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Prelude; I look at Algebra as the mathematical formalism. The traditional
thinking that Algebra without geometric motivation may not be worth doing,
may have to be reevaluated. Over last half a century, things have changed.
In my view, without formalism it would be tough to create any good mathe-
matics (in particular Geometry). The core of the main stream mathematics
research frontier, of the current time, cannot be reached without formalism.
My motto: Do Algebra without Apology.

Abstract: We talk about axiomatic of set theory. Then we define Relations.
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1 Sets

§1.The premitive mathematical concept

1. In mathematics, the most premitive objects that we work with are sets.
In fact, any object that we work with is a set.

2. Given a set S, each of its element x is also a set.

3. The familiar objects that we work with are sets. For example,

(a) Each number is a set.

(b) The integer 0 is a set. It is the empty set φ.
Likewise, ”1” is the set {φ}.

(c) The integer 8 is a set. Like wise, any integer is a set. Any rational
number m

n
or 171

233
is a set.

(d) The real number π is a set. Like wise, each real number x is a set.

(e) Then, of course, the collection of all integers Z is a set. The
collection of all rational numbers Q is a set. The collection of all
real numbers R is a set. The collection of all complex numbers C
is a set.

(f) A function f is also a set.

Russell’s Paradox

Various attempts to define sets, and work with them without any appar-
ent restrictions, led to various paradoxes. Most well known among them is
Russell’s Paradox.

Russell’s Paradox (1901): Let S be the collection of all objects that are
not members of themselves. So,

S = {x : x /∈ x}. Question : S ∈ S or not?

So, the question is whether S is a member of itself? Now,
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1. If S ∈ S then, by definition of S we have S /∈ S.

2. Conversely, if S /∈ S then again by definition of S, we have S ∈ S.

3. In summary,
S ∈ S ⇐⇒ S /∈ S.

§3 Axiomatic Set Theory

Because of such Paradoxes, mathematical community concluded that it
is not possible to define sets. They concluded that it is best to work under a
set of axioms, which we do not question.

Among several axiomatic set up, Zermelo-Fraenkel set theory is ac-
cepted as standard framework. Again, there are many equivalent formulation
of the Zermelo-Fraenkel set theory. Many provides nine axioms. (Search in-
ternet for more). Out of those, our textbook lists a few axioms, which will
suffice for this course.

§4 Four axioms from the textbook

1. A set is made up of elements, which are also sets. If a is an element of
S then we write a ∈ S.

2. (Empty Set:) There is exactly one set with no element. It is called
the empty set or the null set. It is denoted by φ.

3. (Specification:) Suppose S is a set. Let P (x) is a characteristic of
the elements x ∈ S. Then

T = {x ∈ S|P (x) is true} is a set.

For example, for interger x ∈ Z, let P (x) be the statement that ”x is
an even integer”. The

E = {x ∈ Z|P (x) is true} is a set.

describes the the ”set” of even integers. Assuming that Z is a set (which
we did not establish), it follows from this axiom that E is a set.
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4. (Well definedness): Suppose S is a set and a is an object (set), then

either a ∈ S or a /∈ S not both.

Remark. We will not get lost in set theory. We take a lot of things for
granted, that we always did. For exmple, we will not prove all the stements
we made at the beginning. We will not prove, each integer is a set, or π is a
set or Z,R are sets. We will take them for granted.

Other than that, we will need to define every object we work
with. We will need to provide proofs of any statement that pro-
claims something, which will be called lemmas and theorems etc.

What is a Definition? A definition describes a class of objects fully and
precisely. It is an if and only if type of statement.

1.1 Subsets, union etc.

Definition 1.1 A set B is said to be a subset of a set A, written as B ⊆ A,

if every element of B is also an element of A. Notationally,

B ⊆ A ⇐⇒ [x ∈ B =⇒ x ∈ A].

We say that B is a proper subset of A, if B ⊆ A and B 6= A.

Exercise. Let A be a set. Give two trivial examples of subsets of A.

Definition 1.2 Suppose A,B are two sets. The Cartesian product of

A×B is defined as

A× B = {(x, y) : x ∈ A, y ∈ B}.

Exercise. Describe A× φ.

