Complete Intersections Workshop on Projective modules and A^1 -homotopy theory

American Institute of Mathematics

Satya Mandal, KU University of Kansas, Lawrence KS 66045; mandal@ku.edu

May 5-9, 2014

Notations 0.1. Some standard notations:

1. X = Spec(A) will denote a noetherian affine scheme, with dim X = d. For an A-module $\mu(M)$ = minimal number of generators of M.

1 Ideal theoretic complete intersections

Loosely speaking, ideal theoretic complete intersection often reduces to the following

For an ideal $I \subseteq A$, under what condition $\mu(I) = \mu(I/I^2)$?

Things may become more meaningful and tangible, if (a) I locally complete intersection LCI or (b) the conormal bundle I/I^2 is free, as A/I-module.

Even such an expectation is unrealistic. In practice, we ask when I is image $P \twoheadrightarrow I$ of a projective A-module P of rank $\mu(I/I^2)$? Start with the following lemma.

Lemma 1.1 (Mohan Kumar [14]). For ideals $I \subseteq A$,

$$\mu(I/I^2) \le \mu(I) \le \mu(I/I^2) + 1.$$

Proof with a purpose: Suppose $n = \mu(I/I^2)$. Then,

 $I = (f_1, f_2, \dots, f_n) + I^2. \implies \exists s \in I \ \ni \ (1+s)I \subseteq (f_1, f_2, \dots, f_n).$ It follows $I = (f_1, f_2, \dots, f_n, s).$

Observe:

$$(1+s)s = f_1g_1 + f_2g + \dots + f_ng_n$$
 for some $g_i \in A$.

This sets the stage of the definition of the universal ring.

1.1 The Universal Ring

Definition 1.2 (Universal Ring ([12])). For $k = \mathbb{Z}$ or a field define

$$\mathscr{A}_{n} := \frac{k[X_{1}, X_{2}, \dots, X_{n}, Y_{1}, Y_{2}, \dots, Y_{n}, Z]}{(\sum X_{i}Y_{i} - Z(1 + Z))}$$
$$:= k[x_{1}, x_{2}, \dots, x_{n}, y_{1}, y_{2}, \dots, y_{n}, z]$$

- 1. Write $\mathscr{I} = (x_1, x_2, \dots, x_n, z).$
- 2. There is a homomorphism

$$\psi: \mathscr{A}_n \longrightarrow A \quad x_i \mapsto f_i, y_i \mapsto g_i, \ z \mapsto s, \text{with} \ \psi(\mathscr{I}) = I.$$

3. $\mathscr{I}/\mathscr{I}^2$ is free, with basis x_1, x_2, \ldots, x_n . So, $\mu(\mathscr{I}/\mathscr{I}^2) = n$.

Theorem 1.3 (Mohan Kumar, Nori ([12])). \mathscr{I} cannot be the quotient of a projective \mathscr{A}_n -module of rank n. In particular $\mu(\mathscr{I}) \neq n$.

Comments on the proof. The complete proof is given in ([16]). Suppose there is a surjective map $\varphi : P \twoheadrightarrow \mathscr{I}$, where P is a rojective \mathscr{A}_n -module with rank(P) = n. Then, the Chern class $c^n([P] - n) = \pm \lambda_n \in CH^n(\mathscr{A}_n)$, where $\lambda_n = cycle(\mathscr{A}_n/\mathscr{I}) \in CH^n(\mathscr{A}_n)$. Total Chow group

$$CH(\mathscr{A}_n) = \mathbb{Z} \oplus \mathbb{Z}\lambda_n \text{ and } K_0(\mathscr{A}_n) = \mathbb{Z} \oplus \mathbb{Z}\left[\frac{\mathscr{A}_n}{\mathscr{I}}\right].$$

Using Riemann-Roch, it was also proved that $(n-1)!|C^n(P)$.

This was the birth of the obstruction theory approach to complete intersection.

1.2 Mohan Kumar varieties

Mohan Kumar ([12]) constructed some interesting affine varieties.

