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45 Unique Factorization Domain (UFD)

Abstract

We prove evey PID is an UFD. We also prove if D is a UFD, then
so is D[z].

Definition 45.1. Suppose R is a commutative ring (as always with
unity 1).
1. Leta,b e R. If b= ac for some c € R, we say that a divides b.

In this case, we write alb.
2. An element u € R is called an unit in R, if it has an inverse in
R. This is same as saying a|l.

3. Two elements a,b € R would be called associatates, if a = ub
for some unit u € R. (Note, being associates is an equivalence

relation.)



4. Assume R is an integral domain. An nonunit p € R is said to be

and irreducible element, if
p=ab = a or b isa unit.

Note, if p is irreducible and ¢ = ub for some unit v € R, then ¢
is also irreducible. In other words, if p,q are assocites then p is

irreducible if and only if ¢ is irreducible.
Now, we define Unique Factorization domain.

Definition 45.2. Suppose D is an integral domain. We day D is an
Unique Factorization domain (UFD), if

1. Each nonzero, nonunit element a € D is a product of irreducible

elemnets.

2. (Uniqueness): For such a nonzero, nonunit element a € D, if
a=pip2---Pr =qi1q2---qs where p;,q; are irreducible

then r = s and qj can be relabeled so that p;,q; are associates.

Example 45.3. 1. The ring of integers Z is a UFD.

2. If F is a field, then the polynomial ring F[z] is a UFD (see
theorem 23.20).

We also define principal ideal domain (PID).

Definition 45.4. An integral domain D is said to be a principal
ideal domain (PID), if every ideal is principal (i.e. any ideal I = Dz
for some z.)

The goal of this section is prove two theorems:

1. Every PID is a UFD,

2. If D is a UFD, so is the polynomial ring D[x].



45.1 Every PID is a UFD

Lemma 45.5. Let R be a commutative ring and let
I1 C b, CI3C--- isan ascending chain of ideals of R.
Then I = U2, 1; is an ideal.

Proof. Let a,b € I. Then, a € I; and b € I; for some 7,j. We can
assume ¢ < j, and hence a,b € I;. So, a£b¢€ I;, hence a £ b€ 1.

Also, if a € I and ¢ € R, we would like to prove ca € I. First,
a € I; for some i. So, ca € I;. So, ca € I.

The proof is complete. ]

Lemma 45.6. Let D be a PID. Let
L CILhb, CI3C--- isan ascending chain of ideals of D.

Then, there is an integer n such that I; = I, for all i > n. (We say
every ascending chain of ideals terminates. We also say that ascending
chain condition (ACC) holds for ideals in D.)

Proof. First, I = U2, I; is an ideal. Since D is a PID, I = Da for some
a € I. So, there is an integer n such that a € I,,. So, I = Da C I,.
So, I, = I. Therefore,

I,=I1CI.CI V r>n. Sol,=1=1. V r>n.

The proof is complete. [
Remark. Any ring R that satisfies ACC for ideals is called a Noethe-
rian ring. Noetherian rings are the main focus of higher level algebra
courses at KU.

Lemma 45.7. Let D be an integral domain.

1. For elements a,b e D,

Da C Bb = bla.



2. For elements a,b € D,

Da = Db = a,b are associates.

Proof. (1) is obvious. For (2), Da = Db. Since a € Db, we have
a = Ab for some A € D. Similarly, b = pa for some u € D. So,

a=Ab=Apa. So, Au=1.

So, A is an unit. Therefore, a, b are associates. The proof is complete.m
Remark. A lot of properties we studied about the polynomial rings

F[z] are also enjoyed by any PID, as follows.

Theorem 45.8 (45.11). Let D be a PID. For a € D, if a # 0 and not

a unit, then a is product of irreducible elements in D.

Proof.
Claim: a has an irreducible factor.

If a is irreducible then the claim is established. If a is not irre-
ducible, a = a1b;, for some nonzero nonunits aq,b;. If one of them
is irreducible, then the claim is established. So, assume both are re-
ducible. So,

Da C Da; and Da # Da;.