Question. Is A× B = B × A?
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Example. Geometric realization of the Cartesian product R × R is the
Euclidean plane.

Notations. As usual Z will denote the set of all integers. Q will denote the
set of all rational numbers. R will denote the set of all real numbers. C will
denote the set of all complex numbers. Clearly,

Z ⊆ Q ⊆ R ⊆ C.

Before we proceed, we define intersection, union etc.

Definition 1.3 Let Xi be a collection of sets, indexed by a set i ∈ I. Also

let X, Y be two sets.

1. Define union

⋃

i∈I

Xi = {x : x ∈ Xi for some i ∈ I}.

So,

X ∪ Y = {x : x ∈ X OR x ∈ Y }.

2. Define intersection

⋂

i∈I

Xi = {x : x ∈ Xi ∀ i ∈ I}.

So,

X ∩ Y = {x : x ∈ X and x ∈ Y }.

3. We say that Xi are pairwise disjoint if no two have any common ele-

ment. That means, if

Xi ∩Xj = φ ∀ i, j ∈ I and i 6= j.

So, X, Y are mutually disjoint if X ∩ Y = φ.
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2 Relations

Definition 2.1 A relation between the sets A and B is a subsetR of A×B.

So,

R ⊆ A× B.

If (x, y) ∈ R we say x is related to y and write xRy. When R is clear from

the context, we also write x ∼ y to mean xRy.

A relation between X and itself, will be called a realtion on X.

Example. Suppose A is a set. Then the equality ” = ” is a relation between
A with itself. This is given by the subset

∆ = {(x, x) : x ∈ A} ⊆ A× A.

Example. Given any function f , its graph is a relation. For example, the
graph of f(x) =

√
x is given by the subset

G(f) = {(x,
√
x) : x ≥ 0} ⊆ R× R.

So, the graph G(f) is a relation between R with itself.

2.1 §1 Functions

We redefine functions in the set theoretic context.

Definition 2.2 Let X and Y be two sets. By a function f from X to Y , we

mean a relations f between X and Y (i.e. f ⊆ X × Y ) such that

∀ x there is exactly one (x, y) ∈ f.

1. If f is such a function, we write ”f : X −→ Y is a function from X to

Y ”.
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2. We also write y = f(x) to mean (x, y) ∈ f .

3. A function f is also called a map or mapping.

4. We say X is the domain of f and Y is the codomain. The range is

define as f(X) = {f(x) : x ∈ X}.

Remark. Note that the definition of a function f : X −→ Y comes with its

domain and codomain. In calculus courses, you ask the students to compute

the domain. That would be the ”baby way”.

Question. Consider the function f : R −→ R defined by f(x) = 2x. Also
consider the function g : R −→ R+ defined by g(x) = 2x where R+ = [0,∞).
Are these two functions same?

Definition 2.3 Let f : X −→ Y be a function. Then,

1. We say f is one to one (or injective), if

f(x1) = f(x2) =⇒ x1 = x2.

2. We say f is onto (or surjective), if range f(X) = Y . That means,

∀ y ∈ Y ∃ x ∈ X ∋ f(x) = y.

3. We say that f is bijective, if f is both injective and surjective.

Theorem 2.4 Suppose f : X −→ Y is a function. Then, f is bijective

if and only if there is a function g : Y −→ X such that gof = IDX and

fog = IDY . Such a g is unique. This function g is called the inverse of f

and it is denoted by g = f−1.
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Proof. Suppose f is bijective. Define g : Y −→ X as follows

∀ y ∈ Y, define g(y) = x if f(x) = y.

We can easily check, g is well defined and gof = IDX and fog = IDY .. As
a subset of Y ×X, g is given by

g = {(y, x) ∈ Y ×X : (x, y) ∈ X × Y }.
Conversely, suppose such a g exists. Then

f(x1) = f(x2) =⇒ gof(x1) = gof(x2) =⇒ x1 = x2.

So, f is one to one. Also, for y ∈ Y , we have y = f(g(y)). So, f is onto.

Notations 2.5 Let f : X −→ Y be a function.

