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We will work over a quasi-projective variety over a field , though many
statements will work for arbitrary Noetherian schemes. The basic reference
is [2]. Facts about K0, K0 can be found in [4]. Of course most of this was
originally concieved by Grothendieck (and a few others) in this generality
and their accounts can be found in [3, 1].

1 K0 and K0 of schemes

Let X be a quasi-projective variety. We define K0(X) as follows. Let Fvb(X)
be the free abelian group on all isomorphism classes of vector bundles (of
finite rank) over X and consider the equivalence relation Rvb(X) generated
by the following. If 0 → E1 → E2 → E3 → 0 is an exact sequence of vec-
tor bundles, then [E2] = [E1] + [E3]. The quotient Fvb(X)/Rvb(X) is called
K0(X). Similarly we define K0(X) by taking the free abelian group Fcoh(X)
generated by all isomorphism classes of coherent sheaves on X modulo the
relation Rcoh(X) generated by [F2] = [F1] + [F3] whenever we have an exact
sequence of coherent sheaves, 0 → F1 → F2 → F3 → 0. K0(X) is a com-
mutative ring where multiplication is given by tensor products and K0(X)
is a module over K0(X), the action given by tensor product. We also have
a natural map K0(X) → K0(X) given by [E] going to itself. We may also
consider the free abelian group on all isomorphism classes of coherent sheaves
of finite projective dimension and going modulo a relation exactly as above
and let me temporarily call this group L(X). We have natural homomor-
phisms, K0(X) → L(X) → K0(X). Easy to check that the first map is an
isomorphism. We will see that all are isomorphisms if X is smooth. K0 is a
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functor from the category of schemes to category of commutative rings, which
is contravariant. If X = Spec R for a ring R, we may write K0(R), K0(R)
instead of K0(X), K0(X).

We start with some elementary facts about these groups. Any lemma
with a † should be considered routine and the reader is urged to work out a
proof before reading the proof.

Exercises:

1. Show that for any irreducible variety X, there exists a natural homo-
morphism rk : K0(X) → Z, where rk(E) is the rank of the vector
bundle E.

2. Compute K0, K
0 (which should be equal from what we mentioned be-

fore) for X = A1, P1.

3. Show that for any curve X, K0(X) = Z⊕Pic X, where Z corresponds
to rank as above.

4. Show that K0(X) = Z, where X = Spec R, R a local (Noetherian)
ring.

5. Let A = C[[t2, t3]] and R = A[T ]. Show that K0(R) 6= Z. Can you
compute it?

Next, we list some properties of these groups.

Property 1.1 (Functoriality) If f : X → Y is any morphism, we have an
induced map of rings, f ∗ : K0(Y ) → K0(X), given by f ∗[E] = [f ∗E], where
f ∗E is just the pull back of the vector bundle.

Proof: We certainly get a map f ∗ from Fvb(Y ) to Fvb(X) defined by, f ∗[E] =
[f ∗E]. If 0 → E1 → E2 → E3 → 0 is an exact sequence of vector bundles on
Y , then 0 → f ∗E1 → f ∗E2 → f ∗E3 → 0 is exact and thus we get an induced
map f ∗ : K0(Y ) → K0(X) as claimed. �

Property 1.2 (Flat pull-back) If f : X → Y is a flat morphism, then we
have a (flat) pull back, f ∗ : K0(Y ) → K0(X) defined exactly as above.

Proof: The proof is exactly the same as above since given an exact sequence
of sheaves 0 → F1 → F2 → F3 → 0 on Y , the induced complex, 0 → f ∗F1 →
f ∗F2 → f ∗F3 → 0 is exact, since f is flat. �
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Property 1.3 (Proper push-forward) If f : X → Y is a proper mor-
phism, then we have a map f∗ : K0(X) → K0(Y ) defined as, f∗([F ]) =∑

(−1)i[Rif∗F ].

Proof: This follows from the fact that given an exact sequence, 0 → F1 →
F2 → F3 → 0 on X, we have a long exact sequence,

0 → f∗F1 → f∗F2 → f∗F3 → R1f∗F1 → R1f∗F2 → · · ·

→ Rnf∗F2 → Rnf∗F3 → 0,

where n = max{dim f−1(y) | y ∈ Y }. �

Property 1.4 (Projection Formula) If f : X → Y is a proper morphism
and if α ∈ K0(X) and β ∈ K0(Y ) then f∗(f

∗(β) · α) = β · f∗(α).

Proof: Clearly, suffices to prove this for α = F , a coherent sheaf on X and
β = E, a vector bundle on Y . This follows from the usual projection formula,

Rif∗(f
∗E ⊗ F ) = E ⊗Rif∗F,

for all i. �

Lemma 1 The natural map K0(Xred) → K0(X) is an isomorphism.

Proof: Let I be the sheaf of ideals in OX defining Z = Xred ⊂ X. Then any
coherent sheaf F on X such that IF = 0 is in fact a sheaf over Z. Since
In = 0 for some n, we may filter any coherent sheaf F on X as,

0 = InF ⊂ In−1F ⊂ · · · ⊂ IF ⊂ F.

Then, by our relation, we see that [F ] =
∑

[IkF/Ik+1F ] in K0(X). Since
each of the terms come from Z, we see that K0(Z) → K0(X) is onto. (Notice
that there are no higher direct images in this situation.)

