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45 Unique Factorization Domain (UFD)

Abstract

We prove evey PID is an UFD. We also prove if D is a UFD, then

so is D[x].

Definition 45.1. Suppose R is a commutative ring (as always with

unity 1).

1. Let a, b ∈ R. If b = ac for some c ∈ R, we say that a divides b.

In this case, we write a|b.

2. An element u ∈ R is called an unit in R, if it has an inverse in

R. This is same as saying a|1.

3. Two elements a, b ∈ R would be called associatates, if a = ub

for some unit u ∈ R. (Note, being associates is an equivalence

relation.)
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4. Assume R is an integral domain. An nonunit p ∈ R is said to be

and irreducible element, if

p = ab =⇒ a or b is a unit.

Note, if p is irreducible and q = ub for some unit u ∈ R, then q

is also irreducible. In other words, if p, q are assocites then p is

irreducible if and only if q is irreducible.

Now, we define Unique Factorization domain.

Definition 45.2. Suppose D is an integral domain. We day D is an

Unique Factorization domain (UFD), if

1. Each nonzero, nonunit element a ∈ D is a product of irreducible

elemnets.

2. (Uniqueness): For such a nonzero, nonunit element a ∈ D, if

a = p1p2 · · · pr = q1q2 · · · qs where pi, qj are irreducible

then r = s and qj can be relabeled so that pi, qi are associates.

Example 45.3. 1. The ring of integers Z is a UFD.

2. If F is a field, then the polynomial ring F [x] is a UFD (see

theorem 23.20).

We also define principal ideal domain (PID).

Definition 45.4. An integral domain D is said to be a principal

ideal domain (PID), if every ideal is principal (i.e. any ideal I = Dx

for some x.)

The goal of this section is prove two theorems:

1. Every PID is a UFD,

2. If D is a UFD, so is the polynomial ring D[x].
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45.1 Every PID is a UFD

Lemma 45.5. Let R be a commutative ring and let

I1 ⊆ I2 ⊆ I3 ⊆ · · · is an ascending chain of ideals of R.

Then I = ∪∞

i=1Ii is an ideal.

Proof. Let a, b ∈ I. Then, a ∈ Ii and b ∈ Ij for some i, j. We can

assume i ≤ j, and hence a, b ∈ Ij . So, a± b ∈ Ij , hence a± b ∈ I.

Also, if a ∈ I and c ∈ R, we would like to prove ca ∈ I. First,

a ∈ Ii for some i. So, ca ∈ Ii. So, ca ∈ I.

The proof is complete.

Lemma 45.6. Let D be a PID. Let

I1 ⊆ I2 ⊆ I3 ⊆ · · · is an ascending chain of ideals of D.

Then, there is an integer n such that Ii = In for all i ≥ n. (We say

every ascending chain of ideals terminates. We also say that ascending

chain condition (ACC) holds for ideals in D.)

Proof. First, I = ∪∞

i=1Ii is an ideal. Since D is a PID, I = Da for some

a ∈ I. So, there is an integer n such that a ∈ In. So, I = Da ⊆ In.

So, In = I. Therefore,

In = I ⊆ Ir ⊆ I ∀ r ≥ n. So, In = I = Ir ∀ r ≥ n.

The proof is complete.

Remark. Any ring R that satisfies ACC for ideals is called a Noethe-

rian ring. Noetherian rings are the main focus of higher level algebra

courses at KU.

Lemma 45.7. Let D be an integral domain.

1. For elements a, b ∈ D,

Da ⊆ Bb ⇐⇒ b|a.
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2. For elements a, b ∈ D,

Da = Db ⇐⇒ a, b are associates.

Proof. (1) is obvious. For (2), Da = Db. Since a ∈ Db, we have

a = λb for some λ ∈ D. Similarly, b = µa for some µ ∈ D. So,

a = λb = λµa. So, λµ = 1.

So, λ is an unit. Therefore, a, b are associates. The proof is complete.

Remark. A lot of properties we studied about the polynomial rings

F [x] are also enjoyed by any PID, as follows.

Theorem 45.8 (45.11). Let D be a PID. For a ∈ D, if a 6= 0 and not

a unit, then a is product of irreducible elements in D.

Proof.

Claim: a has an irreducible factor.

If a is irreducible then the claim is established. If a is not irre-

ducible, a = a1b1, for some nonzero nonunits a1, b1. If one of them

is irreducible, then the claim is established. So, assume both are re-

ducible. So,

Da ⊂ Da1 and Da 6= Da1.