Construction 1.4. [12] Let k be a field and p be a prime number. Fix a polynomial $f(X) \in k[X]$ with $\deg(f) = p$ such that $f(0) = a \in k^*$. This polynomial f(X) will be called the seed polynomial. Let $t_r = 1 + p + \cdots + p^{r-1}$.

- 1. Let $F(X_0, X_1) = F_1(X_0, X_1) = X_1^p f(X_0/X_1).$
- 2. Inductively define $F_n = F(F_{n-1}(X_0, \dots, X_{n-1}), a^{t_{n-1}}X_n^{p^{n-1}}).$
- 3. Work with (seed) polynomials f(X) so that F_n is irreducible.
- 4. Let $\mathscr{X}_n = (F_n \neq 0) \subseteq \mathbb{P}_k^n$. Write $\mathscr{X}_n = Spec(\mathscr{B}_n)$. Then

$$\mathscr{B}_n = k[X_0, X_1, X_2, \dots, X_n]_{(F_n)},$$

These \mathscr{X}_n will be called Mohan Kumar varieties.

- 5. Fix seed polynomial, for example $f(X) = X^p + t$ where $k = k_0(t)$ and t is trancendental over a field k_0 .
- 6. Also define $\mathscr{Y}_n = \mathscr{X}_n \cap (F_{n-1} \neq 0)$ and $\mathscr{Z}_n = \mathscr{X}_n \cap (G \neq 0)$, where $G = F_{n-1} - a^{t_{n-1}} X_n^{p^{n-1}}$. Then,

$$\begin{array}{cccc} \Gamma(\mathscr{X}_n) & \longrightarrow & \Gamma(\mathscr{Y}_n) \\ & \downarrow & & \downarrow & & \text{is a fiber product.} \\ \Gamma(\mathscr{Z}_n) & \longrightarrow & \Gamma(\mathscr{Y}_n \cap \mathscr{Z}_n) \end{array}$$

- 7. Let y = (0, ..., 0, 1, 1). Then, $y \in \mathscr{Y}_n \setminus \mathscr{Z}_n$. Let $\mathfrak{m} \subseteq \Gamma(\mathscr{X})$ represent the maximal ideal for y.
- 8. \mathfrak{m} is complete intersection (see [12]). Let $F = \Gamma(\mathscr{Y}_n)^n$ the free module. Take an exact sequence

$$0 \longrightarrow K \stackrel{\iota}{\longrightarrow} F \stackrel{\psi}{\longrightarrow} \mathfrak{m}\Gamma(\mathscr{Y}_n) \longrightarrow 0 \qquad \text{and} \ P := F \otimes \Gamma(\mathscr{Y}_n \cap \mathscr{Z}_n).$$

It follows P is stably free, with rank(P) = n - 1.

9. Assume n = p + 1 for any prime p.

Theorem 1.5. Let n = p + 1 for any prime p. Then, P is not free.

Proof. Write $R = \Gamma(\mathscr{Y}_n \cap \mathscr{Z}_n)$. Assume P is free and $\beta : P \xrightarrow{\sim} R^{n-1}$. Then we can complete the following

$$\begin{array}{cccc} 0 & \longrightarrow & P & \stackrel{\iota}{\longrightarrow} & R^{n} & \stackrel{\psi}{\longrightarrow} & R & \longrightarrow & 0 \\ & & & & & & & & \\ & & & & & & & \\ & & & & & & & \\ 0 & \longrightarrow & R^{n-1} & \longrightarrow & R^{n} & \longrightarrow & R & \longrightarrow & 0 \end{array}$$

The second line is a trivial exact sequence.

In this case, let $Q := \mathcal{P}(\Gamma(\mathscr{Y}_n)^n, \Gamma(\mathscr{Z}_n, \sigma))$ be obtained patching, via σ . It follows, there is a surjective map $\varphi : Q \twoheadrightarrow \mathfrak{m}$. So, the Chern class $C^n(Q) = \pm [y] \in CH^n(\mathscr{X}_n)$. This leads to a contradiction.

1.3 Chern Classes as Obstructions I: when $k = \overline{k}$

Subsequently, Murthy took up the program to investigate whether Chern classes would work as obstructions. The final theorem is due to Murthy.