To check that this map is an isomorphism, we construct an inverse to the
above map. By an elementary induction on n, we may assume that I2 = 0.
We define a map f : Fvb(X) → K0(Z) as follows. If F is any coherent
sheaf on X define f(F ) = [IF ] + [F/IF ]. Notice that both IF, F/IF are
shevaes on Z. We claim that if G ⊂ F with IG = I(F/G) = 0, then
f(F ) = [G]+ [F/G] ∈ K0(Z). Since we have a surjective map F → F/G and
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I(F/G) = 0, we get an induced surjective map p : F/IF → F/G. Thus we
get a commutative diagram,

0 → IF → F → F/IF → 0
↓ q ‖ ↓ p

0 → G → F → F/G → 0

Thus we get that ker p ∼= coker q. So,

f(F ) = [IF ] + [F/IF ] = [G]− [coker q] + [ker p] + [F/G] = [G] + [F/G]

Next we check that f respects our relation in K0(X). If 0 → F → G →
H → 0 is an exact sequence of coherent sheaves let H1 = im, IG and let
H2 = H/H1. Similarly, let F1 = IG ∩ F and F2 = F/F1. Then we have a
commutative diagram,

0 0 0
↓ ↓ ↓

0 → F1 → IG → H1 → 0
↓ ↓ ↓

0 → F → G → H → 0
↓ ↓ ↓

0 → F2 → G/IG → H2 → 0
↓ ↓ ↓
0 0 0

Since all the sheaves occurring above, except the ones in middle row are
sheaves on Z, we get,

f([G]− [F ]− [H]) = ([G/IG] + [IG])− ([F2] + [F1])− ([G2] + [G1])

= ([G/IG]− [H2]− [F2]) + ([IG]− [H1]− [F1]) = 0.

This finishes the proof, since it is clear that the f constructed is indeed an
inverse to the surjective map K0(Z) → K0(X). �

Lemma 2 If X = X1 ∪X2 ∪ · · ·Xn, where Xi’s are connected componenets
of X, then K0(X) = K0(X1)⊕K0(X2) · · · ⊕K0(Xn). Similarly for K0. †

Proof: We will assume that X = X1∪X2, the rest being clear. We will prove
the statement for K0, the case for K0 being identical. If F is a coherent sheaf
on X, it clear that it is just F|X1 ⊕ F|X2 and the rest is obvious. �
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1.1 Extending sheaves

In this section, X will be a Noetherian scheme, Z ⊂ X a closed subscheme
and U = X − Z.

Lemma 3 Let X = Spec R, an affine Noetherian scheme, Z,U as above. If
F is any coherent sheaf on U , then it is globally generated.

Proof: Let I ⊂ R be the ideal defining Z and let f1, . . . , fr ∈ I be a set of
generators of I. Let Ui ⊂ U be the affine open susbet fi 6= 0. Then Ui’s
cover U . If F is a coherent sheaf on U , its restriction to Ui is coherent and
since Ui is affine, this restriction is given by a finitely generated module Mi

over Rfi
. If m ∈ Mi, then easy to see that fn

i m is a global section of F for
n >> 0. Now, picking generators mij ∈ Mi, we can choose integers nij so
that sij = f

nij

i mij are global sections of F . Immediate that these sij generate
F .

�

Lemma 4 If G is a coherent sheaf on X and H ′ ⊂ G|U is a subsheaf, then
there exists a subsheaf H ⊂ G so that H|U = H ′.

Proof: We define a presubsheaf H ′′ ⊂ G as follows. For any open set V ⊂ X,
define H ′′(V ) to be the inverse image of H ′(U ∩ V ) ⊂ G(U ∩ V ) = G|U(V )
under the natural restriction map G(V ) → G(U ∩ V ). Define H to be the
associated sheaf. One easily checks that H has all the required properties.
�

Lemma 5 If G is a coherent sheaf on U , there exists a coherent sheaf F on
X such that F|U ∼= G.

Proof: By Noetherian induction, suffices to show that, if U ⊂ V ⊂ X is the
largest open set to which G extends (as a coherent sheaf) then V = X. So,
we may as well start with the situation U = V and if V 6= X, then extend G
to a strictly larger open set. So, pick a point in Z (which is assumed to be
non-empty) and let V be an affine open neighbourhood. We will show that
G can be extended to U ∪ V , proving the lemma. To show this, clearly, it
suffices to show that we can extend the coherent sheaf G|U∩V to a coherent
sheaf on V . Thus we are reduced to proving that if V is affine and W ⊂ V
an open subset with a coherent sheaf G on W , then we can extend this to V
as a coherent sheaf.

5



By lemma [3], G is globally generated. So, we have On
W → G → 0 for

some n. Let K be the kernel. Since OW = OV |W , by lemma [4], we have
K ′ ⊂ On

V such that K ′
|W = K. Now it is clear that if we define F = On

V /K ′

then F|U ∼= G.
�

Property 1.5 (Localization) If Z ⊂ X is a closed subscheme and U =
X − Z, then we have an exact sequence,

K0(Z) → K0(X) → K0(U) → 0,

where the first map is just [F ] going to itself (a coherent sheaf on Z is nat-
urally a coherent sheaf on X, and coincides with the proper push-forward,
since clsoed immersions are proper) and the second map is just restriction
(which is just the flat pull back, since open immersions are flat).

Proof: It is clear that we have a complex as described above, since the com-
posite map from K0(Z) → K0(U) is zero. Also from the previous lemma, [5],
we see that the last map is onto. So, we need only prove exactness at the
middle.

We do this by exhibiting a map from K0(U) → P = K0(X)/K0(Z) which
is an inverse to the map given as above. So, we attempt to define a map
θ : Fcoh(U) → P by G 7→ [F ] where G is any coherent sheaf on U and F any
extension to X assured by lemma [5]. I claim that this map is well defined.
That is, the map does not depend on the choice of F . So, let F, F ′ be two
extensions. Then we have

G ⊂ (F ⊕ F ′)|U = G⊕G,

sitting as the diagonal. So, by lemma [4], we can find a H ⊂ F⊕F ′ such that
H|U = G sitting diagonally. Considering the projection, H → F , we see that
this map is an isomorphism on U . So, the kernel and cokernel are sheaves
supported on Z and thus [H] = [F ] ∈ P . Similarly, we see that [H] = [F ′]
and thus [F ] = [F ′] ∈ P . Thus θ is well defined.

