Part IX (§45- 47) Factorization

Satya Mandal

University of Kansas, Lawrence KS 66045 USA

January 22

45 Unique Factorization Domain (UFD)

Abstract

We prove every PID is an UFD. We also prove if D is a UFD, then so is D[x].

Definition 45.1. Suppose R is a commutative ring (as always with unity 1).

- 1. Let $a, b \in R$. If b = ac for some $c \in R$, we say that a divides b. In this case, we write a|b.
- An element u ∈ R is called an unit in R, if it has an inverse in R. This is same as saying a|1.
- 3. Two elements $a, b \in R$ would be called associatates, if a = ub for some unit $u \in R$. (Note, being associates is an equivalence relation.)

4. Assume R is an integral domain. An nonunit $p \in R$ is said to be and **irreducible** element, if

 $p = ab \implies a \quad or \quad b \quad is \ a \ unit.$

Note, if p is irreducible and q = ub for some unit $u \in R$, then q is also irreducible. In other words, if p, q are assocites then p is irreducible if and only if q is irreducible.

Now, we define Unique Factorization domain.

Definition 45.2. Suppose D is an integral domain. We day D is an Unique Factorization domain (UFD), if

- 1. Each nonzero, nonunit element $a \in D$ is a product of irreducible elements.
- 2. (Uniqueness): For such a nonzero, nonunit element $a \in D$, if

 $a = p_1 p_2 \cdots p_r = q_1 q_2 \cdots q_s$ where p_i, q_j are irreducible

then r = s and q_j can be relabeled so that p_i, q_i are associates.

Example 45.3. 1. The ring of integers \mathbb{Z} is a UFD.

2. If F is a field, then the polynomial ring F[x] is a UFD (see theorem 23.20).

We also define principal ideal domain (PID).

Definition 45.4. An integral domain D is said to be a **principal** ideal domain (PID), if every ideal is principal (i.e. any ideal I = Dxfor some x.)

The goal of this section is prove two theorems:

- 1. Every PID is a UFD,
- 2. If D is a UFD, so is the polynomial ring D[x].

45.1 Every PID is a UFD

Lemma 45.5. Let R be a commutative ring and let

 $I_1 \subseteq I_2 \subseteq I_3 \subseteq \cdots$ is an ascending chain of ideals of R.

Then $I = \bigcup_{i=1}^{\infty} I_i$ is an ideal.

Proof. Let $a, b \in I$. Then, $a \in I_i$ and $b \in I_j$ for some i, j. We can assume $i \leq j$, and hence $a, b \in I_j$. So, $a \pm b \in I_j$, hence $a \pm b \in I$.

Also, if $a \in I$ and $c \in R$, we would like to prove $ca \in I$. First, $a \in I_i$ for some *i*. So, $ca \in I_i$. So, $ca \in I$.

The proof is complete.

Lemma 45.6. Let D be a PID. Let

 $I_1 \subseteq I_2 \subseteq I_3 \subseteq \cdots$ is an ascending chain of ideals of D.

Then, there is an integer n such that $I_i = I_n$ for all $i \ge n$. (We say every ascending chain of ideals terminates. We also say that ascending chain condition (ACC) holds for ideals in D.)

Proof. First, $I = \bigcup_{i=1}^{\infty} I_i$ is an ideal. Since D is a PID, I = Da for some $a \in I$. So, there is an integer n such that $a \in I_n$. So, $I = Da \subseteq I_n$. So, $I_n = I$. Therefore,

$$I_n = I \subseteq I_r \subseteq I \quad \forall \quad r \ge n. \quad So, I_n = I = I_r \quad \forall \quad r \ge n.$$

The proof is complete.

Remark. Any ring R that satisfies ACC for ideals is called a Noetherian ring. Noetherian rings are the main focus of higher level algebra courses at KU.

Lemma 45.7. Let D be an integral domain.

