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Definition

Main references used are given below.

◮ Suppose A is an abalian category.

◮ A subcategory E of A is called an exact category, if for
any exact sequence

0 // P // M // Q // 0 in A,

P ,Q ∈ E =⇒ M ∈ E .

◮ Let A be a commutative ring. The category P(A) of all
fintely generated projective A−module is an exact
category.
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Duality

Suppose E is an exact category and ∗ : E −→ E is a
contravarient functor. We denote ∗(M) = M∗. We say ∗ is a
duality (involotion) on E , if

◮ there is a natural equevalence (isomorphism)

π : Id
∼
→ ∗o∗ ∋ ∀ objects M ∈ E IdM∗ = (πM)∗πM∗ .

◮ This means, ∀ objects M ∈ E ∃, ”natural isomorphisms”

πM : M
∼
→ M∗∗ ∋ M∗

GGGGGGGG

GGGGGGGG

πM∗ // M∗∗∗

πM∗

��
M∗

commute.
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Duality

◮ We say, (E , ∗, π) is an exact category with duality.

◮ Example. For a projective A−module P , let

P∗ = Hom(P ,A) and π : P
∼
→ P∗∗ be the evalaution.

Then (P(A), ∗, π) is an exact category with duality.
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Symmetric spaces

Suppose (E , ∗, π) is an exact category with duality.

◮ For an object P ∈ E , an isomorphism ϕ : P
∼
→ P∗ is

called an symmetric isomorphism, if

P
ϕ //

π
!!B

BB
BB

BB
B P∗

ϕ∗

��
P∗∗

commutes.

◮ If ϕ : P
∼
→ P∗ is a symmetric isomorphism, we say (P , ϕ)

is a symmetric space (or symmetric form or a form).
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Orthogonal Sum

Let (P , ϕ) and (Q, ψ) be two symmetric spaces. The
orthogonal sum ⊥ of these two forms is defined to be

(P , ϕ) ⊥ (Q, ψ) :=

(

P ⊕ Q,

(

ϕ 0
0 ψ

))
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Isometry

Let (P , ϕ) and (Q, ψ) be two symmetric spaces.

◮ An isomorphism h : P
∼
→ Q is said to be isometry, if

P

h

��

ϕ // P∗

Q
ψ

// Q∗

h∗

OO commutes.

◮ Isometry is an equivalence relation.
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The Witt monoid

Suppose (E , ∗, π) is an exact category (small) with duality.

◮ Let MW (E) be the set of all isometry classes.

◮ Then,

(MW (E),⊥) has a monoid structure.

◮ (MW (E),⊥) is said to be the Witt monoid of (E , ∗, π).
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Lagrangian, Metabolic, Neutral

Suppose (E , ∗, π) is an exact category (small) with duality.

◮ Let (P , ϕ) be a symmetric space. A lagrangian of (P , ϕ)
is a pair (L, α) such that (why he talks about admissible?)

0 // L
α // P

α∗ϕ // L∗ // 0 is exact.

◮ The following diagram is helpful:

0 // L
α // P

α∗ϕ //

ϕ

��

L∗ // 0

0 // L // P∗
α∗

// L∗ // 0
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Continued: Lagrangian, Metabolic, Neutral

◮ A symmetric space (P , ϕ) is said to be metabolic or
neutral, if it has a lagrangian.

◮ Let NW (E) be the set of all isometry classes of metabolic
spaces. Then, NW (E) ⊆ MW (E) is a submonoid.
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Quotient by submonoid

Let M be a monoid and N be a submonoid. We waht to
define the quotient.

◮ For x , y ∈ M define

x ∼ y if x + n1 = y + n2 for some ni , n2 ∈ N .

This is an equivalence relation.

◮ Let M/N be the set of all equivalence classes x of
elements of x ∈ M .

◮ M/N has a well define monoid structure,given by

x + y := x + y ∀ x , y ∈ M
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The Group Structure: Quotient by submonoid

Lemma. Let N ⊆ M be as above.

◮ Assume,

∀ x ∈ M ∃ y ∈ M ∋ x + y ∈ N .