Next let 0 → F → G → H → 0 be any exact sequence of coherent sheaves
on U . Let G′ be an extension of G to X. Then by lemma [4], we can find
F ′ ⊂ G′ such that this restricts to F ⊂ G on U . Let H ′ be the cokernel and
then we have 0 → F ′ → G′ → H ′ → 0, exact on X, which restricts to the
original exact sequence on U . But, by the previous pargraph, we know that

θ([G]− [F ]− [H]) = [G′]− [F ′]− [H ′] = 0 ∈ P.
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Thus we get a map θ : K0(U) → P . The rest is clear. �

Property 1.6 Let p : X×A1 → X be the projection, which is flat. Then the
natural map p∗ : K0(X) → K0(X × A1) is an isomorphism. More generally,
let E be a vector bundle on X and consider the natural map p : E → X,
where we have called by the same letter E, the associated scheme, then the
natural map p∗ is an isomorphism on K0.

Proof: First, we show that the map p∗ is onto. Proof is by induction on dim X.
If dim X = 0, then by lemmas [1, 2], we may assume that X = Spec k. Then
a coherent sheaf on X × A1 is just a finiteley generated module over k[T ].
Any finitely generated module M has a resolution,

0 → F1 → F0 → M → 0

over k[T ], where Fi’s are finitely genertaed free modules and thus [M ] =
[F0]−[F1], which is just the class of a free module of rank rank (F0)−rank (F1)
and this class clearly comes from K0(k).

Now, X be arbitrary and property proved for smaller dimensions. Again,
by lemma [1], we may assume that X is reduced, since (X ×A1)red = Xred×
A1. If Xi’s are the irreducible components of X, let Z = ∪i6=j(Xi ∩ Xj).
Then Z is closed in X, dim Z < dim X and thus by localisation [property
1.5], suffices to prove the surjectivity of K0(X − Z) → K0((X − Z) × A1).
But X − Z is the disjoint union of its connected components and by lemma
[2], we may assume that X is irreducible (and reduced). Let U ⊂ X be an
affine open set and Z = X −U . Then dim Z < dim X and so by localisation
[property 1.5], we may assume that X is affine. So, let X = Spec R, where
R is an integral domain. Let M be any finitely generated module. Let,
0 → G → F → M → 0 be a resolution, where F is free. Then G is torsion
free and thus G ⊗R K, where K is the fraction field of R, is a free module
over K[T ]. Thus, we may find an 0 6= f ∈ R such that Gf

∼= Rf [T ]m. Again,
by localisation and induction, we may replace R by Rf and then the class
of M is just the difference of two free modules, which comes from R. This
proves the result.

By induction on n, we easily see that K0(X) → K0(X × An) is onto. If
E is a vector bundle, then we may find an open set U ⊂ X such that, if
Z = X − U , dim Z < dim X and E|U = U × An, where n = rank E. Now,
using localization and induction on dim X, we see that p∗ : K0(X) → K0(E)
is onto.
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Finally, to show this map is an isomorphism, we proceed as follows. Let
Y ⊂ E be the zero section. Then we have p : Y → X an isomorphism. Also,
we have a resolution of OY ,

0 → ∧nE → ∧n−1E → · · · ∧2 E → E → OE → OY → 0.

We define a map Fcoh(E) → K0(Y ) = K0(X) by,

F 7→
∑

(−1)i[Tori
OE

(F,OY )].

Using the resolution above, we see that this is a finite sum and this map fac-
tors through K0(E). If G is a coherent sheaf over X, then Tori

OE
(p∗G,OY ) =

0 for i > 0 and

Tor0
OE

(p∗G,OY ) = p∗G⊗OE
OY = G,

with the identification of X with Y via p. Thus the map we defined above
from K0(E) → K0(X) is just the inverse of the surjective map p∗, proving
injectivity of p∗. �

Property 1.7 Let E be a vector bundle of rank r on X and let p : Y =
P(E) → X be the natural morphism. Let ξ be the class of the tautologi-
cal bundle O(1) in K0(Y ). Then any element in K0(Y ) can be represented
uniquely as

∑r−1
i=0 p∗(ai)ξ

i for ai ∈ K0(X).

Proof: First we show that there is a relation,

ξr + p∗(a1)ξ
r−1 + · · ·+ p∗(ar) = 0 ∈ K0(Y ).

We have a natural surjective map, p∗E → ξ which gives a long exact sequence,

0 → p∗(∧rE)(−r) → p∗(∧r−1E)(−r + 1) → · · · → p∗(E)(−1) → OY → 0.

This gives a relation,

[OY ]− [p∗E]ξ−1 + · · ·+ (−1)r[p∗(∧rE)]ξ−r = 0,

which when multiplied by ξr, gives a relation as described above. So, to show
that any element in K0(Y ) has a represenation as above, suffices to show that
it can be represented as linear combination of ξn for all n with coefficients
from K0(X).

8



As in the previous case, let us first prove that any element in K0(P(E))
can be written as a linear combination of the ξi and then show the uniqueness.
Again, the test case is when X = Spec k, k a field and then we are looking at
P = Pr−1. If H is a hyperplane, we have by localisation, an exact sequence,

K0(H) → K0(Pr−1) → K0(Ar−1) → 0.

The last term, from the previous step is just Z, generated by O. Then by an
easy induction, we see that K0(Pr−1 is generated by OLi

, where Li is a linear
subspace of dimension i. By the Koszul resolution for OLi

, one immediately
gets the result.