1. For elements $a, b \in D$,

$$Da \subseteq Bb \iff b|a$$

2. For elements $a, b \in D$,

 $Da = Db \iff a, b \text{ are associates.}$

Proof. (1) is obvious. For (2), Da = Db. Since $a \in Db$, we have $a = \lambda b$ for some $\lambda \in D$. Similarly, $b = \mu a$ for some $\mu \in D$. So,

$$a = \lambda b = \lambda \mu a.$$
 So, $\lambda \mu = 1.$

So, λ is an unit. Therefore, a, b are associates. The proof is complete. **Remark.** A lot of properties we studied about the polynomial rings F[x] are also enjoyed by any PID, as follows.

Theorem 45.8 (45.11). Let D be a PID. For $a \in D$, if $a \neq 0$ and not a unit, then a is product of irreducible elements in D.

Proof.

Claim: a has an irreducible factor.

If a is irreducible then the claim is established. If a is not irreducible, $a = a_1b_1$, for some nonzero nonunits a_1, b_1 . If one of them is irreducible, then the claim is established. So, assume both are reducible. So,

$$Da \subset Da_1$$
 and $Da \neq Da_1$

Now we apply the same argument to a_1 . Since a_1 is reducible, $a_1 = a_2b_2$ for or some nonzero nonunits a_2, b_2 . If one of them is irreducible, then the claim is established, because $a = b_1a_2b_2$. If both are reducible, this process continues an we have a chain

$$Da \subset Da_1 \subset Da_2 \cdots$$

Since ACC for ideals holds in D, this process must terminate. So, a_r is irreducible, and $a = b_1 b_2 \cdots b_{r-q} a_r$. So, the claim is established.

Now write $a = p_1c_1$, where p_1 is irreducible. If c_1 is irreducible, then the proof is complete. If not $c_1 = p_2c_2$, where p_2 is irreducible. This way we get a chain of ideals

$$Da \subset Dc_1 \subset Dc_2 \cdots$$

again, since ACC for ideals holds in D, this process must terminate. So, c_k irreducible, for some k and $a = p_1 p_2 \cdots p_{r-1} c_r$ is a product of irreducible factors. The proof is complete.

Lemma 45.9 (45.12). Let D be a PID and $p \in D$. Then, p is irreducible if and only if Dp is a maximal ideal.

Proof. (\Rightarrow) : Suppose p is irreducible. Since p is not a unit, $Dp \neq D$. If Dp is not maximal, then there is an ideal I such that $Dp \subset I$ and $Dp \neq I$. Since D is a PID I = Da for some nonunit $a \in D$. Noe $p \in I = Da$. So, p = ba for some b. Since $I \neq Dp$, b is also a nonunit. This contradicts that p is irreducible. This establishes that Dp is maximal.

(\Leftarrow): Suppose Dp is maximal. Suppose p = ab. Assume a is not an unit. Then $Dp \subseteq Da$. Since Dp is maximal, Dp = Da. By the lemma above p, a are associates. So, p is irreducible. The proof is complete.

Theorem 45.10 (45.13). Suppose D is a PID and $p \in D$ is an irreducible element. Now, for $a, b \in D$ we have

$$p|ab \implies (p|a \ or \ p|b).$$

Proof. Since p is irreducible, Dp is maximal ideal. So, Dp is a prime ideal. Since p|ab we have $ab = \lambda p \in Dp$. Since Dp is prime, either $a \in Dp$ or $b \in Dp$. Which is same as saying either p|a or p|b. The proof is complete.

Corollary 45.11. Suppose D is a PID and $p \in D$ is an irreducible element. For $a_i \in D$ we have

 $p|a_1a_2\cdots a_n \implies p|a_i \quad for \ some \quad i=1,\ldots,n.$

Proof. Use induction. The proof is complete.

Definition 45.12. Let R be an integral domain. A nonzero nonunit $p \in R$ is called a **prime element** if for $a, b \in D$ we have

$$p|ab \implies (p|a \quad or \quad p|b)$$

Lemma 45.13. Let D be a PID. Then,

an element $p \in D$ is irreducible $\iff p$ is prime.

Proof. Suppose p is irreducible. Then, by theorem 45.10, p is prime.

Now suppose p is a prime. Suppose p is not reducible. So, p = ab. So, p|a or p|b. Without loss of generality, assume p|a. So, $a = \lambda p$. So, $p = ab = \lambda pb$. So, $\lambda b = 1$. Hence, b is a unit. The proof is complete.