Then, M/N has a group structure.
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Hyperbolic Spaces

◮ Suppose (P , ϕ) is a symmetric space. Define the
Hyperbolic space

H(P) := ((P , ϕ) ⊥ (P ,−ϕ))

◮ It follows

H(P) ∼=

(

P ⊕ P∗

(

0 1P∗

πP 0

))

≡

(

P ⊕ P∗

(

0 1P∗

1P 0

))

are isometric. In the last equality ”≡” we treat πP = 1P .
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Continued: Hyperbolic Spaces

The isometry is the top line of the commutative diagram

P ⊕ P

(ϕ,−ϕ)

��





.5 .5
ϕ −ϕ





// P ⊕ P∗




0 1
1 0





��
P∗ ⊕ P∗ P∗ ⊕ P



.5 ϕ

.5 −ϕ





oo
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Continued: Hyperbolic Spaces

Lemma: Let (P , ϕ) be a symmetric space. Then, H(P) is
neutral.

Proof. Take α =

(

1
1

)

: P −→ P ⊕ P Then,

α∗

(

ϕ 0
0 −ϕ

)

= (ϕ,−ϕ) : P ⊕ P −→ P∗.

It follows

0 // P
α // P ⊕ P // P∗ // 0 is exact.
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The Witt Group

Let (E , ∗, π) be an exact category with duality. Deifine

W (E) := W (E , ∗, π) :=
MW (E)

NW (E)

◮ W (E) has a group structure.

◮ W (E) is called the Witt Group of E , or of (E , ∗, π).
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The Witt Group of Projective Modules

Let A be a commutative noetherian ring. We defined, the
exact category (P(A), ∗, π) of projective modules. Define the
Witt group of A as

W (A) := W (P(A), ∗, π).
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The Witt Group of Modules of FPDFL

Let A be a Cohen-Macaulay ring. Assume dimAm = d for all
maximal ideals.

◮ Let A = FPDFL(A) be the category of modules of finite
length and finite projective dimension.

◮ Then, A is an exact category.

◮ For objects M ∈ A, deifne M∨ := Extd(M ,A).

◮ There is a natural isomorphism π : M
∼
→ M∨∨.

◮ (A,∨, π) defines an exact category with duality.

◮ The Witt Group W (A) := W (A,∨, π) is called the Witt
group of FPDFL modules.
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Exercise

Let F be a field.

◮ Let (V , ϕ) be a regular symmetric space over F . Then, if
(V , ϕ) is neutral, then it is hyperbolic, in the sense of the
book of Lam ([Lam]).

◮ Temporatily, let W(F ) denote the Witt group of F , as
defined in the book of Lam ([Lam]) and W (F ) denote
the Witt group defined as above. Prove W(F )

∼
→ W (F ).
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δ−exact Functors

K be a ∆ed category and T : K
∼
→ K be the translation.

Suppose δ = ±1. An additive contravarient functor
# : K −→ K is called δ−exact,

◮ if To# = #oT−1 (equivalently, if #T = T−1#).

◮ and if ∀ exact ∆s,

A
u // B

v // C
w // TA

the ”Dual” ∆,

C# v#
// B# v#

// A#
δT (w#)// T (C# ) is exact.
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Duality on ∆ed categories

A δ−exact functor # : K −→ K is said to be a δ−duality on
K , if ∃ natural equivalace ̟ : Id

∼
→ ## ∋ ∀ objects M in K

◮ The diagram

M#
̟

M#// M###

(̟M)#zzvv
vv

vv
vv

v

M#

commutes.

◮ And

̟T (M) = T (̟M). Diagramatically , TM
T (̟M)// T (M##)

TM ̟TM

// (TM)##
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Duality on ∆ed categories

◮ A triangualted category K with such a duality # is called
a triangualted category with δ−duality. Sometimes we
denote it by (K ,T , δ,̟) or simply by K .

◮ When δ = −1, it is also referred to a skew duality. We
are, in this case, thinking of the skew symmetric matrices.
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Example I

Let A be a noetherian commutative ring with dimA = d .

◮ The Derived category Db(P(A)) is a ∆ed category with
δ = ±1 duality, induced by Hom(−,A), meaning the dual
of of the first line in the textcolorredsecond line:

· · · // P1
// P0

// P−1
// · · ·

· · · // P∗

−1
// P∗

0
// P∗

1
// · · ·

degreee = 1

OO�
�

�

0

OO�
�

�

−1

OO�
�

�

◮ Same is true if we replace A by a noetherian scheme A.
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Example II

Assume A ic Cohen-Macaulay. Let A = FPDFL(A).

◮ The Derived category Db(A) is a ∆ed category with
δ = ±1 duality, # is induced by M∨ := Extd(M ,A).

◮ Remark. In Db(P(A)) and Db(A), for the transaltion
T (P•), it is customary to change the sign of the
differential.

◮ Exercise. K b(P(A))
∼
→ Db(P(A)).
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Preview

As we saw in the case of exact category with duality, to define
Witt groups of a category, we need two things:

◮ A concept of duality.

