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s0 u is anisotropic (and nonzero since y, w are independent). Consequently,
& (u) is orthogonal to u, which means that

0=B((y+ew), y+ew)
= B(oy, y) + e(B(6w, y) + B(6y, w)) + 2 B(5w, w),

where the last term is zero. Since e € F is arbitrary (and |F| > 2), we
conclude that B(Gy, y) = 0, proving (7.9) in all cases. Applying Lemma
7.7 to the statement (7.9), we see that Im(5) is totally isotropic. But now
(7.6)(2) gives 6% = 0, in contradiction to the hypothesis of Lemma 7.8.
This establishes (1) of Lemma 7.8. It only remains to prove (2). Suppose
z=0(w) # 0 and 01 = 7,0. The claim w € L(oy) is clear from geometrical
consideration of the “isosceles triangle” ABC:

B—>—¢C

N

This completes the proof. 0

Remark 7.10. In (2) of Lemma 7.8, the conclusion can actually be
strengthened to

L(o1) 2 L(o) + F-w 2 L(o),

although we did not need it in this form.

Exercises for Chapter I

1. Show that the group of self-isometries of the n-dimensional quadratic
space n(1) is isomorphic to the group O(n) of n x n orthogonal ma-
trices over F'

2. Let V' = My (F), viewed as a vector space (of dimension n?) over F.
Show that B(X,Y) = tr(XY) (for z,y € M,(F)) defines a regular
quadratic space (V, B). Show that (V, B) is isometric to n(1) LmH
where m = n(n — 1)/2, and find an orthogonal basis for (V, B). Do
the same problem for the new form B'(X,Y) = tr(X - Y?), and show
that (V, B') is isometric to n?(1). (For more background information
on trace forms on algebras, see Exercise 29 below.)

3. On V = M,(F), define By(X,Y) = tr(X-UY'U™), where X, Y €V,
and U is a fixed nonsingular symmetric matrix. Show that By, defines
a nonsingular symmetric bilinear form on V. If U has a diagonaliza-
tion (ai,...,an), show that (V, By) has a diagonalization L5 {oz05)
(ie. isometric to (a1,...,an) ® {ay,...,a,)).
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10.

11.

12.

13.

. Let a,b € F, and let f be a regular quadratic form. Show that f L (a)

represents —b iff f L (b) represents —a.

.If a, b€ F aresuch that a?+4b% = ¢ # 0, show that the 4-dimensional

form (1,1, —¢, —c) is hyperbolic.

. (Extending 3.6.) For (regular) quadratic forms ¢i,...,g,, show that

the orthogonal sum ¢; L --- L g, is isotropic iff there exist a; € D(g;)
(1 <4 < n)such that (a1,...,a,) is isotropic.

. Let f be a regular isotropic diagonal quadratic form over a field of

more than five elements. Show that f admits an isotropic vector whose
coordinates are all nonzero.

. (This exercise will be used at least a few times in the sequel.)

(1) Show that, if {F; : ¢ € I'} is a family of subfields of a field K and
F =(Yer F; C K, then the natural map F'/F? — [[, £;/F? is one-to-
one.

(2) Deduce from (1) that, if |I| < oo and |E;/E?| < oo for all i, then
|F'/F?| < oo.

Let A be a UFD, whose group of units is U. If F' is the quotient field
of A, show that F/F? is the direct product of U/U? and a Zg-vector
space whose basis consists of the prime elements of A (taken up to
associates). If A =Z, and {p1,...,pn}, {q1,...,0qn} are sets of distinct
primes, show that (p1,...,pn) = {q1,...,qn) over Q iff p; = ¢; for all ¢
(after a permutation).

Show that the following conditions are equivalent:

(1) Every 4-dimensional form over F of determinant —1 is isotropic.

(2) Every even-dimensional form over F of determinant —1 is isotropic.
(3) Every 3-dimensional form over F represents its own determinant.
(4) Every odd-dimensional form over F represents its own determinant.

(For more information on the four equivalent conditions above, see
Ch. X, Exercise 11.)

Prove the following “Witt’s Extension Theorem.” Let V be a regular
quadratic space, and U, Uz be two subspaces. If there exists a (bijec-
tive) isometry o : Uy — Us, show that there exists an isometry ¢’ of V
onto V such that ¢’| U; = o. (This is essentially an equivalent version
of 4.2.)

In a hyperbolic space V, a maximal totally isotropic subspace is some-
times called a Lagrangian. Show that V' is always the sum of two
Lagrangians.

Show that a regular quadratic space is isotropic iff it has a basis con-
sisting of isotropic vectors.
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14.

15.

16.

17,

18.

19.

20.

21.

22,

23.

