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In this chapter, Section 1 is from the Book of Lam. Rest is from ([TWGI,
BW]).

1 Scharlau’s Transfer

Let F →֒ K be an extension of fields.

1. For a F−quatratic space (V,B, q), we define a K−quatratic space
(VK , BK , qK) where

(a) VK = K ⊗ V ,

(b) Define BK : VK × VK −→ K by

BK(k ⊗ v, k′ ⊗ v′) := kk′B(v, v′) ∀ k, k′ ∈ K, v, v′ ∈ V.

It means,

BK

(∑
ki ⊗ vi,

∑
k′
j ⊗ v′j

)
:=

∑
kik

′
jB(vi, v

′
j) ∀ ki, k

′
j ∈ K, vi, v

′
j ∈ V.

It needs a checking that BK is well defined.
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(c) It also means qK(k ⊗ v) = k2q(v).

2. Suppose {v1, . . . , vn} is a basis of V and B(q) be the matrix of V with
respect to this basis. Then, B(q) is also the matrix of VK with respect
to {1⊗ v1, . . . , 1⊗ vn} of VK .

3. Let r : F →֒ K the inclusion. As before M(F ) denotes the monoid of
isometry classes of quadratic forms over F . Then,

(a) There is a monoid homomorphism M(F ) −→ M(K).

(b) This induces a homomorphism of the Grothendieck Witt groups:
r̂∗ : Ŵ (F ) −→ Ŵ (K).

(c) Note r̂∗(HF ) = HK . So, r̂∗ induces a homomprphism of Witt
Groups r∗ : W (F ) −→ W (K). We have trhe commutative dia-
gram

M(F ) //

��

Ŵ (F ) //

r̂∗

��

W (F )

r∗

��
M(K) // Ŵ (K) // W (K)

4. This association F 7→ W (F ), r 7→ r∗ defines a functor from the category
of fields (with char 6= 2) to the category of commutative rings.

5. Note Ŵ (R) ∼= Z⊕ Z, W (R) ∼= Z, Ŵ (C) ∼= Z, W (C) ∼= Z2. So, we can
compute the maps:

r̂∗ : Ŵ (R) −→ Ŵ (C), r∗ : W (R) −→ W (C).

Among what Lam draws our attention:

(a) r̂∗(〈1, 1〉) = HC ∈ Ŵ (C).

(b) More generally, for

a ∈ Ḟ and K = F (
√
a), r̂∗(〈1,−a〉) = HK ∈ Ŵ (K)
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1.1 Scharlau’s Transfer

Let r : F →֒ K be a field extension. Let s : K −→ F be a nonzero F−linear
functional, on the vector space K.

1. Note s is surjective. If s(1) = 1 then sr = 1F .

2. Suppose (U,B, q) is a quadratic space over K. The the composition
sB is a F−bilinear form on U

U × U
B //

sB
##G

GGGGGGGG K

s

��
F

So, (U,B,Q) defines a quadratic form (U, sB, sq) over F , where (sq)(x) =
(sB)(x, x) = s(B(x, x)).

Proposition 1.1. If (U,B) is a regular K−quadratic space, then (U, sB) is

a regular F−quadratic space.

Proof. Soppose sB(x0, U) = 0 for some x0 ∈ U . So, s(B(x0, U)) = 0 ∀y ∈
U . Since B is regular B(x0, y0) 6= 0 for some y0 ∈ U . For any c ∈ K we have

B

(
x0,

c

B(x0, y0)
y0

)
=

c

B(x0, y0)
B(x0, y0) = c

However, s(c0) = 1 for some c0 ∈ K. So,

s

(
B

(
x0,

c0
B(x0, y0)

y0

))
= s(c0) = 1.

This is a contradiction. The proof is complete.