Following theorem is analogous to theorem 23.20 on polynomial rings F[x].

Theorem 45.14 (45.17). Suppose D is a PID. Then D is a UFD.

Proof. By theorem 45.8, any nonzero element $a \in D$ is product of irreducible element.

The proof of the uniqueness of such factorization is exactly same as that of theorem 23.20. I leave it as an exercise. The proof is complete. \blacksquare

Remark.

- 1. Suppose F is a field F.
 - (a) We proved that the polynomial ring F[x] is a PID.
 - (b) We also proved F[x] is a UFD, independently. The same follows from the above theorem.
 - (c) However, polynomial ring F[x, y] in two indeterminates is not a PID. The ideal (x, y) := F[x, y]x + F[x, y]y is not principal.
- 2. The ring of integers \mathbb{Z} is a PID and a UFD.

45.2 If D is a UFD, then so is D[x]

We start with the definition of gcd.

Definition 45.15. Let D be a UFD and $a_1, a_2, \ldots, a_n \in D$. An element $d \in D$ is called a greatest common divisor (gcd, if

- 1. $d|a_i \text{ for all } i = 1, 2, ..., n.$
- 2. If there is another element $c \in D$ such that $c|a_i$ for all i = 1, 2, ..., n, then c|d.

Usually, there are more than one gcds for any given $a_1, a_2, \ldots, a_n \in D$. However, if c, d are two gcds of $a_1, a_2, \ldots, a_n \in D$, then

c|d and d|c. So, c, d are associates.

For integers $a_1, a_2, \ldots, a_n \in \mathbb{Z}$ if $d = gcd(a_1, a_2, \ldots, a_n)$ then so is -d, according to this definition. At high school, the positive gcd is referred to as "the gcd".

45.3 Premitive Polynomial

In §23 discussed when a polynomial with integer coefficients is called primitive. We extend the same as follows.

Definition 45.16. Suppose D is a UFD. A non constant polynomial

$$f(x) = a_0 + a_1 x + \dots + a_n x^n \in D[x]$$

is called **premitive** if

$$gdc(a_0, a_1, \dots, a_n) = 1.$$

Lemma 45.17 (45.22). Suppose D is a UFD and

 $f(x) = a_0 + a_1 x + \dots + a_n x^n \in D[x]$ be a polynomial.

Then

- 1. Definition: $c = gcd(a_0, a_1, ..., a_n)$ is called the content of f. The content is unique only upto associates.
- 2. f(x) = cg(x) where $g(x) \in D[x]$ is a primitive polynomial.

Proof. Obvious.

The following is an analogue of a theorem (not in the textboo; but I did) in §23 on polynomials with integer coefficients.

Lemma 45.18 (45.25 Gauss Lemma). Suppose D is a UFD. Then the product of two premitive polynomial in D[x] is primitive.

Proof. (It will exactly same as that in §23. I will copy and paste.) Write

$$f(x) = a_0 + a_1x + \dots + a_nx^n$$
 and $g(x) = b_0 + b_1x + \dots + b_mx^m$

where $a_i, b_j \in D$. Suppose $p \in D$ is an irreducible element. We will show p does not divide some coefficient of f(x)g(x). Since f is primitive p does not divide some coefficient of f. Let a_j be the first one:

$$p|a_0, p|a_1, \dots, p|a_{j-1}, p \not| a_j$$

Similarly, there is a k such that

$$p|b_0, p|b_1, \ldots, p|b_{k-1}, p \not| b_k.$$

Now, coefficient c_{j+k} of x^{j+k} in f(x)g(x) is give by $c_{j+k} =$

 $a_jb_k + (a_{j+1}b_{k-1} + a_{j+2}b_{k-2} + \dots + a_{j+k}b_0) + (a_{j-1}b_{k+1} + a_{j-2}b_{k+2} + \dots + a_0b_{j+k})$

Now, $p \not| a_j b_k$ and all the other terms are divisible by p. So, $p \not| c_{j+k}$. The proof is complete.

Corollary 45.19. Suppose D is a UFD. Then product of finitely many premitive polynomials in D[x] is primitive.