Now we apply the same argument to a1. Since a1 is reducible, a1 =

a2b2 for or some nonzero nonunits a2, b2. If one of them is irreducible,

then the claim is established, because a = b1a2b2. If both are reducible,

this process continues an we have a chain

Da ⊂ Da1 ⊂ Da2 · · ·

Since ACC for ideals holds in D, this process must terminate. So, ar

is irreducible, and a = b1b2 · · · br−qar. So, the claim is established.

Now write a = p1c1, where p1 is irreducible. If c1 is irreducible,

then the proof is complete. If not c1 = p2c2, where p2 is irreducible.

This way we get a chain of ideals

Da ⊂ Dc1 ⊂ Dc2 · · ·
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again, since ACC for ideals holds in D, this process must terminate.

So, ck irreducible, for some k and a = p1p2 · · · pr−1cr is a product of

irreducible factors. The proof is complete.

Lemma 45.9 (45.12). Let D be a PID and p ∈ D. Then, p is irre-

ducible if and only if Dp is a maximal ideal.

Proof. (⇒): Suppose p is irreducible. Since p is not a unit, Dp 6= D.

If Dp is not maximal, then there is an ideal I such that Dp ⊂ I and

Dp 6= I. Since D is a PID I = Da for some nonunit a ∈ D. Noe

p ∈ I = Da. So, p = ba for some b. Since I 6= Dp, b is also a

nonunit. This contradicts that p is irreducible. This establishes that

Dp is maximal.

(⇐): Suppose Dp is maximal. Suppose p = ab. Assume a is not an

unit. Then Dp ⊆ Da. Since Dp is maximal, Dp = Da. By the lemma

above p, a are associates. So, p is irreducible. The proof is complete. .

Theorem 45.10 (45.13). Suppose D is a PID and p ∈ D is an irre-

ducible element. Now, for a, b ∈ D we have

p|ab =⇒ (p|a or p|b).

Proof. Since p is irreducible, Dp is maximal ideal. So, Dp is a prime

ideal. Since p|ab we have ab = λp ∈ Dp. Since Dp is prime, either

a ∈ Dp or b ∈ Dp. Which is same as saying either p|a or p|b. The

proof is complete.

Corollary 45.11. Suppose D is a PID and p ∈ D is an irreducible

element. For ai ∈ D we have

p|a1a2 · · · an =⇒ p|ai for some i = 1, . . . , n.

Proof. Use induction. The proof is complete.

Definition 45.12. Let R be an integral domain. A nonzero nonunit

p ∈ R is called a prime element if for a, b ∈ D we have

p|ab =⇒ (p|a or p|b).
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Lemma 45.13. Let D be a PID. Then,

an element p ∈ D is irreducible ⇐⇒ p is prime.

Proof. Suppose p is irreducible. Then, by theorem 45.10, p is prime.

Now suppose p is a prime. Suppose p is not reducible. So, p = ab.

So, p|a or p|b. Without loss of generality, assume p|a. So, a = λp. So,

p = ab = λpb. So, λb = 1. Hence, b is a unit. The proof is complete.

Following theorem is analogous to theorem 23.20 on polynomial

rings F [x].

Theorem 45.14 (45.17). Suppose D is a PID. Then D is a UFD.

Proof. By theorem 45.8, any nonzero element a ∈ D is product of

irreducible element.

The proof of the uniquenss of such factorization is exactly same as

that of theorem 23.20. I leave it as an exercise. The proof is complete.

Remark.

1. Suppose F is a field F .

(a) We proved that the polynomial ring F [x] is a PID.

(b) We also proved F [x] is a UFD, independently.

The same follows from the above theorem.

(c) However, polynomial ring F [x, y] in two indeterminates is

not a PID. The ideal (x, y) := F [x, y]x + F [x, y]y is not

principal.

2. The ring of integers Z is a PID and a UFD.
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45.2 If D is a UFD, then so is D[x]

We start with the definition of gcd.

Definition 45.15. Let D be a UFD and a1, a2, . . . , an ∈ D. An ele-

ment d ∈ D is called a greatest common divisor (gcd, if

1. d|ai for all i = 1, 2, . . . , n.

2. If there is another element c ∈ D such that c|ai for all i =

1, 2, . . . , n, then c|d.

Usually, there are more than one gcds for any given a1, a2, . . . , an ∈ D.

However, if c, d are two gcds of a1, a2, . . . , an ∈ D, then

c|d and d|c. So, c, d are associates.