Sometimes, it is better to work with $F^d K_0(A)$ than the Chow group $CH^d(A)$. So, we give this definition.

Definition 1.6. Let A be a commutative noetherian ring with $\dim A = d$. Define

$$F^d K_0(A) = Subgroup(\{[A/\mathfrak{m}] \in K_0(A) : A_\mathfrak{m} \text{ is regular}, \dim A_\mathfrak{m} = d\})$$

In most cases ([7]),

 $F^{d}K_{0}(A) = \left\{ \begin{bmatrix} A \\ \overline{I} \end{bmatrix} : I \text{ is locally complete intersection, } height(I) = d \right\}$ **Definition 1.7.** Let A be a commutative noetherian ring with $\dim A = d$ and $I \subseteq A$ be an ideal. An ideal J is said to be residual to I, if

- 1. I + J = A
- 2. J is locally complete intersection ideal of height n.
- 3. $\mu(I \cap J) = n$.

Under suitable conditions, if $\mu(I/I^2) = d$, then I is residual to intersection of finitely many smooth maximal ideals.

Theorem 1.8 (Murthy [15]). Suppose A is a reduced affine algebra, over an algebraically closed field k, with dim A = d. Let $I \subseteq A$ be an ideal such that $\mu(I/I^2) = d$ and let J be residual to I. Then, there is a surjection $P \to J$ such that

1. P is a projective A-module with rank(P) = d.

2.
$$z = [P] - d \in F^d K_0(A)$$
.

- 3. $(n-1)!z = \left[\frac{A}{J}\right].$
- 4. In particular, if I is locally complete intersection, then $(n-1)!z = -\left[\frac{A}{I}\right].$

One would desire to put this theorem in a more formal way, namely in terms of Chern classes in Chow groups. Some care is needed, when X = Spec(A) is not smooth.

1. First, for a projective A-module P, with rank(P) = d, we can define the top Chern class

$$C_d(P) = \sum_{i=0}^n (-1)^i [\wedge^i P^*] \in F^d K_0(A) \subseteq K_0(A)$$

In fact,

$$C_n(P) = \left[\frac{A}{I}\right]$$
 whenever $\exists P^* \twoheadrightarrow I$ surjection, and I is LCI.

2. With A as in (1.8), $F^d K_0(A)$ is divisible ([15, 2.10]). So, $CH^d(A) \twoheadrightarrow F^n K_0(A)$ is surjective. In fact, if $\dim(Sing(Spec(A))) \leq d - 2$, then $F^d K_0(A)$ is divisible and torsion free (Srinivas).

3. There is a version of Riemann-Roch in ([4], assume weak-Euler class is defined):

Therefore, when dim $(Sing(Spec(A))) \leq d - 2$ then $CH^{d}(A) \xrightarrow{\sim} F^{d}K_{0}(A)$ is an isomorphism of torsion free groups. ([15] assumes regularity, due to Srinivas and Levine.)

4. Summary: If A is as in theorem 1.8 and if $\dim(Sing(Spec(A))) \leq d-2$, then the top Chern class $c^d(P) \in CH^d(A)$ is defined. So, theorem 1.8 can be stated in terms this Chern class.

Theorem 1.9 (Murthy [15, 10]). Let A be s in theorem 1.8 and dim $(Sing(Spec(A))) \leq d-2$. Suppose P is a projective A-module with rank(P) = d and I is a locally complete intersection ideal of height d. Then

 $c_n(P) = cycle(A/I) \iff \exists a \text{ surjection } P^* \twoheadrightarrow I.$

In this case, any surjective homomorphism $\varphi : P^* \twoheadrightarrow I/I^2$ lifts to a surjection:

1.4 Chern Classes as Obstructions II: Real varieties

S. M. Bhatwadekar and Raja Sridharan first considered real smooth affine varities. Some of the final results are in ([1]).

