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Notations 0.1. Some standard notations:

1. X = Spec(A) will denote a noetherian affine scheme, with

dimX = d. For an A-module µ(M) = minimal number of

generators of M .

1 Ideal theoretic complete intersections

Loosely speaking, ideal theoretic complete intersection often re-

duces to the following

For an ideal I ⊆ A, under what condition µ(I) = µ(I/I2)?
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Things may become more meaningful and tangible, if (a) I

locally complete intersection LCI or (b) the conormal bundle I/I2

is free, as A/I-module.

Even such an expectation is unrealistic. In practice, we ask

when I is image P ։ I of a projective A-module P of rank

µ(I/I2)?
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Start with the following lemma.

Lemma 1.1 (Mohan Kumar [14]). For ideals I ⊆ A,

µ(I/I2) ≤ µ(I) ≤ µ(I/I2) + 1.

Proof with a purpose: Suppose n = µ(I/I2). Then,

I = (f1, f2, . . . , fn)+I
2. =⇒ ∃ s ∈ I ∋ (1+s)I ⊆ (f1, f2, . . . , fn).

It follows I = (f1, f2, . . . , fn, s).

Observe:

(1 + s)s = f1g1 + f2g + · · · + fngn for some gi ∈ A.

This sets the stage of the definition of the universal ring.
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1.1 The Universal Ring

Definition 1.2 (Universal Ring ([12])). For k = Z or a field define

An :=
k[X1, X2, . . . , Xn, Y1, Y2, . . . , Yn, Z]

(
∑

XiYi − Z(1 + Z))

:= k[x1, x2, . . . , xn, y1, y2, . . . , yn, z]

1. Write I = (x1, x2, . . . , xn, z).

2. There is a homomorphism

ψ : An −→ A xi 7→ fi, yi 7→ gi, z 7→ s,with ψ(I ) = I.

3. I /I 2 is free, with basis x1, x2, . . . , xn. So, µ(I /I 2) = n.

Theorem 1.3 (Mohan Kumar, Nori ([12])). I cannot be the quo-

tient of a projective An-module of rank n. In particular µ(I ) 6=
n.

Comments on the proof. The complete proof is given in ([16]).

Suppose there is a surjective map ϕ : P ։ I , where P is a

rojective An-module with rank(P ) = n. Then, the Chern class

cn([P ]− n) = ±λn ∈ CHn(An), where λn = cycle(An/I ) ∈
CHn(An). Total Chow group

CH(An) = Z⊕ Zλn and K0(An) = Z⊕ Z

[

An

I

]

.

Using Riemann-Roch, it was also proved that (n− 1)!|Cn(P ).
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This was the birth of the obstruction theory approach to com-

plete intersection.
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1.2 Mohan Kumar varieties

Mohan Kumar ([12]) constructed some interesting affine varieties.

Construction 1.4. [12] Let k be a field and p be a prime number.

Fix a polynomial f (X) ∈ k[X ] with deg(f ) = p such that f (0) =

a ∈ k∗. This polynomial f (X) will be called the seed polynomial.

Let tr = 1 + p + · · · + pr−1.

1. Let F (X0, X1) = F1(X0, X1) = Xp
1f (X0/X1).

2. Inductively define Fn = F (Fn−1(X0, . . . , Xn−1), a
tn−1Xpn−1

n ).

3. Work with (seed) polynomials f (X) so that Fn is irreducible.

4. Let Xn = (Fn 6= 0) ⊆ P
n
k . Write Xn = Spec(Bn). Then

Bn = k[X0, X1, X2, . . . , Xn](Fn),

These Xn will be called Mohan Kumar varieties.

5. Fix seed polynomial, for example f (X) = Xp + t where k =

k0(t) and t is trancendental over a field k0.

6. Also define Yn = Xn ∩ (Fn−1 6= 0) and Zn = Xn ∩ (G 6= 0),

where G = Fn−1 − atn−1Xpn−1

n . Then,

Γ(Xn) //

��

Γ(Yn)

��

Γ(Zn) // Γ(Yn ∩ Zn)

is a fiber product.
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7. Let y = (0, . . . , 0, 1, 1). Then, y ∈ Yn \ Zn. Let m ⊆ Γ(X )

represent the maximal ideal for y.

8. m is complete intersection (see [12]). Let F = Γ(Yn)
n the free

module. Take an exact sequence

0 //K
ι

//F
ψ

// mΓ(Yn) // 0 and P := F⊗Γ(Yn∩Zn).