For integers a1, a2, . . . , an ∈ Z if d = gcd(a1, a2, . . . , an) then so is

−d, according to this definition. At high school, the positive gcd is

refered to as "the gcd".

45.3 Premitive Polynomial

In §23 discussed when a polynomial with integer coefficients is called

primitive. We extend the same as follows.

Definition 45.16. Suppose D is a UFD. A non constant polynomial

f(x) = a0 + a1x+ · · ·+ anx
n ∈ D[x]

is called premitive if

gdc(a0, a1, . . . , an) = 1.

Lemma 45.17 (45.22). Suppose D is a UFD and

f(x) = a0 + a1x+ · · ·+ anx
n ∈ D[x] be a polynomial.

Then
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1. Definition: c = gcd(a0, a1, . . . , an) is called the content of f .

The content is unique only upto associates.

2. f(x) = cg(x) where g(x) ∈ D[x] is a primitive polynomial.

Proof. Obvious.

The following is an analogue of a theorem (not in the textboo; but

I did) in §23 on polynomials with integer coefficients.

Lemma 45.18 (45.25 Gauss Lemma). Suppose D is a UFD. Then the

product of two premitive polynomial in D[x] is primitive.

Proof. (It will exactly same as that in §23. I will copy and paste.)

Write

f(x) = a0 + a1x+ · · ·+ anx
n and g(x) = b0 + b1x+ · · ·+ bmxm

where ai, bj ∈ D. Suppose p ∈ D is an irreducible element. We will

show p does not divide some coefficient of f(x)g(x). Since f is primi-

tive p does not divide some coefficient of f . Let aj be the first one:

p|a0, p|a1, . . . , p|aj−1, p 6 |aj .

Similarly, there is a k such that

p|b0, p|b1, . . . , p|bk−1, p 6 |bk.

Now, coefficient cj+k of xj+k in f(x)g(x) is give by cj+k =

ajbk+(aj+1bk−1+aj+2bk−2+· · ·+aj+kb0)+(aj−1bk+1+aj−2bk+2+· · ·+a0bj+k)

Now, p 6 |ajbk and all the other terms are divisible by p. So, p 6 |cj+k.

The proof is complete.

Corollary 45.19. Suppose D is a UFD. Then product of finitely many

premitive polynomials in D[x] is primitive.

Proof. Use Induction.

Before we proceed, let me remind you again, for a field F , the

polynomial ring F [x] is a UFD (in fact a PID).
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Lemma 45.20 (45.27). Let D be a UFD and F be the field of fractions

of D. Let f(x) ∈ D[x] be a nonconstant polynomial.

1. If f(x) is irreducible in D[x], then f(x) is also irreducible in F [x].

2. If f(x) is premitive in D[x] and is irreducible in F [x], then f(x)

is irreducible in D[x].

Proof. To prove the first point, assume f(x) is irreducible in D[x].

Now suppose

f(x) = r(x)s(x) where r(x), s(x) ∈ F [x]; deg(r) < deg(f), deg(s) < deg(f).

We do the process of "clearing denominators" as follows: Write

r(x) =
a0 + a1x+ a2x

2 + · · ·+ atx
t

d1
=

r1(x)

d1
=

c1r2(x)

d1

where ai, d1 ∈ D and r1 is the numerator, c1 = content(r1) and r2 is

a primitive polynomial. Similarly,

s(x) =
c2s2(x)

d2
where c2, d2 ∈ D, s2(x) ∈ D[x] is primitive.

Write f(x) = cg(x), where c = content(f) and g is primitive. So, we

have

f(x) = cg(x) = r(x)s(x) =
(c1c2)r2(x)s2(x)

d1d2

or

(cd1d2)g(x) = (c1c2)(r2(x)s2(x)).

Since 2(x), s2(x) are primitive, so is the product r2(x)s2(x). Since the

content of two sides must be associates,

c1c2 = ucd1d2 for some unit u ∈ D.

There fore

(cd1d2)g(x) = (ucd1d2)(r2(x)s2(x)). or f(x) = cg(x) = ucr2(x)s2(x).
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So, we have shown that f(x) is has a nontrivial factorization in D[x],

which contradicts the hypothesis. So, f(x) is irreducible in F [x]. This

completes the proof of (1).

Remark. In fact, f(x) factors in to polynomials of same degree in

D[x].

To prove (2), assume that f is primitive and irreducible in F [x].