1. For a subset A ⊆ X denote f(A) = {f(x) : x ∈ A}. So, f(A) ⊆ Y .

2. For a subset B ⊆ Y denote f−1(B) = {x : f(x) ∈ B}. So, f−1(B) ⊆ X.

2.2 §2 Cardinality

The cardinality of a set X measures the size of X. It is denoted by |X|.
When, X has only finitely many elements, |X| is the number of elements in
X.

Definition 2.6 Two sets X and Y are said to have same cardinality, if

there is a bijection f from X to Y .

1. The cardinality of Z is denoted by ℵ0 (read as ”aleph-null”). Notation-
ally, |Z| = ℵ0.

2. In fact, if X is countably infinite then |X| = ℵ0.

3. It is easy to see that |Z+| = ℵ0 and |Q| = ℵ0

4. A standard proof is given in the analysis classes that ℵ0 < |R|. This
fact is stated as that ”R is not countable”.
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3 Partitions and Equivalence Relations

Definition 3.1 A partition of a set S is a collection of nonempty subsets

Xi of S such that every element is in exactly one of them. This means, if Xi

are pairwise disjoint and S =
⋃

Xi. Each Xi is called a cell.

Example. R can be partitioned in to rationals Q and irrationals I.
R can also be partitioned in to intervals (n, n+ 1] with n ∈ Z.

Definition 3.2 An equivalence relation R on a set S is a relation on S

that satisfies the following three properties.

1. (Reflexive) ∀ x ∈ S xRx.

2. (Symmetric) ∀ x, y ∈ S (xRy =⇒ yRx).

3. (Transitive) ∀ x, y, z ∈ S (xRy and yRz) =⇒ xRz.

Examples

1. S be any nonempty set. The equality is an equivalence relation.

2. ≤ would not define an equivalence realtion on R. Because it is not
symmetric : 2 ≤ 2.5, but 2.5 6≤ 2.

3. (Congruence Modulo n:) Let n be a fixed positive integer. Define
a relation ≡n on Z as follows

∀ x, y ∈ Z define x ≡n y if n|x− y.

This is an equivalence relation. It is called the Congruence Modulo
n. (Proof. Exercise).

9



Theorem 3.3 Let S be a nonempty set and ∼ be an equivalence relation.

For a ∈ S define the equivalence class of a as

ā = {x ∈ S : x ∼ a}.

Then,

1. ∀ a ∈ S a ∈ ā

2. For a, b ∈ S we have

ā = b̄ ⇐⇒ a ∼ b.

3. The equivelance classes {ā : a ∈ S} gives rise to a partition of S.

Proof. By reflexive property a ∼ a and so a ∈ ā. So, (1) is proved.

To prove (2), first assume ā = b̄. Since a ∈ ā we have a ∈ b̄. So, b ∼ a.
By symmetry a ∼ b. So, =⇒ is established. To prove ⇐=, assume a ∼ b.
Let x ∈ ā. So, x ∼ a. By trasitivity, x ∼ b. So, x ∈ b̄. Therfore, ā ⊆ b̄.
Similarly, b̄ ⊆ ā. So, ā = b̄. So, both implications of (2) are established.

Now (3) follows from (1) and (2). For a ∈ S we have a ∈ ā. So, S =
∪{ā|a ∈ A}. By (2), the equivalence classes are pairwise disjoint. So, they
form a partition of S. The proof is complete.

The converse of this theorem is also true, as follows.

Theorem 3.4 Let X be a set and {Xi : i ∈ I} be a partition of X. Define

a relation on X as follows:

∀ x, y ∈ X define x ∼ y if ∃ i ∈ I ∋ x, y ∈ Xi.

Then, ∼ is an equivalence realtion on X. Also for a ∈ Xi the equivalence

class ā = Xi.
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Proof. Obviosly, for any x ∈ X we have x ∼ x, because xi ∈ Xi for some
i ∈ I. So, it is reflexive.

Now suppose x ∼ y. Then there is an i ∈ I such that x, y ∈ Xi. So,
y ∼ x. Reflexibilty is established.

For transitivity, let x ∼ y and y ∼ z. Then, x, y ∈ Xi and y, z ∈ Xj for
some i, j ∈ I. Since y ∈ Xi ∩ Xj, it follows i = j. So, x, z ∈ Xi. So, the
transitivity is established. So, ∼ is an equivalence relation.