Proof. Use Induction.

Before we proceed, let me remind you again, for a field F, the polynomial ring F[x] is a UFD (in fact a PID).

Lemma 45.20 (45.27). Let D be a UFD and F be the field of fractions of D. Let $f(x) \in D[x]$ be a nonconstant polynomial.

- 1. If f(x) is irreducible in D[x], then f(x) is also irreducible in F[x].
- 2. If f(x) is premitive in D[x] and is irreducible in F[x], then f(x) is irreducible in D[x].

Proof. To prove the first point, assume f(x) is irreducible in D[x]. Now suppose

$$f(x) = r(x)s(x) \quad where \ r(x), s(x) \in F[x]; \ \deg(r) < \deg(f), \ \deg(s) < \deg(f).$$

We do the process of "clearing denominators" as follows: Write

$$r(x) = \frac{a_0 + a_1 x + a_2 x^2 + \dots + a_t x^t}{d_1} = \frac{r_1(x)}{d_1} = \frac{c_1 r_2(x)}{d_1}$$

where $a_i, d_1 \in D$ and r_1 is the numerator, $c_1 = content(r_1)$ and r_2 is a primitive polynomial. Similarly,

$$s(x) = \frac{c_2 s_2(x)}{d_2}$$
 where $c_2, d_2 \in D$, $s_2(x) \in D[x]$ is primitive.

Write f(x) = cg(x), where c = content(f) and g is primitive. So, we have

$$f(x) = cg(x) = r(x)s(x) = \frac{(c_1c_2)r_2(x)s_2(x)}{d_1d_2}$$

or

$$(cd_1d_2)g(x) = (c_1c_2)(r_2(x)s_2(x)).$$

Since $_2(x)$, $s_2(x)$ are primitive, so is the product $r_2(x)s_2(x)$. Since the content of two sides must be associates,

$$c_1c_2 = ucd_1d_2$$
 for some unit $u \in D$.

There fore

$$(cd_1d_2)g(x) = (ucd_1d_2)(r_2(x)s_2(x)).$$
 or $f(x) = cg(x) = ucr_2(x)s_2(x)$

So, we have shown that f(x) is has a nontrivial factorization in D[x], which contradicts the hypothesis. So, f(x) is irreducible in F[x]. This completes the proof of (1).

Remark. In fact, f(x) factors in to polynomials of same degree in D[x].

To prove (2), assume that f is primitive and irreducible in F[x]. Let f(x) = r(x)s(x) be non trivial factorization in F[x]. Since f is primitive, neither r nor s are constant (in fact both are premitive. This means $0 < \deg(r) < \deg(f), 0 < \deg(s) < \deg(f)$. So, f(x) factors into two polynomials of degree less than $\deg(f)$ in F[x], which is a contradiction. The proof is complete.

Corollary 45.21 (45.28). Suppose D is a UFD and F is the field of its fractions. Let $f(x) \in D[x]$ be a nonconstant polynomial. Suppose

$$f(x) = r(x)s(x)$$
 for some $r, s \in F[x]$ with $\deg(r) < \deg(f), \deg(s) < \deg(f)$

Then

 $f(x) = r_1(x)s_1(x)$ for some $r_1, s_1 \in D[x]$ with $\deg(r_1) = \deg(r), \deg(s_1) = \deg(s)$.

Proof. See the remark in the proof of 45.20.

Before we state our main theorem, I want to settle Who are the irreducible elements in D[x].

Lemma 45.22 (Extra). Let D be a UFD.

- 1. Suppose $p \in D$ is irreducible in D. Then, p is irreducible in D[x].
- 2. Let F be the field of fractions of D. Suppose $f(x) \in D[x]$ with $\deg(f) > 0$. Then, f is irreducible in D[x] if and only if f is premitive and f is irreducible in F[x].

Proof. Suppose $p \in D$ is irreducible. If p has a nontrivial factorization in D[x], by degree comparison, factor must be constants. So, that will give a nontrivial factorization of p in D. So, p is irreducible in D[x].

