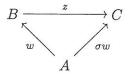
so u is anisotropic (and nonzero since y, w are independent). Consequently, $\tilde{\sigma}(u)$ is orthogonal to u, which means that

$$0 = B(\tilde{\sigma}(y + \varepsilon w), y + \varepsilon w)$$

= $B(\tilde{\sigma}y, y) + \varepsilon (B(\tilde{\sigma}w, y) + B(\tilde{\sigma}y, w)) + \varepsilon^2 B(\tilde{\sigma}w, w),$

where the last term is zero. Since $\varepsilon \in \dot{F}$ is arbitrary (and |F| > 2), we conclude that $B(\tilde{\sigma}y, y) = 0$, proving (7.9) in all cases. Applying Lemma 7.7 to the statement (7.9), we see that $\text{Im}(\tilde{\sigma})$ is totally isotropic. But now (7.6)(2) gives $\tilde{\sigma}^2 = 0$, in contradiction to the hypothesis of Lemma 7.8. This establishes (1) of Lemma 7.8. It only remains to prove (2). Suppose $z = \tilde{\sigma}(w) \neq 0$ and $\sigma_1 = \tau_z \sigma$. The claim $w \in L(\sigma_1)$ is clear from geometrical consideration of the "isosceles triangle" ABC:



This completes the proof.

Remark 7.10. In (2) of Lemma 7.8, the conclusion can actually be strengthened to

$$L(\sigma_1) \supseteq L(\sigma) + F \cdot w \supsetneq L(\sigma),$$

although we did not need it in this form.

Exercises for Chapter I

- 1. Show that the group of self-isometries of the *n*-dimensional quadratic space $n\langle 1 \rangle$ is isomorphic to the group O(n) of $n \times n$ orthogonal matrices over F.
- 2. Let $V = \mathbb{M}_n(F)$, viewed as a vector space (of dimension n^2) over F. Show that $B(X,Y) = \operatorname{tr}(XY)$ (for $x,y \in \mathbb{M}_n(F)$) defines a regular quadratic space (V,B). Show that (V,B) is isometric to $n\langle 1 \rangle \perp m\mathbb{H}$ where m = n(n-1)/2, and find an orthogonal basis for (V,B). Do the same problem for the new form $B'(X,Y) = \operatorname{tr}(X \cdot Y^t)$, and show that (V,B') is isometric to $n^2\langle 1 \rangle$. (For more background information on trace forms on algebras, see Exercise 29 below.)
- 3. On $V = \mathbb{M}_n(F)$, define $B_U(X,Y) = \operatorname{tr}(X \cdot UY^tU^{-1})$, where $X, Y \in V$, and U is a fixed nonsingular symmetric matrix. Show that B_U defines a nonsingular symmetric bilinear form on V. If U has a diagonalization $\langle a_1, \ldots, a_n \rangle$, show that (V, B_U) has a diagonalization $\perp_{i,j} \langle a_i a_j \rangle$ (i.e. isometric to $\langle a_1, \ldots, a_n \rangle \otimes \langle a_1, \ldots, a_n \rangle$).

- 4. Let $a, b \in \dot{F}$, and let f be a regular quadratic form. Show that $f \perp \langle a \rangle$ represents -b iff $f \perp \langle b \rangle$ represents -a.
- 5. If $a, b \in F$ are such that $a^2 + b^2 = c \neq 0$, show that the 4-dimensional form $\langle 1, 1, -c, -c \rangle$ is hyperbolic.
- 6. (Extending 3.6.) For (regular) quadratic forms q_1, \ldots, q_n , show that the orthogonal sum $q_1 \perp \cdots \perp q_n$ is isotropic iff there exist $a_i \in D(q_i)$ $(1 \le i \le n)$ such that $\langle a_1, \ldots, a_n \rangle$ is isotropic.
- 7. Let f be a regular isotropic diagonal quadratic form over a field of more than five elements. Show that f admits an isotropic vector whose coordinates are all nonzero.
- 8. (This exercise will be used at least a few times in the sequel.)
 - (1) Show that, if $\{F_i : i \in I\}$ is a family of subfields of a field K and $F = \bigcap_{i \in I} F_i \subseteq K$, then the natural map $\dot{F}/\dot{F}^2 \to \prod_i \dot{F}_i/\dot{F}_i^2$ is one-to-one.
 - (2) Deduce from (1) that, if $|I| < \infty$ and $|\dot{F}_i/\dot{F}_i^2| < \infty$ for all i, then $|\dot{F}/\dot{F}^2| < \infty$.
- 9. Let A be a UFD, whose group of units is U. If F is the quotient field of A, show that \dot{F}/\dot{F}^2 is the direct product of U/U^2 and a \mathbb{Z}_2 -vector space whose basis consists of the prime elements of A (taken up to associates). If $A = \mathbb{Z}$, and $\{p_1, \ldots, p_n\}$, $\{q_1, \ldots, q_n\}$ are sets of distinct primes, show that $\langle p_1, \ldots, p_n \rangle \cong \langle q_1, \ldots, q_n \rangle$ over \mathbb{Q} iff $p_i = q_i$ for all i (after a permutation).
- 10. Show that the following conditions are equivalent:
 - (1) Every 4-dimensional form over F of determinant -1 is isotropic.
 - (2) Every even-dimensional form over F of determinant -1 is isotropic.
 - (3) Every 3-dimensional form over F represents its own determinant.
 - (4) Every odd-dimensional form over ${\cal F}$ represents its own determinant.