For the general case, using lemmas [1,2], coupled with the localization
sequence [property 1.5] for induction on the dimension of X, one can reduce
to the case when X = Spec R, R an integral domain and E is a free module
over R. If F is a coherent sheaf over R, then it corresponds to a finitely
generated graded module M over S, the polynomial ring in r variables over
R. We have a graded resolution of M×RK, where K is the fraction fileld of R,
F∗. Clearly, by clearing denomiantors, we see that there exists an 0 6= f ∈ R,
such that Mf has a finite free graded resolution over Sf . This translates into
a resolution of F over U = Spec Rf ×Pr−1 by vector bundles which are direct
sums of ξm for varying m. Thus, we see that in K0(U), F can be written as
claimed. By induction, we know that K0(SpecR/fR) → K0(Y − U) is onto.
Thus by localization, we are done. �

Property 1.8 If X is smooth, then the natural map K0(X) → K0(X) is an
isomorphism.

Proof: Smoothness ensures that every coherent sheaf has a finite resolution by
vector bundles and so it is clear that the map is onto. To check isomorphism,
we exhibit an inverse. If F is a coherent sheaf, let E∗ be a finite resolution
of F . That is, we have,

0 → En → En−1 → · · · → E1 → E0 → F → 0

exact for some n with Ei’s vector bundles over X. Thus, we may define a
map Fcoh → K0(X) by defining

F 7→
n∑

i=0

[Ei].
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By elementary homological algebra, one can check that this map is indepen-
dent of the resolution and it factors through K0(X). Finally, we note that if E
is a vectorbundle, we may take its resolution to be just itself and thus we see
that the above map is indeed an inverse to the natural map K0(X) → K0(X).
The reader may supply a proof along this line. Let me give a slight variation
below. So, for a (finite) resolution E∗ of F , define θ : Fcoh → K0(X) as
above. We will check that this is well defined. That is, if E∗, E

′
∗ are two

resolutions of F by vector bundles, then
∑

(−1)i[Ei] =
∑

(−1)i[E ′
i]. We pro-

ceed by induction on the homological dimension of F . If it is zero, then F
is a vector bundle. Then for any resolution E∗, it is clear that θ(E) = [E],
independent of the resolution. So, assume that we have proved the result
for sheaves of homological dimension < r and let F be a sheaf of homo-
logical dimension r. Suffices to show that if 0 → G → E0 → F → 0 and
0 → G′ → E ′

0 → F → 0 are exact with E0, E
′
0 vector bundles, so that homo-

logical dimension of G, G′ < r and thus θ(G), θ(G′) are well defined in K0(X),
then θ(G) + [E ′

0] = θ(G′) + [E0]. Consider 0 → H → E0 ⊕ E ′
0 → F → 0,

where the right hand map is just addition. Then homological dimension of
H < r and thus θ(H) is well defined. Let

0 → Tm → Tm−1 → · · ·T1 → T0 → H → 0,

is a resolution of H. We have a commutative diagram,

0 0
↓ ↓

0 → G → E0 → F → 0
↓ ↓ ‖

0 → H → E0 ⊕ E ′
0 → F → 0

↓ ↓
E ′

0 == E ′
0

↓ ↓
0 0

If we pull back the resolution of H above via the inclusion G ⊂ H in the
above diagram, we get a resolution of G of the following form.

0 → Tm → Tm−1 → · · ·T1 → T ′
0 → G → 0,

with an exact sequence, 0 → T ′
0 → T0 → E ′

0 → 0. Then, we get,

θ(H) =
m∑

i=0

(−1)i[Ti] = [T0] +
m∑

i=1

(−1)i[Ti]
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= [E ′
0] + [T ′

0] +
m∑

i=1

(−1)i[Ti] = [E ′
0] + θ(G).

Symmetrically, we get that θ(H) = [E0] + θ(G′), which proves that θ is
well-defined. θ respects the relation is standard homological algebra, by con-
structing a compatible resolution given exact sequences of coherent sheaves.
But, let me give a proof as before. So, let 0 → F → G → H → 0 be an
exact seqence. Proof os by induction on r, the maximum of the homolgical
dimensions of F, G, H. If it is zero, then all are vector bundles and then the
result is clear. Assume proved for less than r and now assume r as above. If
0 → F ′ → E1 → F → 0 and 0 → G′ → E2 → G → 0 are exact with Ei’s vec-
tor bundles, then we have a resolution, 0 → G′′ → E1 ⊕ E2 → G → 0, given
by addition as before on the right. Thus, we get a commutative diagram,

0 0 0
↓ ↓ ↓

0 → F ′ → E1 → F → 0
↓ ↓ ↓

0 → G′′ → E1 ⊕ E2 → G → 0
↓ ↓ ↓

0 → H ′ → E2 → H → 0
↓ ↓ ↓
0 0 0

Since F ′, G′′, H ′ have all homolgical dimension less than r, we get that
θ(G′′)− θ(F ′)− θ(H ′) = 0. On the other hand, we have θ(F ) = [E1]− θ(F ′)
etc. Thus,

θ(G)− θ(F )− θ(H) = [E1 ⊕ E2]− θ(G′′)− [E1] + θ(F ′)− [E2] + θ(H ′)

= ([E1 ⊕ E2]− [E1]− [E2])− (θ(G′′)− θ(F ′)− θ(H ′))

= 0.

This finishes the proof.
�

2 Chow groups

Next we define Chow groups and state similar properties for it. Fix an
integer k ≥ 0 and consider the free abelian group on all irreducible (reduced)
subvarieties Y ⊂ X of dimension k. These are called k-cycles.
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Lemma 6 ord P : K∗ → Z is a group homomorphism.