To prove (2), first suppose f is irreducible in D[x]. Write f(x) = cg(x) where $c = content(f) \in D$ and g is premitive. If c is nonunit, then f(x) = cg(x) is a nontrivial factorization. So, c is a unit. This means f is premitive.

Now if f(x) has a nontrivial factorization in F[x], it factors into polynomials of smaller degree. By (45.21), then f will also factors into polynomials of smaller degree in D[x]. Which would contradicts the hypothesis. So, f is irreducible in F[x].

Now, we prove the converse. Suppose f is premitive and f is irreducible in F[x]. Suppose f(x) = r(x)s(x) be a nontrivial factorization of f in D[x]. Since f is premitive, r(x), s(x) are nonconstant polynomials. So, f(x) = r(x)s(x) is a nontrivial factorization of f in F[x]. This would be a contradict the hypothesis. So, f is irreducible in D[x].

The proof is complete.

Theorem 45.23 (45p29). Suppose D is a UFD. Then, the polynomial ring D[x] is a UFD.

Proof. (Existance of factorization): Suppose $f \in D[x]$ be nonunit. Write f(x) = cg(x) where $c = content(f) \in D$ and g is a premitive polynomials. Since D is UFD

$$c = p_1 p_2 \cdots p_m$$

where $p_i \in D$ is irreducible in D and hence irreducible in D[x].

Again, let F be the field of fractions of F. Since F[x] is a UFD

$$g(x) = q_1(x)q_2(x)\cdots q_n(x)$$

where q_i are irreducible in F[x]. By (45.21),

$$g(x) = P_1(x)P_2(x)\cdots P_n(x) \qquad P_i \in D[x] \quad and \quad \deg(P_i) = \deg(q_i).$$

Since g is premitive, P_i are premitive. By uniqueness of factorization in F[x], P_i , q_i are associates. So, P_i is irreducible in F[x]. By (45.22), P_i are irreducible in D[x]. So,

$$f(x) = cg(x) = p_1 p_2 \cdots p_m P_1(x) P_2(x) \cdots P_n(x)$$

is a factorization of f(x) in to irreducible elements in D[x]. Uniqueness of Factorization: Let $f(x) = cg(x) \in D[x]$ where c = content(f) and g is premitive. Suppose

$$f(x) = p_1 p_2 \cdots p_m P_1(x) P_2(x) \cdots P_n(x) = q_1 q_2 \cdots q_s Q_1(x) Q_2(x) \cdots Q_r(x)$$

where $p_i, q_i \in D$ are irreducible and $P_i, Q_i \in D[x]$ are irreducible polynomials of positive degree.

Comparing contents

$$c = up_1p_2\cdots p_m = vq_1q_2\cdots q_s$$

for some units u, v. Since D is a UFD, after relabeling (and adjusting the units), we have m = s and $p_i = q_i$.

So, we have

$$g(x) = P_1(x)P_2(x)\cdots P_n(x) = Q_1(x)Q_2(x)\cdots Q_r(x).$$

Since g(x) is premitive, P_i, Q_i are premitive. So, P_i, Q_i are irreducible in F[x]. Since F[X] is a UFD, r = m and after relabeling, $P_i = \frac{a_i}{b_i}Q_i$, where $a_i, b_i \in D$. So, $b_i P_i = a_i Q_i$. Comparing contents, $b_i = u_i a_i$. So, $u_i a_i P_i = a_i Q_i$. or $u_i P_i = Q_i$. So, P_i, Q_i are associates.

The proof is complete.

Corollary 45.24 (45.30). Let F be a field and x_1, \ldots, x_n be indeterminates. Then the polynomial ring $F[x_1, \ldots, x_n]$ is a UFD.

Proof. Inductively, $F[x_1, \ldots, x_r] = F[x_1, \ldots, x_{r-1}][x_r]$ is a UFD, by theorem 45.23.

Exercise 45.25. Let F be a field and R = F[x, y] be the polynomial ring. Prove that the ideal (x, y) := Rx + Ry is not principal.

46 Euclidain Domain

Intuitively, a Euclidian Domain is a commutative ring where Division Algorithm works. We prove any Euclidian Domain is a PID.