(For more information on the four equivalent conditions above, see Ch. X, Exercise 11.)

- 11. Prove the following "Witt's Extension Theorem." Let V be a regular quadratic space, and U_1, U_2 be two subspaces. If there exists a (bijective) isometry $\sigma: U_1 \to U_2$, show that there exists an isometry σ' of V onto V such that $\sigma' \mid U_1 = \sigma$. (This is essentially an equivalent version of 4.2.)
- 12. In a hyperbolic space V, a maximal totally isotropic subspace is sometimes called a Lagrangian. Show that V is always the sum of two Lagrangians.
- 13. Show that a regular quadratic space is isotropic iff it has a basis consisting of isotropic vectors.

- 14. Let U be a (possibly not regular) subspace of dimension m+r in a hyperbolic space $m \mathbb{H}$. Show that i(U) (the Witt index of U) is at least r. (In particular, dim $U > m \Longrightarrow U$ is isotropic.)
- 15. Let U be a (possibly not regular) quadratic space of dimension k. Use the last exercise to show that U can be embedded (as a quadratic space) into the hyperbolic space $m \mathbb{H}$ iff $i(U) \geq k m$.
- 16. For regular quadratic forms σ and φ , show that
 - (1) $i(\sigma \otimes \varphi) \geq i(\sigma) \cdot \dim \varphi$;
 - (2) $i(\sigma \perp \varphi) \leq i(\sigma) + \dim \varphi$; and
 - (3) if σ is isometric to a subform of a regular form τ , then

$$\dim \tau - i(\tau) \ge \dim \sigma - i(\sigma).$$

(This is essentially a slight reformulation of (2).) Deduce that, if $\dim \sigma > \dim \tau - i(\tau)$, then σ must be isotropic.

- 17. Let G be a finite group and V=FG be the group ring of G over F. Let $T:V\to F$ be the linear functional defined by $T\left(\sum_{g\in G}a_gg\right)=a_1$, and let q be the quadratic form on V associated with the (symmetric) bilinear form $(\alpha,\beta)\mapsto T(\alpha\beta)$. Compute the Witt index of q. (**Hint.** The answer is (|G|-r)/2, where $r=\operatorname{Card}\{g\in G:\ g^2=1\}$.)
- 18. Let φ be a regular group form. Show that for any regular form σ , $D(\varphi) \cdot D(\varphi \otimes \sigma) = D(\varphi \otimes \sigma)$.
- 19. (Inductive Description of Isometry.) For $n \geq 3$, show that $\langle a_1, \ldots, a_n \rangle$ $\cong \langle b_1, \ldots, b_n \rangle$ iff there exist $a, b, c_3, \ldots, c_n \in \dot{F}$ such that

$$\langle a_2, \ldots, a_n \rangle \cong \langle a, c_3, \ldots, c_n \rangle$$
, $\langle b_2, \ldots, b_n \rangle \cong \langle b, c_3, \ldots, c_n \rangle$, and $\langle a_1, a \rangle \cong \langle b_1, b \rangle$.