This enables us to describe principal divisors on aribtrary irreducible
varieties. So, let Z be a k + 1-dimensional reduced irreducible variety and
let g 6= 0 be a rational function on Z. For any Y ⊂ Z, closed subvariety of
dimension k, the local ring OZ,Y = A is a one dimensional local domain with
maximal ideal, say P . Also, g is a non-zero element in the fraction field. So,
define ord Y (g) = ord P (g). Thus, we can associate with g, the divisor

div g =
∑

Y⊂Z, Y irreducible,dim Y =k

ord Y (g)Y.

This is in fact a finite sum. That is, ord Y (g) = 0 for all but finitely many
Y ’s. To verify this, we may remove a hyperplane section from X, since the
hyperplane section is just a finite union of irreducible divisors. Thus, we may
assume that X = Spec A. By the last lemma, we may assume that g ∈ A.
By Krull’s principal ideal theorem, there are only finitely many height one
primes P containing g. It is clear that ord Q(g) 6= 0 only if g ∈ Q, Q a height
one prime ideal of A.

Now we are ready to describe our relation on the group of k-cycles. This
relation, called rational equivalence is as follows. For any subvariety Z ⊂ X
of dimension k + 1 and a non-zero rational function f on Z, we consider
div(f), the corresponding divisor. We put these cycles to be zero for all k+1
dimensional subvarieties of X and all non-zero rational functions on Z. The
quotient group is called Ak(X), the kth Chow group. A similar construc-
tion can be done replacing ‘dimension k’ subvarieties with ‘codimension k’
subvarieties and then it is called Ak(X). For reasonable varieties X, say of
dimension n, it is clear that Ak(X) = An−k(X). One usually denotes by
A∗(X) = ⊕Ak(X) and A∗(X) = ⊕Ak(X). Sometimes, we may drop the
asterisk if it is clear which group we are looking at or if it is irrelevant and
simply write A(X).

We need a couple of notions before we state the various properties. Let
Y ⊂ X be any subscheme and let Y1 be an irreducible (reduced) component
of Y . Then A = OY,Y1 is a zero-dimensional local ring and so we have an
integer, ord (Y, Y1), the length of A. If Yi, 1 ≤ i ≤ n are the irreducible
components of Y , thus we can define a cycle,

∑
ord (Y, Yi)Yi ∈ A(X), called

the cycle associated with the subscheme Y and written [Y ].
Next let f : X → Y be a dominant morphism of irreducible varieties.

Then we get an inclusion k(Y ) ⊂ k(X) of the rational function fields. If
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dim X = dim Y , then this is a finite extension and otherwise it is an infinite
extension. Define deg(X/Y ) = [k(X) : k(Y )] if it is finite and zero otherwise.

We will also assume in the following that a flat map f : X → Y has the
following property. There is an integer n so that for any subvariety Y ′ ⊂ Y ,
the irreducible componenets of f−1(Y ′) have all dimension n+dim Y ′, unless
it is empty. Sometimes we say that f is flat of relative dimension n. The
primary examples of such maps are open immersions (relative dimension 0),
p : E → X, where E is a vector bundle of rank n (relative dimension n) and
p : P(E) → X, E as above (relative dimension n− 1).

Now we are ready to state the properties as above for Chow groups.

Property 2.1 (Proper push-forward) If f : X → Y is a proper mor-
phism, we get homomorphisms f∗ : Ak(X) → Ak(Y ) defined as follows. For
an irreducible variety Z ⊂ X, let Z ′ = f(Z), which is necessarily a closed
subvariety of Y , since f is proper. Define f∗(Z) = deg(Z/Z ′)Z ′.

Proof: We need to check that the map defined above repects rational equiv-
alence. So, let W ⊂ X be a k + 1 dimensional subvariety, T = f(W ) and
let g be a non-zero rational function on W . There are three possibilities for
dim T namely k + 1, k or < k. We will treat them separately. Let us look
at the last case first. If dim T < k, then for any Z ⊂ W of dimension k,
f(Z) ⊂ T and thus deg(Z/f(Z)) = 0. So, we see that f∗(div g) = 0. Next
let us look at the case when dim T = k. So for any Z ⊂ W of dimension k,
we have either f(Z) = T or dim f(Z) < k. So, if div g =

∑
aiZi, we see that

its image under f∗ is just∑
ai deg(Zi/f(Zi))f(Zi) = (

∑
i|f(Zi)=T

ai deg(Zi/T ))T.

Thus, to compute this sum, we may go to the generic point η of T and then
Wη is a projective curve over η and the above sum is just the degree of the
divisor of g on Wη, which is zero from the theory of curves.

Finally, let us look at the case, dim T = k + 1. In this case, k(W ) is a
finite extension of k(T ) and we will show that

f∗(div g) = div Normk(W )/k(T )g,

which will finish the proof. Let D ⊂ T be an irreducible subvariety of
dimension k. We need to compute ord D(f∗(div g)). Since only varieties of
dimension k in f−1(D) can contribute to this, we may localise at D and so let
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A = OT,D, a local domain of dimension 1 whose fraction field is K = k(T ).
If Wi’s are the irreducible components of dimension k of f−1(D) ⊂ W , we
may semilocalise at these closed subsets and get B = OW,∪Wi

and whose
fraction field is L = k(W ). Then, A ⊂ B is a finite map. Let P be the
maximal ideal of A corresponding to D, Q1, . . . , Qn be the maximal ideals of
B, corresponding to Wis . PB ⊂ ∩Qi. Notice that ord Wi

(div g) = ord BQi
(g).