Let f(x) = r(x)s(x) be non trivial factorization in F [x]. Since f is

primitive, neither r nor s are constant (in fact both are premitive. This

means 0 < deg(r) < deg(f), 0 < deg(s) < deg(f). So, f(x) factors

into two polynomials of degree less than deg(f) in F [x], which is a

contradiction. The proof is complete.

Corollary 45.21 (45.28). Suppose D is a UFD and F is the field of

its fractions. Let f(x) ∈ D[x] be a nonconstant polynomial. Suppose

f(x) = r(x)s(x) for some r, s ∈ F [x] with deg(r) < deg(f), deg(s) < deg(f).

Then

f(x) = r1(x)s1(x) for some r1, s1 ∈ D[x] with deg(r1) = deg(r), deg(s1) = deg(s).

Proof. See the remark in the proof of 45.20.

Before we state our main theorem, I want to settle Who are the

irreducible elements in D[x].

Lemma 45.22 (Extra). Let D be a UFD.

1. Suppose p ∈ D is irreducible in D. Then, p is irreducible in D[x].

2. Let F be the field of fractions of D. Suppose f(x) ∈ D[x] with

deg(f) > 0. Then, f is irreducible in D[x] if and only if f is

premitive and f is irreducible in F [x].

Proof. Suppose p ∈ D is irreducible. If p has a nontrivial factorization

in D[x], by degree comparison, factor must be constants. So, that will

give a nontrivial factorization of p in D. So, p is irreducible in D[x].
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To prove (2), first suppose f is irreducible in D[x]. Write f(x) =

cg(x) where c = content(f) ∈ D and g is premitive. If c is nonunit,

then f(x) = cg(x) is a nontrivial factorization. So, c is a unit. This

means f is premitive.

Now if f(x) has a nontrivial factorization in F [x], it factors into

polynomials of smaller degree. By (45.21), then f will also factors into

polynomials of smaller degree in D[x]. Which would contradicts the

hypothesis. So, f is irreducible in F [x].

Now, we prove the converse. Suppose f is premitive and f is irre-

ducible in F [x]. Suppose f(x) = r(x)s(x) be a nontrivial factorization

of f in D[x]. Since f is premitive, r(x), s(x) are nonconstant polyno-

mials. So, f(x) = r(x)s(x) is a nontrivial factorization of f in F [x].

This would be a contradicts the hypothesis. So, f is irreducible in

D[x].

The proof is complete.

Theorem 45.23 (45p29). Suppose D is a UFD. Then, the polynomial

ring D[x] is a UFD.

Proof. (Existance of factorization): Suppose f ∈ D[x] be nonunit.

Write f(x) = cg(x) where c = content(f) ∈ D and g is a premitive

polynomials. Since D is UFD

c = p1p2 · · · pm

where pi ∈ D is irreducible in D and hence irreducible in D[x].

Again, let F be the field of fractions of F . Since F [x] is a UFD

g(x) = q1(x)q2(x) · · · qn(x)

where qi are irreducible in F [x]. By (45.21),

g(x) = P1(x)P2(x) · · ·Pn(x) Pi ∈ D[x] and deg(Pi) = deg(qi).

Since g is premitive, Pi are premitive. By uniqueness of factorization

in F [x], Pi, qi are associates. So, Pi is irreducible in F [x]. By (45.22),
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Pi are irreducible in D[x]. So,

f(x) = cg(x) = p1p2 · · · pmP1(x)P2(x) · · ·Pn(x)

is a factorization of f(x) in to irreducible elements in D[x].

Uniqueness of Factorization: Let f(x) = cg(x) ∈ D[x] where c =

content(f) and g is premitive. Suppose

f(x) = p1p2 · · · pmP1(x)P2(x) · · ·Pn(x) = q1q2 · · · qsQ1(x)Q2(x) · · ·Qr(x)

where pi, qi,∈ D are irreducible and Pi, Qi ∈ D[x] are irreducible poly-

nomials of positive degree.

Comparing contents

c = up1p2 · · · pm = vq1q2 · · · qs

for some units u, v. Since D is a UFD, after relabeling (and adjusting

the units), we have m = s and pi = qi.

So, we have

g(x) = P1(x)P2(x) · · ·Pn(x) = Q1(x)Q2(x) · · ·Qr(x).