Definition 46.1 (46.1). A Euclidian norm on an integral domain D is a function

$$\nu: D \setminus \{0\} \longrightarrow \{0, 1, 2, 3, \ldots\}$$

such that

1. For $a, b \in D$ with $b \neq 0$, there exist $q, r \in D$ such that

a = bq + r where r = 0 or $\nu(r) < \nu(b)$.

2. For $a, b \in D$, where $a \neq 0, b \neq 0$, we have

$$\nu(a) \le \nu(ab).$$

An integral domain with an Euclidian norm is called a Euclidian domain.

- **Example 46.2.** 1. For $n \in \mathbb{Z}$ and $n \neq 0$ define $\nu(n) = |n|$. Then, ν is an Euclidian norm on \mathbb{Z} . So, \mathbb{Z} is an Euclidian domain.
 - 2. Let F be a field and F[x] be the polynomial ring. For $f \in F[x]$ and $f \neq 0$ define $\nu(n) = \deg(f)$. Then, ν is an Euclidian norm on F[x]. So, F[x] is an Euclidian domain.

Theorem 46.3 (46.4). Every Euclidean domain D is a PID.

Proof. Let *D* be an Euclidean domain with Euclidean norm ν . Let *I* is an ideal. We will prove that *I* is principal. If $I = \{0\}$, then it is principal. So, assume *I* has nonzero elements. Let

$$n = \min\{\nu(x) : x \in I, x \neq 0\}.$$

Let $b \in I$ be such that $\nu(b) = n$. We will prove I = Db (We follow the same argument we used for polynomial rings.)

Since $b \in D$, we have $Rb \subseteq I$. Now, let $a \in I$.

$$a = bq + r$$
 where $r = 0$ or $\nu(r) < \nu(b)$.

But $r = a - bq \in I$. So, by minimality of $\nu(b)$, we have r = 0. So, $a = bq \in Db$. So, I = Db. The proof is complete.

Corollary 46.4. Every Euclidean domain D is a UFD.

Proof. By above theorem O is a PID, hence a UFD.

46.1 Units in Euclidean Domains

Theorem 46.5 (46.6). Let D be an Euclidean domain with Euclidean norm ν .

1. Then,

$$\nu(1) = \min\{\nu(x) : x \in D, x \neq 0\}.$$

2. For $u \in D$ we have

$$u$$
 is a unit $\iff \nu(u) = \nu(1).$

Proof. (1) follows from the second property of nu as follows:

 $\forall a \in D, a \neq 0 \qquad \nu(1) \le \nu(1a) = \nu(a).$

To prove (2) suppose $u \in D$ is a unit. Then,

$$\nu(1) \le \nu(u) \le \nu(uu^{-1}) = \nu(1).$$
 So $\nu(u) = \nu(1).$

Conversely, suppose $\nu(1) = \nu(u)$. Se divide ! by u, we have

1 = uq + r for some $q, r \in D \quad \ni \quad r = 0$ or $\nu(r) < \nu(u)$.

Since $\nu(u) = \nu(1)$ is minimum, r = 0. So, 1 = uq. So, u is a unit. The proof is complete.

Theorem 46.6 (46.9). (Euclidean Algorithm): Suppose D is an Euclidean domain. Then the Euclidean Algorithm of computing gcd(a, b) by long division works.

Proof. Exercise/skip.

47 Gaussian Integers

Definition 47.1. A complex numbers a + bi with $a, b \in \mathbb{Z}$ is called a Gaussian Integer.

- 1. The set $\mathbb{Z} + \mathbb{Z}i$ of all Gaussian Integers forms an integral domain.
- 2. For $x = a + bi \in \mathbb{Z} + \mathbb{Z}i$ define

$$N(x) = a^2 + b^2.$$

This function N will be called a/the **norm** on $\mathbb{Z} + \mathbb{Z}i$. N has the following properties: For $x, y \in \mathbb{Z} + \mathbb{Z}i$

(a) $N(x) \ge 0$ (b) $n(x) = 0 \iff x = 0$ (c)

$$N(xy) = N(x)N(y).$$

3.

Theorem 47.2 (47.4). N is an Euclidean norm. Proof. skip.