Notations and Comments Let s : K −→ F be as above. We introduce the
notations:

1. If U is the K−quadratic space, s∗(U) denote the quadratic F−space
with bilinear for sB.

2. s∗(U) is called the "Transfer" of U .
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3. We also have
dimF s∗(U) = [K : F ] dimK U.

4. Note s∗(〈1〉K) is the quadtaric space with the F−bilnear form (x, y) 7→
s(xy)

5. We apply the above to the trace map trK/F : K −→ K. Consult: Ex
30, Chapter I.

Frobenius Reciprocity

Theorem 1.2. Let r : F →֒ K be a finite field extension and s : K ։ F be

a nonzero linear functional. Let V be a quadratic space over F and U be a

quadratic space over K. Then, there are F−isometries:

s∗(r̂
∗V )⊗K U) ∼= V ⊗F s∗(U).

In particular, taking U = 〈1〉K we have

s∗(r̂
∗V ) ∼= V ⊗F s∗(〈1〉K).

Proof. Define

s∗(K ⊗F V )⊗K U) −→ V ⊗F s∗(U) by (k ⊗F v)⊗K u 7→ v ⊗F (ku).

It is claimed that f is an isometry. First, it is obvious that f is a F−linear
isomorphism. For k, k′ ∈ K, u, u′ ∈ U and v, v′ ∈ V compute inner products:
First, on the codomain

〈f((k ⊗ v)⊗K u), (k′ ⊗ v)′ ⊗K u′)〉F = 〈v ⊗ (ku), v′ ⊗ (k′u′)〉F

= 〈v, v′〉V · 〈ku, k′u′〉s∗U = 〈v, v′〉V · s(kk′〈u, u′〉U).
Now, compute inner product on the domain s∗(r̂

∗V )⊗K U):

〈(k ⊗ v)⊗K u, (k′ ⊗ v)′ ⊗K u′〉s∗(XXX) = s(〈k ⊗ v, k′ ⊗ v′〉K⊗V · 〈u, u′〉U)

= s(kk′〈v, v′〉V · 〈u, u′〉U) = 〈v, v′〉V s(kk′〈u, u′〉U).
The proof is complete.
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Corollary 1.3. We have s∗(HK) is a hyperbolic F−space.

Proof. w ehave

s∗(HK) = s∗(r̂
∗(HF ) = HF ⊗ s∗(〈1〉K) = [K : F ]HF by I.6.1.

The proof is complete.

Remark 1.4. We restate theorem 1.2 and other facts:

1. s∗ induces a morphism s∗ : Ŵ (K) −→ Ŵ (F ) of Ŵ (F )−modules.

2. Similarly, s∗ induces a morphism s∗ : W (K) −→ W (F ) of W (F )−modules.

3. s∗ is not ring homomorphism. But this is functorial: Suppoe F ⊆ K ⊆
L are two finite extensions of fields. Let s : K −→ F and t : L −→ K

be two linear functionals. Then, (ts)∗ = s∗t∗.

4. Choice of s:

(a) First, by (1.1), s∗(〈1〉K) is regular. So, s induces an isomorphism

K −→ K∗ sending y 7→ s(∗y)

(b) Let t : K −→ F be another functional. By above, ∃ k ∈ K ∋ t(z) =

s(kz) ∀ z ∈ K.

(c) So, there is a commutative diagram

Ŵ (K)
〈k〉K //

t∗ $$H
HH

HH
HH

HH
Ŵ (K)

s∗
��

Ŵ (F )

Proof. Suppose (U,B, q) is a regualr quadratic K−space. Then, (tB)(u, v) =

t(B(u, v)) = s(kB(u, v)). The proof is complete.

Since 〈k〉K is a unit, s∗(Ŵ (K)) = t∗(Ŵ (K)). So, the ideal s∗(Ŵ (K)) is

independent of s. We say s∗(Ŵ (K)) is the transfer ideal.
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We can do the same for the Witt groups and define transfer ideal of W (F ).