It follows P is stably free, with rank(P ) = n− 1.

9. Assume n = p + 1 for any prime p.

Theorem 1.5. Let n = p + 1 for any prime p. Then, P is not

free.

Proof. Write R = Γ(Yn ∩ Zn). Assume P is free and β : P
∼−→

Rn−1. Then we can complete the following

0 //P
ι

//

β ≀
��

Rn ψ
//

≀ σ
��
�

�

�

R // 0

0 //Rn−1 //Rn //R // 0

The second line is a trivial exact sequence.

In this case, let Q := P(Γ(Yn)
n,Γ(Zn, σ)) be obtained patch-

ing, via σ. It follows, there is a surjective map ϕ : Q ։ m.

So, the Chern class Cn(Q) = ±[y] ∈ CHn(Xn). This leads to a

contradiction.
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1.3 Chern Classes as Obstructions I: when k = k

Subsequently, Murthy took up the program to investigate whether

Chern classes would work as obstructions. The final theorem is

due to Murthy.

Sometimes, it is better to work with F dK0(A) than the Chow

group CHd(A). So, we give this definition.

Definition 1.6. Let A be a commutative noetherian ring with

dimA = d. Define

F dK0(A) = Subgroup ({[A/m] ∈ K0(A) : Am is regular, dimAm = d})

In most cases ([7]),

F dK0(A) =

{[

A

I

]

: I is locally complete intersection, height(I) = d

}

Definition 1.7. Let A be a commutative noetherian ring with

dimA = d and I ⊆ A be an ideal. An ideal J is said to be

residual to I , if

1. I + J = A

2. J is locally complete intersection ideal of height n.

3. µ(I ∩ J) = n.

Under suitable conditions, if µ(I/I2) = d, then I is residual to

intersection of finitely many smooth maximal ideals.
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Theorem 1.8 (Murthy [15]). Suppose A is a reduced affine al-

gebra, over an algebraically closed field k, with dimA = d. Let

I ⊆ A be an ideal such that µ(I/I2) = d and let J be residual to

I . Then, there is a surjection P ։ J such that

1. P is a projective A-module with rank(P ) = d.

2. z = [P ]− d ∈ F dK0(A).

3. (n− 1)!z =
[

A
J

]

.

4. In particular, if I is locally complete intersection, then

(n− 1)!z = −
[

A
I

]

.

One would desire to put this theorem in a more formal way,

namely in terms of Chern classes in Chow groups. Some care is

needed, when X = Spec(A) is not smooth.

1. First, for a projective A-module P , with rank(P ) = d, we

can define the top Chern class

Cd(P ) =

n
∑

i=0

(−1)i[∧iP ∗] ∈ F dK0(A) ⊆ K0(A).

In fact,

Cn(P ) =

[

A

I

]

whenever ∃ P ∗
։ I surjection, and I is LCI.

2. With A as in (1.8), F dK0(A) is divisible ([15, 2.10]).

So, CHd(A) ։ F nK0(A) is surjective.
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In fact, if dim(Sing(Spec(A))) ≤ d − 2, then F dK0(A) is

divisible and torsion free (Srinivas).

3. There is a version of Riemann-Roch in ([4], assume weak-

Euler class is defined):

F dK0(A)
e

//

±(d−1)! ''O

O

O

O

O

O

O

O

O

O

O

CHd(A)

��

F dK0(A)

CHd(A) e
//

±(d−1)! ''N

N

N

N

N

N

N

N

N

N

N

F dK0(A)

��

CHd(A)

commute.

Therefore, when dim(Sing(Spec(A))) ≤ d− 2 then

CHd(A)
∼−→ F dK0(A) is an isomorphism of torsion free

groups. ([15] assumes regularity, due to Srinivas and Levine.)

4. Summary: IfA is as in theorem 1.8 and if dim(Sing(Spec(A))) ≤
d − 2, then the top Chern class cd(P ) ∈ CHd(A) is defined.

So, theorem 1.8 can be stated in terms this Chern class.

Theorem 1.9 (Murthy [15, 10]). Let A be s in theorem 1.8 and

dim(Sing(Spec(A))) ≤ d−2. Suppose P is a projectiveA-module

with rank(P ) = d and I is a locally complete intersection ideal

of height d. Then

cn(P ) = cycle(A/I) ⇐⇒ ∃ a surjection P ∗
։ I.