Theorem 1.10 (BDM [1]). Let $X = \operatorname{Spec}(A)$ be a smooth affine variety over reals \mathbb{R} , with dim $\mathbb{R} = d \geq 2$ and the canonical module $K = \wedge^d(\Omega_{A/\mathbb{R}})$. Let P be a projective A-module of rank d and let $\wedge^d(P) = 0$. Assume the $C^n(P) = 0 \in CH_0(X)$ Then $P \simeq A \oplus Q$ in the following cases:

- 1. $X(\mathbb{R})$ has no compact connected component; or n is odd.
- 2. For every compact connected component C of $X(\mathbb{R})$, $L_C \not\simeq K_C$ where K_C and L_C induced line bundles on C.

Moreover, if n is even and L is a rank 1 projective A-module such that there exists a compact connected component C of $X(\mathbb{R})$ with the property that $L_C \simeq K_C$, then there exists a projective A-module P of rank n such that $P \oplus A \simeq L \oplus A^{n-1} \oplus A$ (hence $C_n(P) = 0$) but P does not have a free summand of rank 1.

The structure theorem for Euler class groups was proved, and used to prove (1.10).

Theorem 1.11 (BDM, Structure Theorem([1])). Let X = Spec(A)be a smooth affine variety of dimension $n \geq 2$ over the field \mathbb{R} of real numbers and let $K = \wedge^n(\Omega_{A/\mathbb{R}})$ be the canonical module of A. Let L be a projective A-module of rank 1. Let $C_1, \dots, C_r, C_{r+1}, \dots, C_t$ be the compact connected components of $X(\mathbb{R})$ in the Euclidean topology. Let K_{C_i} and L_{C_i} denote the induced line bundles on C_i . Assume that

$$L_{C_i} \simeq K_{C_i} \quad for \ 1 \le i \le r$$
$$L_{C_i} \not\simeq K_{C_i} \quad for \ r+1 \le i \le t$$

Then, $E^d(\mathbb{R}(X), L) = \mathbb{Z}^r \oplus (\mathbb{Z}/(2))^{t-r}$.

Remark. There are similar ctructures for Chow groups $CH^d(X)$.

These groups coincide with the topological obstruction groups.

Theorem 1.12 (-Sheu[11]). Use the same notations as in (1.11). Let P be a projective $\mathbb{R}(X)$ -module with rank(P) = d and \mathcal{E} be the corresponding vector bundle on $X(\mathbb{R})$. Then, ther is a natural isomorphism of groups:

$$\zeta : E^d(\mathbb{R}(X), \wedge^d P) \xrightarrow{\sim} H^n(X(\mathbb{R}), \mathcal{G}_{\wedge^n \mathcal{E}^*})$$
 and $\zeta(e(P)) = w_n(\mathcal{E}^*)$
where $w_n(\mathcal{E}^*)$ is the Whitney (obstruction) class of \mathcal{E}^* , in the
cohomology group, we coefficients in $\wedge^n \mathcal{E}^*$.

Question 1.13. A few questions:

- 1. Suppose A is a real smooth affine algebra over \mathbb{R} , as in1.10 (Good Cases) and I is an ideal.
 - (a) If $\mu(I/I^2) = d$, whether there is a surjection $P \twoheadrightarrow I$, for some projective A-module with rank(P) = d?
 - (b) If I is complete intersection ideal with height(I) = d and a projective A-module P of rank d, whether $C_n(P) = cycle(A/I) \Longrightarrow \exists$ surjection $P^* \twoheadrightarrow I$?
- 2. Is it possible to give a version of theorem (1.10) when X = Spec(A) is non-smooth over \mathbb{R} . Murthy's paper ([15]) has good amount of results.
- 3. For complex smooth varieties X = Spec(A), there should be version the structure theorem (1.11) and the isomorphism (1.12). Note in this case, Euler class group $E^d(A, L) \xrightarrow{\sim} CH^d(A)$.
- 4. ([1]) Let X = Spec(A) be a smooth affine variety of dimension $n \ge 2$ over a field k of characteristic 0. Let P be a projective A-module of rank n such that $C_n(P) = 0$ in $CH_0(X)$. Then, does there exist a projective A-module Q of rank n 1 such that $P \oplus A \simeq Q \oplus A \oplus A$?

