is an Euclidian norm on $F[x]$. So, $F[x]$ is an Euclidian domain.

Theorem 46.3 (46.4). *Every Euclidean domain* D *is a PID.*

Proof. Let D be an Euclidean domain with Euclidean norm ν . Let I is an ideal. We will prove that I is principal. If $I = \{0\}$, then it is principal. So, assume I has nonzero elements. Let

$$
n = \min\{\nu(x) : x \in I, x \neq 0\}.
$$

Let $b \in I$ be such that $\nu(b) = n$. We will prove $I = Db$ (*We follow the same argument we used for polynomial rings.*)

Since $b \in D$, we have $Rb \subseteq I$. Now, let $a \in I$.

$$
a = bq + r \quad where \quad r = 0 \quad or \quad \nu(r) < \nu(b).
$$

But $r = a - bq \in I$. So, by minimality of $\nu(b)$, we have $r = 0$. So, $a = bq \in Db$. So, $I = Db$. The proof is complete.

Corollary 46.4. *Every Euclidean domain* D *is a UFD.*

Proof. By above theorem O is a PID, hence a UFD.

46.1 Units in Euclidean Domains

Theorem 46.5 (46.6). *Let* D *be an Euclidean domain with Euclidean norm* ν*.*

1. Then,

$$
\nu(1) = \min \{ \nu(x) : x \in D, x \neq 0 \}.
$$

2. For $u \in D$ *we have*

$$
u \quad \text{is a unit} \Longleftrightarrow \nu(u) = \nu(1).
$$

Proof. (1) follows from the second property of nu as follows:

 $\forall a \in D, a \neq 0 \qquad \nu(1) \leq \nu(1a) = \nu(a).$

To prove (2) suppose $u \in D$ is a unit. Then,

$$
\nu(1) \le \nu(u) \le \nu(uu^{-1}) = \nu(1). \qquad So \quad \nu(u) = \nu(1).
$$

Conversely, suppose $\nu(1) = \nu(u)$. Se divide ! by u, we have

$$
1 = uq + r
$$
 for some $q, r \in D$ $\ni r = 0$ or $\nu(r) < \nu(u)$.

Since $\nu(u) = \nu(1)$ is minimum, $r = 0$. So, $1 = uq$. So, u is a unit. The proof is complete.

Theorem 46.6 (46.9). *(*Euclidean Algorithm*): Suppose* D *is an* $Euclidean domain.$ Then the Euclidean Algorithm of computing $gcd(a, b)$ *by long division works.*

Proof. Exercise/skip.

47 Gaussian Integers

Definition 47.1. A complex numbers $a + bi$ with $a, b \in \mathbb{Z}$ is called a Gaussian Integer.

- 1. The set $\mathbb{Z} + \mathbb{Z}i$ of all Gaussian Integers forms anintegral domain.
- 2. For $x = a + bi \in \mathbb{Z} + \mathbb{Z}i$ define

$$
N(x) = a^2 + b^2.
$$

This function N will be called a/the norm on $\mathbb{Z}+\mathbb{Z}i$. N has the following properties: For $x,y\in\mathbb{Z}+\mathbb{Z}i$

(a) $N(x) \geq 0$ (b) $n(x) = 0 \qquad \Longleftrightarrow \qquad x = 0$ (c)

$$
N(xy) = N(x)N(y).
$$

3.

Theorem 47.2 (47.4). N *is an Euclidean norm.* Proof. skip.