Corollary 1.5. Let r : F →֒ K be a finite field extension. Define W (K/F )

by the exact sequence

0 // W (K/F ) // W (F ) r∗ // W (K)

Let T ⊆ W (F ) be the transfer ideal. Then, TW (K/F ) = 0.

Proof. Let s : K −→ F be any F−linear functional. Then T = s∗(W (K).
Let U be any K−quadratic form and V be any F−quadratic form. Then,

s∗(VK ⊗K U) = V ⊗F s∗(U).

Suppose V ∈ W (K/F ). Then, VK is hyperbolic. So, by (1.3), LHS is hyper-
bolic. The proof is complete.
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2 Residue class map

Let (A,m) be a local integral domain with dimA = 1. and K = Q(A) be the
field of fractions of A. We define a group homonorphism W (K) −→ W (k).

1. We define a homonorphism W (K) −→ W (k).

2. Note there is no map from K to k or conversely.

First, we consider Discrete Valuation rings.

1. So, let (A, π, k) be a DVR and K = Q(A).

2. Any element of α ∈ K can be written as α = λπr, where λ ∈ A is a
unit and r ∈ Z.

3. Define ∂1, ∂2 : W (K) −→ W (k) as follows:

∂1(〈λπr〉) =
{

〈λ〉 if r is even
0 if r is odd.

and ∂2(〈λπr〉) =
{

0 if r is even

〈λ〉 if r is odd

4. First, note ∂i are well defined on the set of isometry classes one dimen-
sional form.

〈λπr〉 ∼= 〈µπs〉 ⇐⇒ λπr = (u2π2t)µπs =⇒ 2 = s+ 2t, λ = u2µ.

5. Since, any form is diagonalizable, ∂i is defined on W (K).

Before we proceed to ptove that this is a groups homomorphism, recall the
theorem II.4.3 (the Witt version):

Theorem 2.1. Let F be the free abelian group generated by {ea : a ∈ Ḟ}.
Let R be the subgroup generated by

1. (R1) {eab2 − ea : a, b ∈ Ḟ}

2. (R2) {ea + eb − ea+b − eab(a+b) : a, b, a+ b ∈ Ḟ}

3. (R3) {e1 + e−1}
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Then W (F ) ∼= F
R

.

Theorem 2.2 (Springer, Knebusch). We will prove that ∂i are homomor-

phism of groups. These are called the residue class homomorphisms

Proof. We will prove that ∂1 homomorphism of rings. For a ∈ Ḟ , let ea
be an indeterminate and G =

⊕
Z[ea] the free abelian group generated by

{ca : a ∈ Ḟ}. define ∂ : G −→ W (k) exactly like ∂1. Write

a = λaπ
na , b = λbπ

nb and a+ b = λa+bπ
m.

1. (R1) We prove ∂(eab − eaeb) = 0.

∂(eab2 − eaeb) =

{
if na is even 〈λaλ2

b〉 − 〈λa〉 = 0
if na is odd 0− 0 = 0

2. (R2) Assume na < nb. Then,

a+ b = (λa + λbπ
nb−na)πna and (a+ b)ab = (λa + λbπ

nb−na)λaλbπ
2na+nb

Now assume na, nb are even. Then,

∂(ea + eb − ea+b − e(a+b)ab) = 〈λa〉+ 〈λb〉 − 〈λa〉+ 〈λ2
aλb〉 = 0

If both are odd,

∂(ea + eb − ea+b − e(a+b)ab) = 0 + 0 + 0 + 0 = 0

Now suppose na is even and nb is odd. Then,

∂(ea + eb − ea+b − e(a+b)ab) = 〈λa〉+ 0− 〈λa〉 − 0 = 0

Suppose na is odd and nb is even. Then,

∂(ea + eb − ea+b − e(a+b)ab) = 0 + 〈λb〉 − 0− 〈λ2
aλb〉

Now consider na = nb =: n. So,

a+ b = (λa + λb)π
n = λa+bπ

m and (a+ b)ab = λa+bλaλbπ
2n+m

Clearly, n ≤ m.
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1. Suppose na = nb = n = m Then,