Now we apply the same argument to a;. Since a; is reducible, a; =
asby for or some nonzero nonunits as, bs. If one of them is irreducible,
then the claim is established, because a = byasbs. If both are reducible,

this process continues an we have a chain
Da C Day; C Dasy - --

Since ACC for ideals holds in D, this process must terminate. So, a,

is irreducible, and a@ = b1by - - - b,_g4a,. So, the claim is established.
Now write a = picy, where pp is irreducible. If ¢; is irreducible,

then the proof is complete. If not ¢; = paca, where po is irreducible.

This way we get a chain of ideals

Da C Dey C Dey---
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again, since ACC for ideals holds in D, this process must terminate.
So, ¢ irreducible, for some k£ and a = pips-- - pr_1¢, is a product of

irreducible factors. The proof is complete. [

Lemma 45.9 (45.12). Let D be a PID and p € D. Then, p is irre-

ducible if and only if Dp is a mazimal ideal.

Proof. (=): Suppose p is irreducible. Since p is not a unit, Dp # D.
If Dp is not maximal, then there is an ideal I such that Dp C I and
Dp # 1. Since D is a PID I = Da for some nonunit a € D. Noe
p € I = Da. So, p = ba for some b. Since I # Dp, b is also a
nonunit. This contradicts that p is irreducible. This establishes that
Dp is maximal.

(«<): Suppose Dp is maximal. Suppose p = ab. Assume a is not an
unit. Then Dp C Da. Since Dp is maximal, Dp = Da. By the lemma

above p, a are associates. So, p is irreducible. The proof is complete.m.

Theorem 45.10 (45.13). Suppose D is a PID and p € D is an irre-

ducible element. Now, for a,b € D we have
plab — (pla or plb).

Proof. Since p is irreducible, Dp is maximal ideal. So, Dp is a prime
ideal. Since plab we have ab = Ap € Dp. Since Dp is prime, either
a € Dp or b € Dp. Which is same as saying either p|a or p|b. The

proof is complete. [

Corollary 45.11. Suppose D is a PID and p € D is an irreducible

element. For a; € D we have
plajas - -ay = pla; for some i=1,...,n.
Proof. Use induction. The proof is complete. [

Definition 45.12. Let R be an integral domain. A nonzero nonunit

p € R is called a prime element if for a,b € D we have

plab = (pla or plb).



Lemma 45.13. Let D be a PID. Then,
an element p € D is irreducible <= p is prime.

Proof. Suppose p is irreducible. Then, by theorem 45.10, p is prime.
Now suppose p is a prime. Suppose p is not reducible. So, p = ab.
So, pla or p|b. Without loss of generality, assume pla. So, a = Ap. So,
p = ab = Apb. So, \b = 1. Hence, b is a unit. The proof is complete.m
Following theorem is analogous to theorem 23.20 on polynomial

rings F[x].
Theorem 45.14 (45.17). Suppose D is a PID. Then D is a UFD.

Proof. By theorem 45.8, any nonzero element a € D is product of
irreducible element.
The proof of the uniquenss of such factorization is exactly same as

that of theorem 23.20. I leave it as an exercise. The proof is complete.m
Remark.
1. Suppose F'is a field F.

(a) We proved that the polynomial ring F[x] is a PID.
(b) We also proved F[z] is a UFD, independently.

The same follows from the above theorem.

(c) However, polynomial ring F[z,y] in two indeterminates is
not a PID. The ideal (z,y) := F[z,y]lx + F[z,yly is not

principal.

2. The ring of integers Z is a PID and a UFD.



45.2 If D is a UFD, then so is D[x]

We start with the definition of ged.

Definition 45.15. Let D be a UFD and ay,as,...,a, € D. An ele-

ment d € D is called a greatest common divisor (ged, if
1. d|a; for alli=1,2,...,n.

2. If there is another element ¢ € D such that cla; for all i =
1,2,...,n, then c|d.

Usually, there are more than one geds for any given a1, as,...,a, € D.

However, if ¢, d are two geds of a1, a9, ...,a, € D, then
cld and dlc. So, ¢, d areassociates.