2 Classical results: Ideal theoretic

I feel not much has been accomplished.

I will give a list of three classes of results:

- 1. On ideals I in noetherian commutative rings A with dim A = d.
- 2. On ideals I in polynomial rings $A = k[X_1, \ldots, X_d]$ over fields k.
- 3. On ideals I in polynomial rings A = R[X], over noetherian commutative rings R.

Lemma 2.1. Suppose A is notherian commutative ring with $\dim A = d$ and I is an ideal with $\mu(I/I^2) = n \ge d + 1$. Then, $\mu(I) = n$.

Theorem 2.2 ([6]). Let R = A[X] be a polynomial ring over a noetherian commutative ring A and let I be an ideal of R that contains a monic polynomial. If $\mu(I/I^2) \ge \dim(R/I) + 2$, then $\mu(I) = \mu(I/I^2)$. $(R = k[X_1, \ldots, X_d]$ over a field k, this is due to Mohan Kumar ([13]).) Question 2.3. 1. Suppose I is an ideal of in polynomial ring $R = k[X_1, \ldots, X_d]$ over a field k. Is $\mu(I) = \mu(I/I^2)$?

3 Classical results: Set theoretic

Theorem 3.1. Suppose I is an ideal in noetherian commutative rings A with dim A = d. Then, I is set theoretically generated by d + 1 elements.

Theorem 3.2 (Eisenbud-Evans). Suppose R = A[X] is a polynomial ring over a commutative noetherian ring A with dim A = d. Then any ideal I of R is set theoretically generated by d + 1 elements.

Theorem 3.3 ([8]). Suppose R = A[X] is a polynomial ring over a noetherian commutative ring A and I is a locally complete intersection ideal of R, with $\dim(R/I) \ge 1$. If I contains a monic polynomial, then I is set theoretically generated by d elements where $d = \dim A$.

3.1 Boratyński's Theorem

Theorem 3.4 (Boratyński). Let A be a commutative ring and let I be an ideal in A such that $I = (f_1, \ldots, f_n) + I^2$. Let $J = (f_1, \ldots, f_{n-1}) + I^{(n-1)!}$. Then J is the image of a projective Amodule P of rank n. It follows immediately,

If $A = k[X_1, \ldots, X_d]$, over a field k. Then, $\mu(I/I^n) = n \implies$, I is set theoretically generated by n elements.

This theorem lived to play a very central role subsequently. Follwing are consequences: 1. Mohan Kumar and Nori used it for the universal construction. Their computations show for the ideal $\mathscr{I} = (x_1, \ldots, x_n, z)$ in the universal ring \mathscr{A}_n and $\mathcal{J} = (x_1, \ldots, x_{n-1}) + I^{n-1}$, he proved ([15]), there is a projective \mathscr{A}_n -module \tilde{P} with $rank(\tilde{P}) = n$ and a surjection $\tilde{P} \twoheadrightarrow \mathcal{J}$, such that

$$[\tilde{P}] - n = -\left[\frac{\mathscr{A}_n}{\mathscr{I}}\right] \in K_0(\mathscr{A}_n)$$

2. Murthy ([15]), "dragged" \tilde{P} down to a projective A-module, and made Boratyński's construction stronger, by asserting that we can assume

$$[P] - n = -\left[\frac{A}{I}\right] \in K_0(A).$$

- 3. I used it, in the version of the Reimann-Roch ([4]) allued to, and else where.
- 4. Boratyński's theorem is omnipresent in complete intersection. It may be worthwhile to point out, (n-1)! is omnipresent:
 - (a) It is in, Suslin's theorem on completion of unimodular rows.
 - (b) In Borartyński's theorem,
 - (c) In Riemann-Roch.

These are not unrelated coincidences.

Theorem 3.5 (-Roy [9]). Let R = A[X] be a polynomial ring over a commutative noetherian ring A and I be an ideal of Rthat contains a monic polynomial. Suppose $I = (f_1, \ldots, f_n) + I^2$ and $J = (f_1, \ldots, f_{n-1}) + I^{(n-1)!}$. Then $\mu(J) = n$.