It is also obvious, for a ∈ Xi the equivalence class ā = Xi. The proof is
complete. .

Summary: These two theorems say that giving an equivalence relation ∼
on X is same as giving a partition of X.

3.1 Example.

(Congruence Modulo n:) As before, let n be a fixed positive integer.
Define a relation ≡n on Z as follows

∀ x, y ∈ Z define x ≡n y if n|x− y.

Then, ≡n is an equivalence relation. This partitions Z into equivalence classes
a, where a ∈ Z.

1. In fact, there are exactly n equivalence classes:

0, 1, 2, . . . , n− 1.

Proof. Use division algorithm

2. Clearly
0 = n = 2n = rn ∀ r ∈ Z.

Similarly,
1 = 1 + n = 1 + 2n = 1 + rn ∀ r ∈ Z.

For any integer 0 ≤ k ≤ n− 1 we have

k = k + n = k + 2n = k + rn ∀ r ∈ Z.
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3. The set of all ≡n −equivalence classes is denoted by Z

nZ
. So,

Z

nZ
=

{

0, 1, 2, . . . , n− 1
}

The textbook defines

Zn = {0, 1, . . . , n− 1}.

There is a bijection

Zn
∼−→ Z

nZ
sending r 7→ r.

I will identify these two sets via this bijection.

Exercise. On Zn define addition and multiplication

a+ b := a+ b

and
a ∗ b := ab

Prove that this addition and multiplication are well defined. Also prove that
they satisfy ”all” the properties of addition and multiplication. Research,
which properties may not be satisfied, if any.
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4 Partially Ordered Sets and Zorns Lemma

Definition 4.1 Let S be a set and ”≤” be a relation. We say (S,≤) (or

simply S) is a Partially Ordered set, if for all a, b, c ∈ S the following

holds:

1. (Reflexive): We have

a ≤ a.

2. (Anti-Symmetric):

(a ≤ b and b ≤ a) =⇒ a = b.

3. (Trnasitive):

(a ≤ b and b ≤ c) =⇒ a ≤ c.

In addition to the four axioms of set theory, the following is another axiom
of set theorey (although it is called a ”Lemma”).

Definition 4.2 (Zorn’s Lemma) Suppose (S,≤) is a partially ordered set.

Suppose that every chain in S has an upper bound in S. Then S has a

maximal element m ∈ S.

This means ∀a ∈ S either a ≤ m or a is not related to m.

Remark. Zorn’s lemma is called a ”lemma” because it is equivalent to
”Axiom of choice”.
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5 Categories

Definition 5.1 A Category C consisists of the following

1. It has a class of objects C of objectes.

2. For each pair of objects X, Y there is a sets Hom(X, Y ). We assume

that these sets Hom(X, Y ) are disjoint. Elemnets f ∈ Hom(X, Y ) are

called morphisms from X to Y , written as X −→ Y .

3. Given objects X, Y, Z, there is a function

Hom(X, Y )×Hom(X, Y ) −→ Hom(X,Z)) (g, f) 7→ gof

gof is called the composition. The composition satisfy the follwoing:

(a) (Associativity) If f : X −→ Y, g : Y −→ Z, h : X −→ W are

morphisms then

ho(gof) = (hog)of.

(b) (Identity): For each object X there exists a morphisms 1X :

X −→ X such that

∀f : A −→ X, g : X −→ B 1Bof = f, go1B = g.

Example 5.2 1. The class S of all sets and the set maps is a category.

2. The class V(R) of all vector spaces over R and linear transformations.

3. The class G of all groups and group homomorphisms.

4. The class T of all topological spaces and continuous maps.

5. The class U of all subsets of Euclidean spaces Rn and continuous maps.
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Definition 5.3 Let C,D be two categories. A contravarient functor T

from C to D (denoted by T : C −→ D) consists of the follwoing:

1. To each object A of C it associtates an object T (A) in D. We write

A 7→ T (A).

2. To each mosphism f : A −→ B of C it associtates an morphisms

T (f) : T (A) −→ T (B) in D. such that

(a) T (1A) = 1T (A) for all objects A of C.

(b) T (gof) = T (g)oT (f) whenever the composition gof is defined for

two morphisms f, g of C.
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