◮ A concept of Orthogonal Sum.

◮ A concept of Neutral.

We will define Witt groups of ∆ed categories with duality.
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Symmetric Spaces

(K ,T ,#, ̟) will denote a ∆ed category with δ−duality.

◮ A symmetric space in K is a pair (P , ϕ) such that

ϕ : P
∼
→ P# is isomorphism, and P ∼

ϕ //

̟ ≀

��

P#

P##

ϕ#

<<yyyyyyyy

commutes.

We sometimes (often) say ϕ = ϕ#.

◮ Symmetric spaces are also referred to as symmetric form.

◮ (P , ϕ) is called skew symmetric space, if ϕ = −ϕ#̟.
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Neutral Forms

(K ,T ,#, ̟) be a ∆ed category with δ−duality. A symmetric
form (P , ̟) is said to be a neutral form, if ∃ L, α,w such that

◮ w : T−1(L#) −→ L, α : L −→ P are a morphisms.
◮ T−1(w#) = (δ̟L)

−1ow . Diagramatically,

T−1(L#)
w //

T−1(w#) $$JJJJJJJJJ
L

δ̟

��
L##

Often written as T−1(w#) = δw .

◮ And (P , ϕ) = cone(w), which means that the triangle

T−1(L#)
w // L

α // P
α#ϕ // L# is exact.
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The Witt Groups

(K ,T ,#, ̟) be a ∆ed category with δ−duality.

◮ MW (K :) = MW (K ,T ,#, ̟) be the set of all isometry
classes of symmetric spaces in K . The orthogonal sum
gives a monoid structure on MW (K ). We call it the Witt
monoid of K or of (K ,T ,#, ̟).

◮ Let NW (K ) := NW (K ,T ,#, ̟) ⊆ MW (K ) denote the
submonoid of neutal spaces.

◮ Define,

W (K ) := W (K ,T ,#, ̟) :=
MW (K ,T ,#, ̟)

NW (K ,T ,#, ̟)

A priory, W (K ) is monoid.
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Conitnued: The Witt Groups

◮ Given a symmetric space (L, ϕ), define the Hyperbolic
space H(L, χ) := (L, ϕ) ⊥ (L,−χ)

◮ Lemma. H(L, ϕ) is a neutral form.

◮ Theorem. W (K ) is a group.

◮ Proof. We only need to prove the lemma. Write
P = L⊕ L and

ϕ = (χ ⊥ χ) =

(

χ 0
0 −χ

)

, α =

(

1
1

)
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Proof: Hyperbolic is Neutral

T−1(L#)
w=0 // L

χ

��

α // L⊕ L

ϕ

��

α#ϕ // L#

T−1(L#)
0 // L





1
−1





// L⊕ L




1 0
1 1





��

(

1 1
)

// L#

T−1(L#)
0

// L# 



1
0





// L# ⊕ L#(
0 1

)

// L#

The first ∆ is exact, because the last ∆ is. The latter follows
from the fact that direct sum of exact ∆s is exact.
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The Shifted Sructure

(K ,T ,#, ̟) be a ∆ed category with δ−duality.

◮ Then, T (K ,T ,#, ̟) := T (K ,T ,T#,−δ̟) is also ∆ed
category with −δ−duality.

◮ Likewise, T−1(K ,T ,#, ̟) := T (K ,T ,T−1#, δ̟) is
also ∆ed category with −δ−duality.

◮ Inductively, T n(K ,T ,#, ̟) are defiend ∀ n ∈ Z. These
are referred to as shifted structure.

◮ It is easy to see
T 2 : T n(K ,T ,#, ̟)

∼
→ T n+4(K ,T ,#, ̟) is an

equivalence of categories.
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Shifted Witt Groups

◮ Define the shifted Witt groups

W n(K ) := W (T n(K ,T ,#, ̟).

◮ It follows W n(K )
∼
→ W n+4(K ).
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Shifted Derived Categories

Suppose A is a noetherian commutative ring with dimA = d .
Let Db

fl
(P(A)) be the subcategory of Db(P(A)), consisting of

complexes P• ∈ Db(P(A)) with finite length homologies.

◮ Then, Db

fl
(P(A)) is also a ∆ed category.

◮ Hence the shifted structues T nDb

fl
(P(A)) ∀ n ∈ Z are

also ∆ed categories.

◮ Of particular interest is T dDb

fl
(P(A)) and shifted Witt

group W d(Db

fl
(P(A)).
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