20. (Inductive Description of Value Sets.) For $\varphi = \sigma \perp \tau$, show that

$$D(\varphi) = \bigcup \{ D(\langle s, t \rangle) : s \in D(\sigma), \ t \in D(\tau) \}.$$

From this, deduce that

$$D(\langle a \rangle \perp \tau) = \bigcup \{ D(\langle a, t \rangle) : t \in D(\tau) \}.$$

- 21. If $0 \neq a^2 + b^2 \neq c^2$ in a field F, show that $\langle a^2 + b^2, a^2 + b^2 c^2 \rangle$ always represents 1 over F. (For instance, $1 \in D_{\mathbb{Q}}(17, 13)$.)
- 22. (The Seven-Eleven Problem) What integers from 1 to 20 are represented by $\langle 7, 11 \rangle$ over \mathbb{Q} ?
- 23. Show that $q = \langle 2, 3, 6 \rangle$ does not represent 7 over \mathbb{Q} . (**Hint.** Find a chain equivalence from q to the form $\langle 1, 1, 1 \rangle$. The isometry $\langle 2, 3, 6 \rangle \cong \langle 1, 1, 1 \rangle$ also reoccurs in a later calculation over the rationals: see the Example following II.3.3.)

- 24. For $a, b \in \dot{F}$, show that
 - (1) $b \in D(\langle 1, a \rangle) \iff b \cdot \langle 1, a \rangle \cong \langle 1, a \rangle$, and
 - (2) $D(\langle 1, a \rangle) \cap D(\langle 1, b \rangle) \subseteq D(\langle 1, -ab \rangle).$
- 25. Let $a, b \in \dot{F}$. If (1, -a) is universal, show that

$$D(\langle 1, b \rangle) = D(\langle 1, ab \rangle).$$

- 26. Show that a binary form (1, -a) over \mathbb{Q} is universal iff $a \in \dot{\mathbb{Q}}^2$.
- 27. Give an example of a regular ternary quadratic form q(x, y, z) over a field for which each of the forms q(0, y, z), q(x, 0, z), and q(x, y, 0) has rank 1.
- 28. Let $q = \sum_{i,j=1}^{n} a_{ij} x_i x_j$ $(a_{ij} = a_{ji})$ be a quadratic form over a field. The rank of q is defined to be the rank of the symmetric matrix (a_{ij}) . Show that rank(q) is the largest integer k such that, upon setting a suitable set of n-k of the variables equal to 0, we get a regular quadratic form in the remaining k variables.
- 29. For any finite-dimensional F-algebra A, let $\operatorname{tr}_A:A\to F$ denote the algebra trace on A. Then

$$(x, y) \mapsto \operatorname{tr}_A(xy) \quad (x, y \in A)$$

defines a symmetric bilinear form on A, denoted by (A, tr_A) (or more precisely, $(A, \operatorname{tr}_{A/F})$). (This is called the *trace form* on the F-algebra A.) If B is another finite-dimensional F-algebra, show that:

- (1) $(A \times B, \operatorname{tr}_{A \times B}) \cong (A, \operatorname{tr}_A) \perp (B, \operatorname{tr}_B)$; and
- (2) $(A \otimes B, \operatorname{tr}_{A \otimes B}) \cong (A, \operatorname{tr}_{A}) \otimes (B, \operatorname{tr}_{B})$
- 30. Let K be a finite field extension of F. If K/F is an inseparable extension, show that the trace form $\operatorname{tr}_{K/F}$ is identically zero. On the other hand, if K/F is a separable extension, show that $\operatorname{tr}_{K/F}$ is a nonsingular symmetric bilinear form; in particular, this is always the case if $\operatorname{char}(F) = 0$, or if $\operatorname{char}(F)$ is prime to [K:F]. (Aside. From the second part, it follows that $\operatorname{tr}_{A/F}$ is a nonsingular symmetric bilinear form for any commutative étale algebra A over the field F.)
- 31. Find diagonalizations over $\mathbb Q$ for the trace forms on the following number fields:
 - (1) $K_1 = \mathbb{Q}(\sqrt{2}, \sqrt{3});$
 - (2) $K_2 = \mathbb{Q}(\alpha)$, where $\alpha = \sqrt{2 + \sqrt{2}}$;
 - (3) $K_3 = \mathbb{Q}(\zeta)$, where ζ is a primitive 5th root of unity;
 - $(4) K_4 = \mathbb{Q}(\sqrt[3]{2});$
 - (5) $K_5 =$ the splitting field of $X^3 2$ over \mathbb{Q} ; and
 - (6) $K_6 = \text{the splitting field of } X^3 + 3X^2 X 1 \text{ over } \mathbb{Q}$.