λa + λb = λa+b

(a) Let n = m be odd. Then,

∂(ea + eb − ea+b − e(a+b)ab) = 0 + 0 + 0 + 0 = 0

(b) Let n = m be even. Then,

∂(ea + eb − ea+b − e(a+b)ab) = 〈λa〉+ 〈λb〉 − 〈λa+b〉 − 〈λaλbλa+b〉

= 〈λa〉+ 〈λb〉 − 〈λa + λb〉 − 〈λaλb(λa + λb)〉 = 0 by (R2)

2. Now assume n < m.In this case λa + λb = 0.

(a) Let both m,n be odd. Then,

∂(ea + eb − ea+b − e(a+b)ab) = 0 + 0 + 0 + 0 = 0

(b) n is even and m is odd. Then,

∂(ea + eb − ea+b − e(a+b)ab) = 〈λa〉+ 〈λb〉+ 0 + 0 = 0.

(c) n odd and m even.

∂(ea + eb − ea+b − e(a+b)ab) = 0 + 0− 〈λa+b〉 − 〈λaλbλa+b)〉

= 0 + 0− 〈λa+b〉+ 〈λ2
aλa+b)〉 = 0

(d) Both m,n are even. Then,

∂(ea + eb − ea+b − e(a+b)ab) = 〈λa〉+ 〈λb〉 − 〈λa+b〉 − 〈λaλbλa+b〉

= (〈λa〉 − 〈λa〉)− (〈λa+b〉 − 〈λ2
aλa+b〉) = 0− 0 = 0

Finally, ∂(e1 − e−1) = 〈1〉 + 〈−1〉 = 0. The theorem follows from theorem
2.1. The proof is complete.
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2.1 Local domains of diension one

Now suppose (A,m, k) be a local domain with dimA = 1. Write K = Q(A)
the field of fractions of A. We define a groups homomorphism W (K) −→
W (k) as follows.

1. Let B be the integral closure of A, in K. Then,

(a) Q(B) = K, dimB = 1

(b) B is semilocal. Let Max(B) = {m1, . . . ,mr}.
(c) B normal. So, B is a Dedekind domain.

(d) So, Bmi
are DVR.

2. Write ki = B/mi.

3. By theorem 2.2, there are residue class maps (use "∂1") ∆i : W (K) −→
W (ki)

4. Note k →֒ ki is a subfield. Let si : k −→ ki be any functional. Then,
there are transfer homomorphisms si∗ : W (ki) −→ W (k).

5. Let
∆ = ⊕m

i=1∆i : W (K) −→ ⊕m
i=1W (ki)

and Ψ = ⊕m
i=1si∗ : ⊕m

i=1W (ki) −→ W (k).

6. Now define a residue class map

∂ : W (K) −→ W (k) ∋ W (K) ∂ //

∆
��

W (k)

⊕m
i=1W (ki)

Ψ

88rrrrrrrrrr

commutes.
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2.2 Gersten-Witt Complex

Now suppose A is any intagral domain with dimA = d. Let X = Spec(A).

Assume ∀ ℘ ∈ Spec(A), height(℘) + dim
(

A
℘

)
= d.

1. Denote X(r) = {℘ : height(℘) = r}.

2. ∀ ℘ ∈ Spec(A), denote k(℘) =
(

A
℘

)
℘
.

3. First, suppose ℘ ∈ X(1). Then, considering the local ring A℘ and K =
Q(A), there is a residue class homomorphism W (K) −→ W (k(℘)).
Combining all these, there is a homomorphism

d0 : W (K) −→
⊕

℘∈X(1)

W (℘)

A priory, this is a direct sum of infinitely many homomorphisms. How-
ever, given a form x := 〈x1, · · · , xn〉 ∈ W (K), the image d0(x) has only
finitely many nonzero components.