Thus, to prove the result, we only need to show that∑
[B/Qi : A/P ]ord Qi

(g) = ord P (Nk(W )/k(T )g). (1)

Notice that both sides of the above equation are additive. i.e. for 0 6= g, h ∈
B, the terms are just sums of the corresponding terms for g, h. Next, if
g ∈ A, notice that NL/K(g) = gn where n = [k(W ) : k(T )]. From lemma [7,
4), 5)] we see that

lA(B/gB) = nlA(A/gA) = lA(A/gnA) = lA(A/NL/K(g)).

Since B/gB =
∏

BQi
/gBQi

by Chinese Remainder Theorem, we get that
lA(B/gB) =

∑
lA(BQi

/gBQi
). Now, by lemma [7, 6)] we get that

lA(BQi
/gBQi

) = [B/Qi : A/P ]lB(BQi
/gBQi

).

Putting these together, we have,

lA(A/NL/K(g)) =
∑

[B/Qi : A/P ]lBQi
(BQi

/gBQi
).

This proves 1 in this case. �

Property 2.2 (Flat pull-back) Let f : X → Y be a flat morphism of
relative dimension n. Then we have a map f ∗ : Ak(Y ) → Ak+n(X) defined by
f ∗(Y ′) = [f−1Y ′], where Y ′ ⊂ Y is an irreducible variety of Y of dimension
k and f−1Y ′ is the scheme-theoretic inverse image subscheme of X.

Proof: We need only check that the map defined above respects rational
equivalence. This is straight forward. �

Property 2.3 (Loclaization) For a closed subscheme Z ⊂ X, we have an
exact sequence,

Ak(Z) → Ak(X) → Ak(X − Z) → 0,

the maps being the obvious ones.
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Proof: It is easy to see that we have maps as described above, since Z ⊂ X is
proper, being a closed immersion and X−Z ⊂ X is flat of relative dimension
0, being an open immersion. Also, it is easy to see that the composite of the
maps is zero. If D ⊂ X − Z is a closed subvariety of dimension k, then D,
the closure of D in X, is a closed subavriety and it is clear that D 7→ D,
proving surjectivity on the right. Like in the proof in K0 case, to show
exactness in the middle, we procced as follows. If W ⊂ X − Z is a k + 1
dimensional subvariety, g 6= 0 a rational function on W suufices to show that
the closure of div g in X gives the zero element in Ak(X)/Ak(Z). It is easy
to see that if W is the closure of W in X, then the class of the closure of
div g in Ak(X)/Ak(Z) is the same as div g in W and thus zero. �

1. Let E be a vector bundle on X and let p : E → X be the natual map
(flat of relative dimension n, the rank of E). Then the natural map
p∗ : Ak(X) → Ak+n(E) is an isomorphism.

2. (Intersection) Let D be any Cartier divisor on X, so that O(D) is a line
bundle. Then we get a map, Ak(X) → Ak−1(X) given by ‘intersecting’
with D. (This requires certain amount of finesse, since we will have
to intersect varieties completely contained in D and in some sense the
crucial part of intersection theory). We write for an α ∈ Ak(X), the
image in Ak−1(X) by D ·α and sometimes we may drop the ·. This will
depend only on the rational equivalence class of the divisor D and thus
we may write this as O(D) · α or even more suggestively, as c1(D) · α.

3. Let E be a vector bundle of rank n and p : P(E) → X and ξ as
before. Then any element in A(P(E)) can be uniquely represented as∑n

i=0 ξi · p∗(ai), where ξ · α is defined as above.

3 Chern classes

Next we define Segre and Chern classes. Let E be a vector bundle of rank
n+1 on X, p : P(E) → X and ξ as above. Notice that p is a proper and flat
map of relative dimension n. We define the ith Segre class si(E) as follows.
If α ∈ Ak(X), define si(E) · α = p∗(ξ

n+i · p∗(α)) ∈ Ak−i(X). So, these are
not elements of the Chow group, but a collection of homomorphisms from
Ak → Ak−i for each i, k. The segre class map has the following properties.

1. si(E) · α = 0 if i < 0.
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2. s0(E) = Id.

3. If E, F are vector bundles on X, then for α ∈ A(X) one has si(E) ·
(sj(F ) · α) = sj(F ) · (si(E) · α).

4. If f : X → Y is proper, E a vector bundle on Y and α ∈ A(X),

f∗(si(f
∗E) · α) = si(E) · f∗(α).

5. If f : X → Y is flat, E a vector bundle on Y and α ∈ A(Y ), then,

si(f
∗E) · f ∗(α) = f ∗(si(E) · α).

6. If E is a line bundle on X, then si(E)·α = −c1(E)·α for any α ∈ A(X).

Given a vector bundle E, consider the power series,

st(E) =
∑

si(E)ti = 1 + s1(E)t + s2(E)t2 + · · · .

Define the Chern polynomial (which is apriori a power series) to be the inverse
of this power series. That is, ct(E) = st(E)−1. So,

ct(E) =
∑

ci(E)ti = 1 + c1(E)t + c2(E)t2 + · · ·

Explicitly,

c0(E) = 1, c1(E) = −s1(E), c2(E) = s1(E)2 − s2(E) etc.

Next we state some properties of chern classes.

1. If i > rank E, then ci(E) = 0.

2. ci(E) · cj(F ) = cj(F ) · ci(E) for any two bundles E, F .

3. (Projection formula) If f : X → Y is a proper morphism and E a
vector bundle on Y , then,

f∗(ci(f
∗E) · α) = ci(E) · f∗(α),

for α ∈ A(X).
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4. (flat-pull back) If f : X → Y is flat and E a vector bundle on Y , then,

ci(f
∗E) · f ∗(α) = f ∗(ci(E) · α),

for any α ∈ A(Y ).