In this case, any surjective homomorpism ϕ : P ∗
։ I/I2 lifts to

a surjection:

P ∗ f
// //____

ϕ ""E

E

E

E

E

E

E

E

I

��
��

I/I2
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1.4 Chern Classes as Obstructions II: Real varieties

S. M. Bhatwadekar and Raja Sridharan first considered real smooth

affine varities. Some of the final results are in ([1]).

Theorem 1.10 (BDM [1]). Let X = Spec(A) be a smooth affine

variety over reals R, with dimR = d ≥ 2 and the canonical

module K = ∧d(ΩA/R). Let P be a projective A-module of rank

d and let ∧d(P ) = 0. Assume the Cn(P ) = 0 ∈ CH0(X) Then

P ≃ A⊕Q in the following cases:

1. X(R) has no compact connected component; or n is odd.

2. For every compact connected component C of X(R),

LC 6≃ KC where KC and LC induced line bundles on C.

Moreover, if n is even and L is a rank 1 projective A-module

such that there exists a compact connected component C of X(R)

with the property that LC ≃ KC , then there exists a projective

A-module P of rank n such that P ⊕ A ≃ L⊕ An−1 ⊕ A (hence

Cn(P ) = 0) but P does not have a free summand of rank 1.

The structure theorem for Euler class groups was proved, and

used to prove (1.10).
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Theorem 1.11 (BDM, Structure Theorem([1])). LetX = Spec(A)

be a smooth affine variety of dimension n ≥ 2 over the field R of

real numbers and letK = ∧n(ΩA/R) be the canonical module of A.

Let L be a projectiveA-module of rank 1. LetC1, · · · , Cr, Cr+1, · · · , Ct
be the compact connected components of X(R) in the Euclidean

topology. Let KCi
and LCi

denote the induced line bundles on Ci.

Assume that

LCi
≃ KCi

for 1 ≤ i ≤ r

LCi
6≃ KCi

for r + 1 ≤ i ≤ t

Then, Ed(R(X), L) = Z
r ⊕ (Z/(2))t−r.

Remark. There are similar ctructures for Chow groups CHd(X).

These groups coincide with the topological obstruction groups.

Theorem 1.12 (-Sheu[11]). Use the same notations as in (1.11).

Let P be a projective R(X)-module with rank(P ) = d and E be

the corresponding vector bundle on X(R). Then, ther is a natural

isomorphism of groups:

ζ : Ed(R(X),∧dP ) ∼−→ Hn (X(R),G∧nE∗) and ζ(e(P )) = wn(E∗)

where wn(E∗) is the Whitney (obstruction) class of E∗, in the

cohomology group, we coefficients in ∧nE∗.
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Question 1.13. A few questions:

1. Suppose A is a real smooth affine algebra over R, as in1.10

(Good Cases) and I is an ideal.

(a) If µ(I/I2) = d, whether there is a surjection P ։ I , for

some projective A-module with rank(P ) = d?

(b) If I is complete intersection ideal with height(I) = d and

a projective A-module P of rank d, whether Cn(P ) =

cycle(A/I) =⇒ ∃ surjection P ∗
։ I?

2. Is it possible to give a version of theorem (1.10) when X =

Spec(A) is non-smooth over R. Murthy’s paper ([15]) has

good amount of results.

3. For complex smooth varieties X = Spec(A), there should

be version the structure theorem (1.11) and the isomorphism

(1.12). Note in this case, Euler class group Ed(A,L)
∼−→

CHd(A).

4. ([1]) LetX = Spec(A) be a smooth affine variety of dimension

n ≥ 2 over a field k of characteristic 0. Let P be a projective

A-module of rank n such that Cn(P ) = 0 in CH0(X). Then,

does there exist a projective A-module Q of rank n− 1 such

that P ⊕ A ≃ Q⊕ A⊕ A ?
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2 Classical results: Ideal theoretic

I feel not much has been accomplished.

I will give a list of three classes of results:

1. On ideals I in noetherian commutative rings A with dimA =

d.

2. On ideals I in polynomial rings A = k[X1, . . . , Xd] over fields

k.

3. On ideals I in polynomial rings A = R[X ], over noetherian

commutative rings R.

Lemma 2.1. Suppose A is noetherian commutative ring with

dimA = d and I is an ideal with µ(I/I2) = n ≥ d + 1. Then,

µ(I) = n.