Since g(x) is premitive, Pi, Qi are premitive. So, Pi, Qi are irreducible

in F [x]. Since F [X] is a UFD, r = m and after relabeling, Pi =
ai
bi
Qi,

where ai, bi ∈ D. So, biPi = aiQi. Comparing contents, bi = uiai. So,

uiaiPi = aiQi. or uiPi = Qi. So, Pi, Qi are associates.

The proof is complete.

Corollary 45.24 (45.30). Let F be a field and x1, . . . , xn be indeter-

minates. Then the polynomial ring F [x1, . . . , xn] is a UFD.

Proof. Inductively, F [x1, . . . , xr] = F [x1, . . . , xr−1][xr] is a UFD, by

thoerem 45.23.

Exercise 45.25. Let F be a field and R = F [x, y] be the polynomial

ring. Prove that the ideal (x, y) := Rx+Ry is not principal.
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46 Euclidain Domain

Intuitively, a Euclidian Domain is a commutative ring where Division

Algorithm works. We prove any Euclidian Domain is a PID.

Definition 46.1 (46.1). A Euclidian norm on an integral domain

D is a function

ν : D \ {0} −→ {0, 1, 2, 3, . . .}

such that

1. For a, b ∈ D with b 6= 0, there exist q, r ∈ D such that

a = bq + r where r = 0 or ν(r) < ν(b).

2. For a, b ∈ D, where a 6= 0, b 6= 0, we have

ν(a) ≤ ν(ab).

An integral domain with an Euclidian norm is called a Euclidian do-

main.

Example 46.2. 1. For n ∈ Z and n 6= 0 define ν(n) = |n|. Then,

ν is an Euclidian norm on Z. So, Z is an Euclidian domain.

2. Let F be a field and F [x] be the polynomial ring. For f ∈ F [x]

and f 6= 0 define ν(n) = deg(f). Then, ν is an Euclidian norm

on F [x]. So, F [x] is an Euclidian domain.

Theorem 46.3 (46.4). Every Euclidean domain D is a PID.

Proof. Let D be an Euclidean domain with Euclidean norm ν. Let

I is an ideal. We will prove that I is principal. If I = {0}, then it is

principal. So, assume I has nonzero elements. Let

n = min{ν(x) : x ∈ I, x 6= 0}.

Let b ∈ I be such that ν(b) = n. We will prove I = Db (We follow the

same argument we used for polynomial rings.)
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Since b ∈ D, we have Rb ⊆ I. Now, let a ∈ I.

a = bq + r where r = 0 or ν(r) < ν(b).

But r = a − bq ∈ I. So, by minimality of ν(b), we have r = 0. So,

a = bq ∈ Db. So, I = Db. The proof is complete.

Corollary 46.4. Every Euclidean domain D is a UFD.

Proof. By above theorem O is a PID, hence a UFD.

46.1 Units in Euclidean Domains

Theorem 46.5 (46.6). Let D be an Euclidean domain with Euclidean

norm ν.

1. Then,

ν(1) = min{ν(x) : x ∈ D,x 6= 0}.

2. For u ∈ D we have

u is a unit ⇐⇒ ν(u) = ν(1).

Proof. (1) follows from the second property of nu as follows:

∀ a ∈ D, a 6= 0 ν(1) ≤ ν(1a) = ν(a).

To prove (2) suppose u ∈ D is a unit. Then,

ν(1) ≤ ν(u) ≤ ν(uu−1) = ν(1). So ν(u) = ν(1).

Conversely, suppose ν(1) = ν(u). Se divide ! by u, we have

1 = uq + r for some q, r ∈ D ∋ r = 0 or ν(r) < ν(u).

Since ν(u) = ν(1) is minimum, r = 0. So, 1 = uq. So, u is a unit. The

proof is complete.

Theorem 46.6 (46.9). (Euclidean Algorithm): Suppose D is an

Euclidean domain. Then the Euclidean Algorithm of computing gcd(a, b)

by long division works.

Proof. Exercise/skip.
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47 Gaussian Integers

Definition 47.1. A complex numbers a+ bi with a, b ∈ Z is called a

Gaussian Integer.

1. The set Z+Zi of all Gaussian Integers forms anintegral domain.

2. For x = a+ bi ∈ Z+ Zi define

N(x) = a2 + b2.

This function N will be called a/the norm on Z+Zi. N has the

following properties: For x, y ∈ Z+ Zi

(a) N(x) ≥ 0

(b)

n(x) = 0 ⇐⇒ x = 0

(c)

N(xy) = N(x)N(y).

3.

Theorem 47.2 (47.4). N is an Euclidean norm.

Proof. skip.
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