5. (Whitney sum) If 0 → E → F → G → 0 is an exact sequence of vector
bundles on X, then ct(F ) = ct(E) · ct(G).

6. (normalization) If E is a line bundle on X with E ∼= O(D) for a divisor
D, then c1(E) · [X] = [D].

7. If E is a vector bundle of rank n on X, p : P(E) → X and ξ as usual,
then we have a relation,

ξn + c1(p
∗E)ξn−1 + c2(p

∗E)ξn−2 + · · ·+ cn(p∗E) = 0.

Notice that Whitney sum ensures that chern class map is well defined in
K0(X). That is, we can speak unambiguosly of the chern class of an element
in K0(X). Consider a vector bundle of rank n and write the polynomial∑

ci(E)T n−i. Since c0 = 1, this is a monic polynomial. The ‘formal’ roots
of this polynomial are called the chern roots of E. So let a1, a2, . . . , an be
the chern roots. Then we define the chern character of E to be, ch (E) =∑

exp(ai). Notice that this formal expression has terms only involving the
chern classes, since it is invariant under the symmetric group acting on the
roots. Just to get a feel, let me write a few terms.

ch (E) = n + c1 +
1

2
(c2

1 − c2) +
1

6
(c3

1 − 3c1c2 + c3) + · · ·

Let E and ai as above. Define the Todd class of E to be,

td (E) =
∏ ai

1− exp(−ai)
,

and as before note that the terms are actually expressible in terms of the
chern classes of E.
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4 Chow rings of smooth varieties

If X is a smooth variety, we can make A∗(X) into a commutative ring.
This is the main theme of intersection theory and fairly delicate. If α ∈
Ak(X) and β ∈ Al(X), we should construct a suitable element α · β ∈
Ak+l(X). For an arbitrary (singular) variety, this is impossible in general.
The reason why there is a possibility of making sense of this in the smooth
case is the following. We may consider the cycle α × β ∈ Ak+l(X × X).
Now we may try to define an intersection with X ⊂ X × X, sitting as the
diagonal. If X is smooth, then the normal bundle of this diagonal is a vector
bundle of rank n = dim X and the earlier techniques of vector bundles can be
brought into play (though, requires a lot more justification and this method
was discovered by Fulton and McPherson). This enables one to define an
intersection product in A∗(X) making it into a commutative graded ring,
with [X] ∈ A0(X) as the identity element. Thus, if X is a smooth variety,
we may and shall consider chern classes as elements of A∗(X) as follows.
ci(E) will be identified with ci(E) · [X] ∈ A(X). With this identification,
chern character becomes a group homomorphism ch : K0(X) → A∗(X). If
f : X → Y is a proper map of smooth varieties, we may ask whether f∗ and
ch commute? That is to say, whether for an element α ∈ K0(X) = K0(X),
(ch ◦ f∗)(α) = (f∗ ◦ ch )(α) in A(Y )? This is not true and Grothendieck-
Riemann-Roch Theorem tells you how to modify this to get a precise answer.
We write TX for the tangent bundle of a smooth variety X.

Finally we can state the Grothendieck Riemann-Roch Theorem.
Theorem: Let f : X → Y be a proper morphism of smooth varieties. Then
for any α ∈ K0(X), we have,

ch (f∗α) · td (TY ) = f∗(ch (α) · td (TX)),

in A(Y )⊗Z Q.
Let us understand this theorem in the simplest cases. So, let us assume

that Y is a point. Then A(Y ) = Z generated by the class of the point. Let
X be a smooth projective curve and TX its tangent bundle. If E is a vector
bundle, then

f∗([E]) = H0(E)− H1(E)

and thus once we identify A(Y ) with Z, we see that

f∗([E]) = χ(E) = h0(E)− h1(E).
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Taking α = 1 ∈ A(Y ) in the theorem, we see that,

χ(OX) = f∗(td (TX)).

One easily checks from our definition of td , that td (TX) as an operator is
just 1+ 1

2
c1 where c1 = c1(TX). Therefore, we get that td (TX) as an element

of
A(X) = A1(X)⊕ A0(X) = Z[X]⊕ PicX

is just [X]+ 1
2
c1(TX) · [X]. Since f∗ : A(X) → A(Y ) is zero on A1(X) and just

computes the degree of the divisor on A0(X), we see that χ(OX) = 1− g =
1
2
deg TX . This is something we already knew, since deg TX = 2 − 2g. Now

applying to an arbitrary vector bundle E, we will get the usual Riemann-
Roch,

χ(E) = deg E + r(1− g)

where r = rank E.
The proof of Riemann-Roch is usually divided into two steps. Any proper

map f : X → Y as above of smooth varieties can be factored into two maps.
A closed embedding i : X → Y ×Pn for some n and p : Y ×Pn → Y , the first
projection, so that f = p◦ i. Then one proves the theorem for i, p separately,
where we have much more control on the situation. It is in the latter case of
projection that we will be forced to have denominators and thus end up not
in A(Y ) but A(Y )⊗Z Q. It is freqently useful not to do this, especially when
we are interested in torsion elements. This works only for closed embeddings.

First we define the total chern class of a vector bundle E on a smooth
variety X to be, c(E) = (

∑
ci(E))[X]. This gives, by Whitney sum a ho-

momorphism from K0(X) → A×(X) where the latter is the multiplicative
group consisting of elements of the form 1 + a1 + a2 + · · ·, where ai ∈ Ai(X).