For integers aq,as,...,a, € Z if d = gcd(aq,as, ..., a,) then so is
—d, according to this definition. At high school, the positive ged is
refered to as "the ged".

45.3 Premitive Polynomial

In §23 discussed when a polynomial with integer coefficients is called

primitive. We extend the same as follows.

Definition 45.16. Suppose D is a UFD. A non constant polynomial
f(z) =ap+ a1z + -+ apz" € D[z]
is called premitive if
gdc(ag,a,...,a,) = 1.
Lemma 45.17 (45.22). Suppose D is a UFD and
f(z)=ap+a1z+ -+ apz™ € Diz] be a polynomial.

Then



1. Definition: ¢ = ged(ag,a,...,a,) is called the content of f.

The content is unique only upto associates.
2. f(x) = cg(z) where g(x) € D[z] is a primitive polynomial.

Proof. Obvious. u
The following is an analogue of a theorem (not in the textboo; but

I did) in §23 on polynomials with integer coefficients.

Lemma 45.18 (45.25 Gauss Lemma). Suppose D is a UFD. Then the

product of two premitive polynomial in D|x] is primitive.

Proof. (It will exactly same as that in §23. I will copy and paste.)
Write

f@)=ap+arz+--+az™ and g(x) = by + bz + -+ bpa™

where a;,b; € D. Suppose p € D is an irreducible element. We will
show p does not divide some coefficient of f(x)g(x). Since f is primi-

tive p does not divide some coefficient of f. Let a; be the first one:

p‘a()?p’alv s 7p|aj—17p /{/a]

Similarly, there is a k such that

p|bﬂap|b17 s 7p|bk—lap /rbk'
Now, coefficient ¢;; of /7% in f(z)g(z) is give by cj 1k =
ajbr+(aji1bp—1+aj2bp_o+- - -+ajyrbo)+(aj_1bpy1+ajobgyot- - -+aobjir)

Now, p fa;jb; and all the other terms are divisible by p. So, p fcjtk.
The proof is complete. ]

Corollary 45.19. Suppose D is a UFD. Then product of finitely many

premitive polynomials in D[x] is primitive.

Proof. Use Induction. [
Before we proceed, let me remind you again, for a field F', the
polynomial ring F[z] is a UFD (in fact a PID).
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Lemma 45.20 (45.27). Let D be a UFD and F be the field of fractions
of D. Let f(z) € D[x] be a nonconstant polynomial.

1. If f(x) is irreducible in D[z], then f(x) is also irreducible in F|x].
2. If f(x) is premitive in D[z] and is irreducible in F[z], then f(x)
is irreducible in D[z].
Proof. To prove the first point, assume f(z) is irreducible in D[x].
Now suppose

f(x) =r(z)s(x) where r(x),s(x) € Flz]; deg(r) < deg(f), deg(s) < deg(f).

We do the process of "clearing denominators" as follows: Write

ap + a1z + agz? + -+ axt () | ara(a)

r(z) = d dy dy

where a;,d; € D and r; is the numerator, ¢; = content(r1) and ry is

a primitive polynomial. Similarly,

s(z) = C2S;(x) where ca,dp € D, so(x) € D[x] is primitive.
2
Write f(x) = cg(z), where ¢ = content(f) and ¢ is primitive. So, we
have
) = cyl) = ria)s(a) = (2e20020)
dids
or

(cdida)g(z) = (c1c2)(r2(x)s2()).

Since 2(x), so(x) are primitive, so is the product r2(z)sa(z). Since the

content of two sides must be associates,
c1¢9 = ucdids for some unit w € D.

There fore

(cdida)g(x) = (ucdida)(ra(x)se(x)). or f(z) = cg(x) = ucra(z)sa(x).



So, we have shown that f(x) is has a nontrivial factorization in D[x],
which contradicts the hypothesis. So, f(x) is irreducible in F[z|. This
completes the proof of (1).

Remark. In fact, f(z) factors in to polynomials of same degree in
Dlz].

