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0. Introduction

The purpose of this paper is to investigate the theory of complete intersection
in noetherian commutative rings from the K-Theory point of view. (By
complete intersection thegnwe mean questions like when/whether an ideal

is the image of a projective module of appropriate rank.)

The paper has two parts. In part one (Section 1-5), we deal with the rela-
tionship between complete intersection and K-theory. The Part two (Section
6-8) is, essentially, devoted to construction projective modules with certain
cycles as the total Chern class. Here Chern classes will take values in the
Associated graded ring of the Grothedieck- filtration and as well in
the Chow group in the smooth case.

In this paper, all our rings are commutative and schemes are noetherian.
To avoid unnecessary complications, we shall assume that all our schemes
are connected.

For a noetherian schend® K (X ) will denote the Grothendieck group
of locally free sheaves of finite rank ov&r. Whenever it make sense, for
a coherent shea¥/ over X, [M] will denote the class of\/ in Ky(X).

We shall mostly be concerned withi = SpecA, whereA is a noetherian
commutative ring and in this case we shall also use the notéfignl ) for
Ko(X).

Discussion on Part One (Section 1-5)
For a noetherian commutative ringof dimensionn, we let
FoKoA = {[A/I]in KgA: I
is a locally complete intersection ideal of heigijt
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In Sect. 1, we shall prove th#t) Ky A is a subgroup ofyA. We shall call
this subgroupF Ky A, thezero cycle subgroupf Ky A. We shall also see
that (1.6), for a reduced affine algebfaover an algebraically closed field
k, FoKoA is the subgroup generated by smooth maximal ideals of height
n. The later subgroup was considered by Levine [Le] and Srinivas [Sr].

One of our main results (3.2) in Part One is tftata noetherian commu-
tative ring A of dimensiom suppose that whenevéiis a locally complete
intersection ideal of height with [A/I] = 0 in Ky A, there is a projective
(respectivelstably free)A-moduleP of rankn that maps ontd. Then for
any locally complete intersection ideélof heightn, wheneverfA/I] is
divisible by(n — 1)!in FyKoA, I is image of a projectivel-module() of
rankn (respectivelywith (n — D)!([Q] — [A"]) = —[A/I] in KyA).

In [Mu2, (3.3)], Murthy proved that for a reduced affine algedraver
an algebraically closed field for anideall, if 7 /12 is generated by = dim
A elements thed is image of a projectivel-module of ranka.

In example (3.6), we show that for the coordinate ring

A=R[Xo, X1, X0, X3]/(Xg+ X? + X2+ X5 -1)

of real 3-sphere, the idedl= (X, — 1, X3, X2, X3)A is not the image of
a projective A-module of rank 3, althoug /1] = 0 in KA.

Anotherinteresting result (3.4) in this part is tsappose thafy, fo, .. .,
fris aregular sequence in a noetherian commutative Angf dimensiom
and let@ be a projectived-moduleof rankr that maps ontd f1, . . ., fr—1,
#77U Then[Q] = [Qo @ A] in KA for some projectivel-moduleQ,
of rankr — 1.

Whendim A = n = r = rank Q, this result(3.4) has interesting
comparison with the corresponding theorem of Mohan Kumar [Mk1] for
reduced affine algebras over algebraically closed fields.

More generally we prove that (3.5upposed is a nhoetherian commu-
tative ring ofdimensionn and let.J be a locally complete intersection ideal
of heightr < n. Assume thak’y A has no(r — 1)! torsion,[A/.J] = 0 and

J/J? has free generators of the forfa, fo, ..., fr_1, fﬁ‘l)! inJ. Let@
be a projectived-moduleof rankr that maps ontd’. Then[Q] = [Qo & 4]
in KyA, for some projectivel-moduleQq of rankr — 1.

For reduced affine algebrasof dimensionn over algebraically closed
fieldsk, and forn = r, (3.5) is a consequence of the theorem of Murthy
[Mu2, Theorem 3.7]. Besides these results [Mk1,Mu?2] (3.4) and (3.5) are
the best in this context , even for affine algebras over algebraically closed
fields. In fact, there is almost no result available in the case when rank is
strictly less than the dimension of the ring.
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In Sect. 1, we define and describe the zero cycle subgFuify A of
Ky(A). In Sect. 2, fort’ = Z or a field, we define the ring

k/[S,T,U,‘/,Xh...,Xn,}/l,...,Yn]
(SULTTV — 1, X1Y1 + -+ XpYp — ST)’

For our purposess,, serves like a "universal ring.” Besides doing the con-
struction of the "universal projective module” (2.6), we computeihel,,,
the Chow Group of4,, and we comment on the high&f-groups ofA,,.