4. Similarly, suppose ℘r ⊆ ℘r+1 where ℘r ∈ X(r) and ℘r+1 ∈ X(r+1).

Considering
A℘r+1

℘rA℘r+1

∃ a residue map W (k(℘r)) −→ W (k(℘r+1))

Combining all these, there is a homomorphism

dr :
⊕

℘∈X(r)

W (k(℘)) −→
⊕

℘∈X(r+1)

W (k(℘))

These homomorphims dr gives the Gersten-Witt Sequence

0 // W (K) //
⊕

℘∈X(1) W (k(℘)) //
⊕

℘∈X(2) W (k(℘)) // · · ·

//
⊕

℘∈X(r−1) W (k(℘)) dr //
⊕

℘∈X(r) W (k(℘)) //
⊕

℘∈X(r+1) W (k(℘)) //

// · · · //
⊕

℘∈X(d) W (k(℘)) // 0
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Remark 2.3. 1. Same can be defined for any integral scheme X.

2. Unfortunately, we made too many choices. Gersten-Witt Sequence is a

complex. However, it is going to be tough to check, because, we went

through all the integral closures and all that choices. There is method

through Derived Catagory that we discuss in the next section.

3. Gersten Conjecture for Witt Groups: In what follows, we assume

that (A,m) is a regular local ring. Gersten conjecture states that the

sequence

0 // W (A) // W (K) //
⊕

℘∈X(1) W (k(℘)) // · · ·

//
⊕

℘∈X(r) W (k(℘)) // · · · //
⊕

℘∈X(d) W (k(℘)) // 0

is exact. Ojanguren’s review in MathSciNet of ([BGPW]) gives a great

summary of what is known, as follows.

(a) Balmer and Pardon independently proved this conjecture, when

A is local smooth ring, essentially of finite type, over an infinite

field k.

(b) In ([BGPW]), they proved the same for any regular local ring

A, containing a field k (finite or infinite). To do this, they use

Popescu’s theorem that any regular local ring containing a field,

is direct limit of a system of essentially smooth local algebras.

4. Fundamental Ideals: Using the defintion of the fundamantal ideals

I(F ) ⊆ W (F ) of Witt groups W (F ), we define the subgroup

Ir =
⊕

℘∈X(r)

I(k(℘)) ⊆
⊕

℘∈X(r)

W (k(℘))

They play a serious role in this theory.

12



5. There are similar Gersten complexes (conjectures and theorems), using

k−groups Ki(k(℘)), which I hope to define later.
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3 Gersten Complex by Derived categories

Unless stated otherwise, A would be a regular ring with dimA = d and
1/2 ∈ A.

1. Let P(A) denote the category of finitely generated projective A−modules
and Db(P(A)) denote the derived category.

2. Let F r(A) ⊆ Db(P(A)) be the full subcategory of complexes P• with
Supp(Hi(P•)) ≥ r. We also write F r := F r(A), when there no scope
of confussion. This gives a filtration

Db(P(A)) = F0(A) F1(A)?
_oo · · ·?

_oo Fd(A)?
_oo Fd+1(A) = 0?

_oo

3. Note, all these are triangualted categories with dulity. In fact, F r+1 ⊆
F r is a subcategory.

The following is from Balmer’s paper ([TWGI]).

3.1 Quotient of ∆ed categories

Definition 3.1. A sequence

0 // J // D // L // 0

of (triangulated) categories and fuctors, is said to be exact, if:

1. J is a full subcategory of D.

2. L = S−1D for some multiplicative system S.

3. ∀ objects X ∈ D X ∈ J⇐⇒X ∼= 0 in L

1. In this case, we say

(a) J is the kernel category of the functor D −→ L.
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(b) We denote D
J
:= S−1D.