To prove (2), assume that f is primitive and irreducible in F[z].
Let f(z) = r(x)s(z) be non trivial factorization in F'[x]. Since f is
primitive, neither r nor s are constant (in fact both are premitive. This
means 0 < deg(r) < deg(f),0 < deg(s) < deg(f). So, f(x) factors
into two polynomials of degree less than deg(f) in F[z], which is a

contradiction. The proof is complete. [

Corollary 45.21 (45.28). Suppose D is a UFD and F is the field of

its fractions. Let f(x) € D[x] be a nonconstant polynomial. Suppose

f(z) =r(z)s(x) for some r,s € Flx] with deg(r) < deg(f),deg(s) < deg(f).

-
—~
8
S~—r
I

ri(xz)s1(z) for some ri,s1 € D[z] with deg(r1) = deg(r), deg(s1) = deg(s).

Proof. See the remark in the proof of 45.20. [

Before we state our main theorem, I want to settle Who are the

irreducible elements in D|x].

Lemma 45.22 (Extra). Let D be a UFD.
1. Suppose p € D is irreducible in D. Then, p is irreducible in D|x].

2. Let F be the field of fractions of D. Suppose f(x) € D[x] with
deg(f) > 0. Then, f is irreducible in D[z] if and only if f is

premitive and f is irreducible in F[z].

Proof. Suppose p € D is irreducible. If p has a nontrivial factorization
in D[z], by degree comparison, factor must be constants. So, that will

give a nontrivial factorization of p in D. So, p is irreducible in D[z].
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To prove (2), first suppose f is irreducible in D[z]. Write f(z) =
cg(x) where ¢ = content(f) € D and g is premitive. If ¢ is nonunit,
then f(x) = cg(x) is a nontrivial factorization. So, ¢ is a unit. This
means [ is premitive.

Now if f(x) has a nontrivial factorization in F[z], it factors into
polynomials of smaller degree. By (45.21), then f will also factors into
polynomials of smaller degree in D[z]. Which would contradicts the
hypothesis. So, f is irreducible in F[z].

Now, we prove the converse. Suppose f is premitive and f is irre-
ducible in F[z]|. Suppose f(x) = r(x)s(z) be a nontrivial factorization
of fin Diz]. Since f is premitive, r(x), s(z) are nonconstant polyno-
mials. So, f(x) = r(x)s(x) is a nontrivial factorization of f in Flx].
This would be a contradicts the hypothesis. So, f is irreducible in
Dix].

The proof is complete. ]

Theorem 45.23 (45p29). Suppose D is a UFD. Then, the polynomial
ring D]x] is a UFD.

Proof. (Existance of factorization): Suppose f € D[z]| be nonunit.
Write f(z) = cg(x) where ¢ = content(f) € D and ¢ is a premitive
polynomials. Since D is UFD

C=DPi1pP2 " Pm

where p; € D is irreducible in D and hence irreducible in D]z].
Again, let F' be the field of fractions of F. Since F[z] is a UFD

9(z) = q1()q2(z) - - - qn (@)
where ¢; are irreducible in F[z]. By (45.21),
g(z) = Pi(x)Po(x) -+ - Pp(x) P, € Diz] and deg(P;) = deg(g;).

Since g is premitive, P; are premitive. By uniqueness of factorization
in Flz], P;, g are associates. So, P; is irreducible in F[x]. By (45.22),
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P; are irreducible in D[z]. So,

f(@) = cg(x) = pip2 - - pmPr(2) Pa(2) - - Po ()

is a factorization of f(x) in to irreducible elements in D[z].
Uniqueness of Factorization: Let f(z) = cg(x) € D[z] where ¢ =

content(f) and g is premitive. Suppose

f(x) =pip2- - pmPL(x)Po(x) - - Po(x) = 1q2 - - - ¢sQ1(2)Q2(2) - - - Qp ()

where p;, g;, € D are irreducible and P;, ; € D[z] are irreducible poly-
nomials of positive degree.

Comparing contents

C=Upip2 - Pm = Vq142 " (qs

for some units u,v. Since D is a UFD, after relabeling (and adjusting
the units), we have m = s and p; = ¢;.

So, we have

9(x) = Pr(x)Po(z) - - Po() = Qu(2)Q2(2) - - - Qr().