Theorem 3.6 (Ferrand-Szpiro, Mohan Kumar [13]). Let $R = k[X_1, \ldots, X_n]$ be a polynomial ring over a field k and I be a locally complete intersection ideal of R with height(I) = n - 1 (a curve in \mathbb{A}^n). Then, $\sqrt{I} = \sqrt{(f_1, \ldots, f_{n-1})}$ for some n - 1 elements $f_i \in I$.

Here is a monic polynomial version.

Theorem 3.7 ([8]). Suppose R = A[X] is a polynomial ring over a noetherian commutative ring A, with $d = \dim A$ and I is a locally complete intersection ideal of R, with $\dim(R/I) \ge 1$. If Icontains a monic polynomial, then I is set theoretically generated by d elements where $d = \dim A$.

3.2 Cowsik-Nori's theorem on curves in *n* spaces

Theorem 3.8 (Cowsik-Nori [3]). Suppose $A = k[X_1, \ldots, X_n]$ is a polynomial ring, over a field k positive characteristic p. Let I be an ideal of pure height n-1. Then I is set theoretically generated by n-1 elements.

Same is true for the projective space curves in \mathbb{P}^n .

Question 3.9. 1. Suppose $A = k[X_1, \ldots, X_n]$ is a polynomial ring, over a field k. Suppose I is an ideal of pure height n-1, then whether or not I is set theoretically generated by n-1elements?

References

- Bhatwadekar, S. M.; Das, Mrinal Kanti; Mandal, Satya Projective modules over smooth real affine varieties. *Invent. Math.* 166 (2006), no. 1, 151-184.
- [2] Boratyński, M. A note on set-theoretic complete intersection ideals. J. Algebra 54 (1978), no. 1, 1-5.
- [3] Cowsik, R. C.; Nori, M. V. Affine curves in characteristic p are set theoretic complete intersections. *Invent. Math.* 45 (1978), no. 2, 111-114.
- [4] Das, Mrinal Kanti; Mandal, Satya A Riemann-Roch theorem. J. Algebra 301 (2006), no. 1, 148-164.
- [5] Mandal, Satya Projective modules and complete intersections. LNM, 1672. Springer-Verlag, Berlin, 1997. viii+114 pp.
- [6] Mandal, Satya On efficient generation of ideals, *Invent. Math.* 75 (1984), no. 1, 59–67.
- [7] Mandal, Satya Complete intersection K-theory and Chern classes, Math. Z. 227 (1998), no. 3, 423-454.
- [8] Mandal, Satya On set-theoretic intersection in affine spaces, J. Pure Appl. Algebra 51 (1988), no. 3, 267–275.
- [9] Mandal, Satya; Roy, Amit Generating ideals in polynomial rings, Math. Z. 195 (1987), no. 3, 315–320.
- [10] Mandal, Satya; Pavaman Murthy, M. Ideals as sections of projective modules. J. Ramanujan Math. Soc. 13 (1998), no. 1, 51-62.
- [11] Mandal, Satya; Sheu, Albert J. L. Local coefficients and Euler class groups. J. Algebra 322 (2009), no. 12, 4295-4330.
- [12] Mohan Kumar, N. Stably free modules. Amer. J. Math. 107 (1985), no. 6, 1439-1444 (1986).
- [13] Kumar, N. Mohan On two conjectures about polynomial rings. Invent. Math. 46 (1978), no. 3, 225-236.
- [14] Mohan Kumar, N. Complete intersections. J. Math. Kyoto Univ. 17 (1977), no. 3, 533-538.

- [15] Murthy, M. Pavaman Zero cycles and projective modules. Ann. of Math. (2) 140 (1994), no. 2, 405-434.
- [16] Swan, Richard G. Vector bundles, projective modules and the K-theory of spheres. Algebraic topology and algebraic K-theory (Princeton, N.J., 1983), 432-522, Ann. of Math. Stud., 113, Princeton Univ. Press, Princeton, NJ, 1987.