Theorem 2.2 ([6]). Let R = A[X ] be a polynomial ring over a

noetherian commutative ring A and let I be an ideal of R that

contains a monic polynomial. If µ(I/I2) ≥ dim(R/I) + 2, then

µ(I) = µ(I/I2). (R = k[X1, . . . , Xd] over a field k, this is due to

Mohan Kumar ([13]).)
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Question 2.3. 1. Suppose I is an ideal of in polynomial ring

R = k[X1, . . . , Xd] over a field k. Is µ(I) = µ(I/I2)?
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3 Classical results: Set theoretic

Theorem 3.1. Suppose I is an ideal in noetherian commutative

rings A with dimA = d. Then, I is set theoretically generated by

d + 1 elements.

Theorem 3.2 (Eisenbud-Evans). Suppose R = A[X ] is a polyno-

mial ring over a commutative noetherian ring A with dimA = d.

Then any ideal I of R is set theoretically generated by d + 1

elements.

Theorem 3.3 ([8]). Suppose R = A[X ] is a polynomial ring

over a noetherian commutative ring A and I is a locally complete

intersection ideal of R, with dim(R/I) ≥ 1. If I contains a monic

polynomial, then I is set theoretically generated by d elements

where d = dimA.
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3.1 Boratyński’s Theorem

Theorem 3.4 (Boratyński). Let A be a commutative ring and

let I be an ideal in A such that I = (f1, . . . , fn) + I2. Let J =

(f1, . . . , fn−1) + I (n−1)!. Then J is the image of a projective A-

module P of rank n. It follows immediately,

If A = k[X1, . . . , Xd], over a field k. Then, µ(I/In) = n =⇒,

I is set theoretically generated by n elements.

This theorem lived to play a very central role subsequently.

Follwing are consequences:
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1. Mohan Kumar and Nori used it for the universal construction.

Their computations show for the ideal I = (x1, . . . , xn, z)

in the universal ring An and J = (x1, . . . , xn−1) + In−1,

he proved ([15]), there is a projective An-module P̃ with

rank(P̃ ) = n and a surjection P̃ ։ J , such that

[P̃ ]− n = −
[

An

I

]

∈ K0(An)

2. Murthy ([15]), "dragged" P̃ down to a projective A-module,

and made Boratyński’s construction stronger, by asserting

that we can assume

[P ]− n = −
[

A

I

]

∈ K0(A).

3. I used it, in the version of the Reimann-Roch ([4]) allued to,

and else where.

4. Boratyński’s theorem is omnipresent in complete intersection.

It may be worthwhile to point out, (n− 1)! is omnipresent:

(a) It is in, Suslin’s theorem on completion of unimodular

rows.

(b) In Borartyński’s theorem,

(c) In Riemann-Roch.

These are not unrelated coincidences.
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Theorem 3.5 (-Roy [9]). Let R = A[X ] be a polynomial ring

over a commutative noetherian ring A and I be an ideal of R

that contains a monic polynomial. Suppose I = (f1, . . . , fn) + I2

and J = (f1, . . . fn−1) + I (n−1)!. Then µ(J) = n.

Theorem 3.6 (Ferrand-Szpiro, Mohan Kumar [13]). Let R =

k[X1, . . . , Xn] be a polynomial ring over a field k and I be a

locally complete intersection ideal of R with height(I) = n − 1

(a curve in A
n). Then,

√
I =

√

(f1, . . . , fn−1) for some n − 1

elements fi ∈ I .

Here is a monic polynomial version.

Theorem 3.7 ([8]). Suppose R = A[X ] is a polynomial ring over

a noetherian commutative ring A, with d = dimA and I is a

locally complete intersection ideal of R, with dim(R/I) ≥ 1. If I

contains a monic polynomial, then I is set theoretically generated

by d elements where d = dimA.
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3.2 Cowsik-Nori’s theorem on curves in n spaces

Theorem 3.8 (Cowsik-Nori [3]). Suppose A = k[X1, . . . , Xn] is a

polynomial ring, over a field k positive characteristic p. Let I be

an ideal of pure height n−1. Then I is set theoretically generated

by n− 1 elements.

Same is true for the projective space curves in P
n.

Question 3.9. 1. Suppose A = k[X1, . . . , Xn] is a polynomial

ring, over a field k. Suppose I is an ideal of pure height n−1,

then whether or not I is set theoretically generated by n− 1

elements?
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