Let U be a (possibly not regular) subspace of dimension m + r in a
hyperbolic space mH. Show that i(U) (the Witt index of U) is at
least r. (In particular, dim U > m = U is isotropic.)

Let U be a (possibly not regular) quadratic space of dimension k. Use
the last exercise to show that U can be embedded (as a quadratic space)
into the hyperbolic space mH iff i(U) > k — m.

For regular quadratic forms ¢ and ¢, show that

(1) (o @) 2 i(0) - dim i;

(2)i(cLe)<i(o)+dim p; and

(8) if ¢ is isometric to a subform of a regular form 7, then
dim 7 — i (7) > dim ¢ — i (o).

(This is essentially a slight reformulation of (2).) Deduce that, if

dim ¢ > dim 7 — i (7), then o must be isotropic.

Let G be a finite group and V = F'G be the group ring of G over F.
Let T': V — F be the linear functional defined by T(dec: agg) = a,
and let ¢ be the quadratic form on V associated with the (symmetric)
bilinear form (o, 8) — T'(af). Compute the Witt index of q. (Hint.
The answer is (|G| —r)/2, where r = Card{g e G : ¢? = 1}.)

Let ¢ be a regular group form. Show that for any regular form o,
D(p) D{p®0)=D(p®0).

(Inductive Description of Isometry.) For n > 3, show that {(a1,...,an)
2 (b1,...,by) iff there exist a, b, c3, ..., ¢, € F such that

o

(a2, ..., an) Z(a, c3,...,¢n),  (ba,...,by) X (b, c3y..., ),
and (a1, a) = (b, b).
(Inductive Description of Value Sets.) For ¢ = o L7, show that

D(p)=|J{D (s, 1)) : s € D(0), t € D(r)}.
From this, deduce that

D((a} L7) = J{D ({a, t)) : t e D(r)}.

If 0# a®+b? 5 ¢? in a field F, show that {a2+b2, o + b2 —c?) always
represents 1 over F'. (For instance, 1 € Dg(17, 13).)

(The Seven-Eleven Problem) What integers from 1 to 20 are repre-
sented by (7, 11) over Q7

Show that g = (2, 3, 6) does not represent 7 over Q. (Hint. Find a
chain equivalence from g to the form (1, 1, 1). The isometry (2, 3, 6)
= (1, 1, 1) also reoccurs in a later calculation over the rationals: see
the Example following 11.3.3.)
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24.

25.

26.
2.

28.

29.

30.

31.

For a, b € F, show that
(1) be D({1, a)) <= b- (1, a) = (1, a), and
(2) D((1, a)) N D((L, b)) € D((1, —ab)).
Let a,be F. If (1, —a) is universal, show that
D((1, b)) = D((1, ab}).
Show that a binary form (1, —a) over Q is universal iff @ € Q2.

Give an example of a regular ternary quadratic form g(z,y, 2) over a
field for which each of the forms ¢(0,y, 2), q(z,0, z), and q(z,y,0) has
rank 1.

Let ¢ = ) 7. aijziz; (aij = aj) be a quadratic form over a field. The
rank of g is defined to be the rank of the symmetric matrix (a;;). Show
that rank(q) is the largest integer k such that, upon setting a suitable
set of n —k of the variables equal to 0, we get a regular quadratic form
in the remaining % variables.

For any finite-dimensional F-algebra A, let trq : A — F denote the
algebra trace on A. Then

(.’B, y) L trA(scy) (.’L‘, ye A)
defines a symmetric bilinear form on A, denoted by (A, tra) (or more
precisely, (A, try,p)). (This is called the trace form on the F-algebra
A.) If B is another finite-dimensional F-algebra, show that:
(1) (Ax B, traxp) = (A, trg) L (B, trg); and
(2) (A® B, tragn) = (A, tra) ® (B, trg)
Let K be a finite field extension of F. If K/F is an inseparable
extension, show that the trace form trg,p is identically zero. On
the other hand, if K/F is a separable extension, show that 1297972
is a nonsingular symmetric bilinear form; in particular, this is always
the case if char(F) = 0, or if char(F) is prime to [K : F]. (Aside.
From the second part, it follows that tr,,r is a nonsingular symmetric
bilinear form for any commutative étale algebra A over the field F.)

Find diagonalizations over QQ for the trace forms on the following num-
ber fields:

(1) K = Q(\/Ea \/g)ﬁ

(2) Ky =Q(a), where a = v2+2;

(3) K3 =0Q(¢), where ¢ is a primitive 5th root of unity;

(4) Kq=Q(¥2);

(5) Ks = the splitting field of X% — 2 over Q; and

(6) Kg = the splitting field of X°+3X2% - X —1 over Q.