Since g(z) is premitive, P;, ; are premitive. So, P;, Q); are irreducible
in Flz]. Since F[X] is a UFD, r = m and after relabeling, P; = @,
where a;,b; € D. So, b; P; = a;Q;. Comparing contents, b; = u;a;. So,
w;a; Py = a;Q;. or u; P, = @Q;. So, P;,(Q); are associates.

The proof is complete. [

Corollary 45.24 (45.30). Let F be a field and x1,...,x, be indeter-

minates. Then the polynomial ring Flx1,...,xy,] is a UFD.

Proof. Inductively, Flxi,...,z,] = Flz1,...,z,—1][z,] is a UFD, by
thoerem 45.23.

Exercise 45.25. Let F' be a field and R = F[z,y| be the polynomial
ring. Prove that the ideal (x,y) := Rx + Ry is not principal.
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46 FEuclidain Domain

Intuitively, a Fuclidian Domain is a commutative ring where Division

Algorithm works. We prove any Fuclidian Domain is a PID.

Definition 46.1 (46.1). A Euclidian norm on an integral domain
D is a function

v:D\ {0} — {0,1,2,3,...}
such that

1. Fora,b e D with b # 0, there exist q,r € D such that
a=>bg+r where r=0 or v(r)<uv(b).
2. Fora,be D, where a # 0,b # 0, we have
v(a) < v(ab).

An integral domain with an Euclidian norm is called a Euclidian do-

main.

Example 46.2. 1. For n € Z and n # 0 define v(n) = |n|. Then,

v is an Euclidian norm on Z. So, Z is an Euclidian domain.

2. Let F be a field and F[z] be the polynomial ring. For f € F[x]
and f # 0 define v(n) = deg(f). Then, v is an Euclidian norm

on F[z]. So, F[x] is an Euclidian domain.
Theorem 46.3 (46.4). Every Euclidean domain D is a PID.

Proof. Let D be an Euclidean domain with Euclidean norm v. Let
I is an ideal. We will prove that I is principal. If I = {0}, then it is

principal. So, assume I has nonzero elements. Let
n =min{v(z): x € I,z # 0}.

Let b € I be such that v(b) = n. We will prove I = Db (We follow the

same argument we used for polynomial rings.)
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Since b € D, we have Rb C I. Now, let a € I.
a=bqg+r where r=0 or v(r)<uv(b).

But r = a — bg € I. So, by minimality of v(b), we have r = 0. So,
a =bqg € Db. So, I = Db. The proof is complete. [

Corollary 46.4. Every Euclidean domain D is a UFD.

Proof. By above theorem O is a PID, hence a UFD. [

46.1 Units in Euclidean Domains

Theorem 46.5 (46.6). Let D be an Euclidean domain with Euclidean

norm v.

1. Then,
v(1l) = min{v(x) : x € D,z # 0}.

2. For u € D we have
u is a unit <= v(u) = v(1).
Proof. (1) follows from the second property of nu as follows:
VaecD,a#0 v(l) <v(la) =v(a).
To prove (2) suppose u € D is a unit. Then,
v(1) < v(u) < v(uwu™t) =v(l). So v(u)=v(1).

Conversely, suppose (1) = v(u). Se divide ! by u, we have

l=wuqg+r for some gore D > r=0 or v(r)<vu).

Since v(u) = v(1) is minimum, » = 0. So, 1 = ug. So, u is a unit. The

proof is complete. [

Theorem 46.6 (46.9). (Euclidean Algorithm): Suppose D is an
Euclidean domain. Then the Euclidean Algorithm of computing gcd(a, b)

by long division works.

Proof. Exercise/skip.
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47 (Gaussian Integers

Definition 47.1. A complex numbers a + bi with a,b € Z is called a
Gaussian Integer.

1. The set Z + Z¢ of all Gaussian Integers forms anintegral domain.

2. For x = a+ bi € Z + Zi define
N(z) = a® +b°.

This function N will be called a/the norm on Z+ Zi. N has the
following properties: For z,y € Z + Zi

(a) N(z) >0
(b)
()

Theorem 47.2 (47.4). N is an Euclidean norm.
Proof. skip.
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