2. The choice of the multiplicative system S may not be unique. However,

we can enlarge S to S ′ by defining

S ′ = {f ∈ Mor(D) : f is isomorphism in L}.

We say that S ′ is saturated.

3. If D has a duality, with #(S) = S, then L = S−1D inherits the duality.

In such cases, we assume that J also inherits the duality.

Following lemma will be of some use later.

Lemma 3.2. Suppose K is a triangulated category and Z be an object in

K. Then X 7→ Hom(X,Z) and X 7→ Hom(Z,X) are "exact". That means

given any exact triangle

A u
// B v

// C w
// TA

the sequences

· · · // Hom(Z,A) // Hom(Z,B) // Hom(Z,C) // Hom(Z, TA) // · · ·

and the other one are exact. In the paper of Balmer ([TWGI]), this is referred

to as weak kernel and weak cokernel properties.

Proof. Using rotation property, it is enough to prove

Hom(Z,A) // Hom(Z,B) // Hom(Z,C) is exact.

Suppose f ∈ Hom(Z,B) 7→ 0. That means, vf = 0. We have the commuta-
tive diagram

Z

g

���
�

� Z

f

��

0

��@
@@

@@
@@

// 0 //

0
��

TZ

Tg

���
�

�

A u
// B v

// C w
// TA

Since both rwos are exact, existance of g is given by TR3. Exactness of the
other sequence is proved similarly.
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Theorem 3.3. Suppose D is a ∆ed category and let J ⊆ D be a triangulated

full subcategory of D. Then, D
J

exists. That means, there is a multiplicative

system S such that the definition is satisfied.

Proof. Define S = {f ∈ Mor(D) : cone(f) ∈ J}. We check, S is a multi-
plicative system.

1. It follows from the octahedron, that S is closed under composition.

2. (Ore condition) Let

X

f
��

Z s
// Y

be given with s ∈ S

Then, s sits on an exact triangle (s, u, δ) and also uf sits on a exact
triangle (t, uf, v) as follows

W
t //

g

��

X

f

��

uf // C
v // T [W ]

��

Z s
// Y u

// C
δ

// T [Z]

Since s ∈ S, C ∈ J . Since C is also the cone of t, t ∈ J .

Likewise, let

W
t //

g

��

X

Z

be given with t ∈ S

Let C be the cone of t as follows

W
t //

g

��

X
u // C // T [W ]

Z

. Now rotate T−1C
v // W

t //

g

��

X
u // C

Z
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Take a cone over gv and complete the diagram

T−1C
v // W

t //

g

��

X
u //

f

���
�

� C

T−1C gv
// Z s

// U // C

Since cone of s is also C ∈ J , s ∈ S. So, Ore condition is satisfied.

3. (Cancellation) Suppose sf = sg for some s : Y −→ Y ′ ∈ S. Write
h = f − g, then sh = 0. Embed s on an exact triangle as follows and
consider:

X

h
��

γ

~~~
~

~
~

0

  A
AA

AA
AA

A

Z u
// Y s

// Y ′
δ

// TZ

where Z ∈ J.

Exisitance of γ is given by weak kernel property (see lemma 3.2). Now,
embed γ on an exact triangle

X ′
t

// X γ
// Z w

// TX ′ . Since Z ∈ S it follows t ∈ S.

Since γt = 0, we have ht = uγt = 0. So, one implication of cancellation
is established. Similarly, the other implication is established.

So, S is a multiplicative system.

Remains to prove: X ∈ J ⇐⇒ 0 ∼= X ∈ S−1D. Suppose X ∈ J . Since

0 // X X // 0 is exact 0 −→ X ∈ S

So, 0 ∼= X ∈ S−1D.

Converse: I cannot see it directly. But we can define S̃ = {s ∈ Mor(D) :
f−1 ∈ S−1D}. (This process is called "saturating"). Then, S−1D = S̃−1D.
Therefore, 0 ∼= X ∈ S̃−1D implies 0 −→ X ∈ S̃. So, the lemma is established
with the multiplicative set S̃.
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Theorem 3.4 ([BW]). Let A be a regular ring with dimA = d. Let Then
Fr(A)

Fr+1(A)
exists by theorem 3.3.

1. In fact,
F r(A)

F r+1(A)
∼=

∐

℘∈X(r)

F r(A℘) is an equivalence

The equivalence functor is given by pointwise localization.

2. So,

0 // F r+1 // F r
η //

∐
℘∈X(r) F r(P(A℘)) // 0

is an exact sequence of ∆ed categories, Here η is obtained by pointwise

localization.

3. Also, a choice of the multiplicative system is

S = {ϕ ∈ HomFr(P•, Q•) : ∀ ℘ ∈ X(r) ϕ℘ is a quasi isomorphism}

Proof. We only need to prove (1). See [BW, Theorem 7.1]. The proof is
fairly understandable. But, it uses regularity. .

Now, we have the following theorem of Balmer ([TWGI]).

Theorem 3.5 (Balmer). Suppose

0 // J
f // D

g // L // 0

be an exact sequence of triangualated categories with duality. Assume 1/2 ∈
D. Assume D satisties TR4+. Then, there is a connecting homomorphism

∂n : W n(L) −→ W n+1(J) such that the sequence an exact sequence

· · · // W n−1(L)
∂n−1

// W n(J)
Wn(f)// W n(D)

Wn(g)// W n(L) ∂n

// W n+1(J) // · · ·

is exact.
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Proof. Read [TWGII, Theorem 6.2]. The paper is highly readable.

Recall, T 2 : D
∼−→ T 4D establishes 4−periodicity of Witt groups. This

gives:

Theorem 3.6. There is a 12 term exact sequence:

W (J) // W (D) // W (L)

%%J
JJJJJJJJ

W 3(L)

99ttttttttt

W 1(J)

��
W 3(L)

OO

W 1(D)

��
W 3(L)

OO

W 1(L)

yyttttttttt

W 2(L)

ddJJJJJJJJJ

W 2(D)oo W 2(J)oo

Proof. follows from theorem 3.5 and the 4-periodicity.

We apply theorem 3.6 to F r+1(A) ⊆ F r(A).
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Theorem 3.7. There is a Gersten-Witt complex constructed as follows, in

the proof.

Proof. Consider, triangulated subcategories

F r−1(A) ⊆ F r(A), F r(A) ⊆ F r+1(A), F r+1(A) ⊆ F r+2(A).

We arrange part of the three Witt exact sequences, given by theorem 3.5 as
follows:

W r
(

Fr−1(A)
Fr(A)

)

∂

��

q∂

''N
N

N
N

N
N

W r+1(F r+2(A))

ι

��
W r(F r+1(A))

ι // W r(F r(A))

ι

��

q // W r
(

Fr(A)
Fr+1(A)

)

q∂

''O
O

O
O

O
O

∂ // W r+1(F r+1(A))

∂
��

W r+1(F r(A)) W r+1
(

Fr+1(A)
Fr+2(A)

)

We have the following:

1. By ([BW, Theorem 6.1]),

W r(A℘) ∼= W (k(℘)) (using regularity).

2. Therefore, by theorem 3.4

W r

( F r(A)

F r+1(A)

)
∼= ⊕℘∈X(r)W r(A℘) ∼= ⊕℘∈X(r)W r(k(℘)), and likewise · · ·

So, the diagonal line above gives the complex

· · · // ⊕℘∈X(r−1)W (k(℘)) // ⊕℘∈X(r)W (k(℘)) // ⊕℘∈X(r+1)W (k(℘)) // · · ·

Remark. It is not clear that the differentials in these two constructions of
Gersten-Witt complex agree or not. There is a comment to that effect in
([BW, pp 4-5]).
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