5 Riemann-Roch without denominators

Theorem: (Riemann-Roch without denominators) Given non-negative in-
tegers d, e, there exists a unique power series

P (T1, . . . , Td, U1, . . . , Ue) ∈ Z[[Ti, Uj]]

such that for any closed embedding f : X → Y of smooth varieties with
normal bundle N of rank d and any vector bundle E of rank e on X, we
have,

c(f∗[E]) = 1 + f∗(P (c1(N), . . . , cd(N), c1(E), . . . , ce(E)).
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Using this formula, one checks that for any vector bundle E as above
on X, cq(f∗E) = 0 for 0 < q < d and computing the isobaric element of
degree 0 of P , one gets that for any vector bundle of rank e on X, cd(f∗E) =
(−1)d−1(d− 1)!e[X] ∈ Ad(Y ).

Next consider the filtration in K0(X), X non-singular (or K0(X)) given
as follows. For any integer p ≥ 0, let F pK0(X) = F p generated by coherent
sheaves whose support has codimension greater than or equal to p. Then we
get a filtration,

0 ⊂ F n ⊂ F n−1 ⊂ · · ·F 1 ⊂ F 0 = K0(X),

where n = dim X. Using Riemann-Roch without denominators, one checks
that for any α ∈ F p, ci(α) = 0 for 0 < i < p. Thus we get homomor-
phisms, cp : F p/F p+1 → Ap(X). We always have natural homomorphisms
φp : Ap → F p/F p+1, which is always onto. Riemann-Roch above implies that
the composites, φp ◦ cp and cp ◦φp are both multiplciation by (−1)p−1(p−1)!.
In particular, we get that c1, c2 are isomorphisms. A non-trivial theorem of
Murthy will ensure that cn for n = dim X is an isomorphism for an affine
variety X over an algebraically closed field.

6 Appendix: Modules of finite length

Before we describe the relations we want to impose on these free abelian
groups, let me state some elementary results about modules of finite length.
If A is a Noetherian ring and M a finitely generated module over A (neither of
these assumptions are necessary, though we will assume it for convenience),
we say that M is of finite length if M has a filtration, 0 = Mn ⊂ Mn−1 ⊂
· · · ⊂ M1 ⊂ M0 = M with Mi/Mi+1

∼= A/Mi, where Mi ⊂ A are maximal
ideals. Such a filtration, if it exists is called a maximal filtration and n is the
length of the filtration. For a module of finite length, we will call the least
possible length of all maximal filtrations the length of M , and write lA(M)
or when there is no confusion l(M) to denote this number.

Lemma 7 1. If M is a module of finite length, then any maximal filtra-
tion of M has length = l(M).

2. Let A be a ring (as always Noetherian) and let 0 → M → N → P → 0
be an exact sequence of modules. Then N is of finite length if and only
if M, P are of finite length. In this case, l(N) = l(M) + l(P ).
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3. Let A be a one-dimensional domain and 0 6= a ∈ A. Then for any
finitely generated module M , l(M/aM) < ∞.

4. Let A, a as above and M be a finitely generated torsion free module over
A. Then l(M/amM) = ml(M/aM).

5. Let A, a,M be as above and let rank of M be n. Then l(M/aM) =
nl(A/aA).

6. Let (A, P ) ⊂ (B, Q) be a map of local rings with P ⊂ Q and let M be a
module over B with lB(M) < ∞. Further assume that [B/Q : A/P ] <
∞. Then M is a finite length module over A and lA(M) = [B/Q :
A/P ]lB(M).

Proof: The first one is just Jordan-Hölder Theorem.
For the second let us denote by π the map from N → P . If l(N) < ∞

with a maximal filtration {Ni}, one can see easily that {Pi = π(Ni)} gives a
filtration of P and Pi/Pi+1 is either A/M for a maximal ideal or zero. Thus
we can extract a finite maximal filtration for P . Similarly, we get a filtration
Ni ∩M for M , showing that l(M) < ∞. Now assume that both M, P have
finite length and let

0 = Mn ⊂ Mn−1 ⊂ · · · ⊂ M0 = M, 0 = Pk ⊂ Pk−1 ⊂ · · · ⊂ P0 = P

be maximal filtrations. Then, one easily sees that,

0 = Mn ⊂ Mn−1 ⊂ · · · ⊂ M0 = M = π−1(Pk) ⊂ π−1(Pk−1) ⊂ · · ·

⊂ π−1(P0) = N

is a maximal filtration of N and this also shows that l(M) + l(P ) = l(N).
�

Let A be a one dimensional domain, 0 6= a ∈ A and let P ⊂ A be a
maximal ideal. Then by the above lemma, l(AP /aAP ) < ∞ and we define
ord P (a) = l(AP /aAP ).

Lemma 8 Let A, P as above and let K be the fraction field of A.

1. Let 0 6= g ∈ K. Then for any represenataion g = a/b with a, b ∈ A,
l(AP /aAP )− l(AP /bAP ) is constant, which we will call ord P (g).
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2. Let M be a finitely generated torsion free module over A. If φ : M → M
is an A-module endomorphism which is injective, then l(M/φ(M)) <
∞ and l(M/φ(M)) = ord P (det(φ)).

Proof: Clearly, we may assume that A = AP , by localising. Thus we may
assume that A is a local domain with maximal ideal P . If g = a/b = c/d,
with a, b, c, d ∈ A, then ad = bc and so, l(A/adA) = l(A/bcA). But, we have
an exact sequence,

0 → A/aA
d→ A/adA → A/dA → 0,

and so, l(A/adA) = l(A/aA) + l(A/dA). Similarly, we have l(A/bcA) =
l(A/bA)+ l(A/cA) and so, we get, l(A/aA)+ l(A/dA) = l(A/bA)+ l(A/cA).
So, we get l(A/aA)− l(A/bA) = l(A/cA)− l(A/dA). �

References

[1] Armand Borel and Jean-Pierre Serre. Le théorème de Riemann-Roch.
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