All the results in Section 3 discussed above follows from a key Theorem
(3.1). In Section 4, we give the proof of (3.1). In Section 5, we give some
more applications of (3.1).

Ap = Ap(K) =

Discussion on Part Two (Section 6-8)

The purpose of this part of the paper is to construct projective modules of
appropriate rank that have certain cycles as its Chern classes and to consider
related questions.

For a noetherian schendé of dimension, I'(X) = @, I'(X) will
denote the graded ring associated to the Grothendjefilkration of the
Grothendieck grougso(X) andCH(X) = @}, CH(X) will denote
the Chow group of cycles oX modulo rational equivalence.

Our main construction (8.3) is as followsupposeX = SpecA is a
Cohen-Macaulay scheme of dimensiorand » > ry are integers with
2rg > n andn > r. Given a projectived-module@), of rankrg — 1 and a
sequence of locally complete intersection ideal®f heightk for & = rg
to r such that

(1) the restrictionQo|Y is trivial for all locally complete intersection
subschemey¥ of codimension at least, and

(2)fork=rgtor Ik/I,f has a free set of generators of the type
Ao b (5 in

then there is a projectivd-module), of rankr such that

(D) for1 < k < ro — 1thekth Chern class of)y and @), are same and

(2) for k betweenry and r the kth Chern class of)),. is given by the
cycle of A/ I, upto a sign(Here Chern classes take valuediX) Q Q
or in the Chow group, ifX is nonsingular over a fieldylore precisely, we
have

@] =7 =[Qo] — (ro = 1) + > [A/Ji]
k=rg
in Ko(X ) whereJy, is a locally complete intersection ideal of heightvith
[A/Ti] = = (k = 1)[A/ Ji].

Inductive arguments are used to do the constructio)pfin theo-
rem (8.3). Conversely, we prove theorem (8.2):
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let A be a commutative noetherian ring of dimensicand X = SpecA.Let
J be alocally complete intersection ideal of heiglso thatJ/.J? has a free

set of generators of the fortfy, fo, ..., fr—1, fr(r_l)!. Let ) be projective
A-moduleof rankr that maps onta/.Then there is a projectivd -module
Qo of rankr — 1 such that the first — 1 Chern classes af) and @, are
same(Here again Chern classes take valueS(X) or in the Chow group,if
X is nonsingular over a field)nfact, if Ky(X) is torsion free therQo] is
unique inKo(X).

Both in the statements of theorem (8.2) and (8.3), we considered locally
complete intersection ideal$ of heightr so that.J/J? has free set of

generators of the fornfy, fo, ... ,fr_l,f,gr*l)! in J. For such an ideal
J, [A/J] = (r — 1)![A/Jo], for some locally complete intersection ideal
Jo. Consideration of such ideals are supported in theorem (8.1):

LetA be anoetherian commutative ring of dimensicamd X = SpecA.
Assume that{y(X) has no(n — 1)!-torsion.Let I be locally complete
intersection ideal of height that is image of a projectivel-module@ of
rank n.Also suppose thaf), is an A-moduleof rankn — 1 so that the
firstn — 1 Chern classes af) andQ, are same.ThepA/I] is divisible by
(n—1)L

For a varietyX ,what cycles ofX,in I'(X) or in the Chow group,that
may appear as the total Chern class of a locally free sheaf of appropriate
rank had always been an interesting question, although not much is known
in this direction.

For affine smooth three foldX = SpecA over algebraically closed
fields, Mohan Kumar and Murthy[MM] proved that (see 8.9)fis a cycle
in CH*(X), for k = 1, 2, 3 then there are projectivd-modulesQ;, of
rankk so that
(1) total Chern class of Q1is1+ ¢y
(2) the total Chern class of Qais 1+ c¢1 + co,

(3) the total Chern class of Q3is 1+ c1 + ca + cs.

We give a stronger version (8.10) of this theorem (8.9) of Mohan Kumar
and Murthy [MM]. Our theorem (8.10) applies to any smooth three #Id
over any field such that H3(X) is divisible by 2.

Murthy[MuZ2] also proved that i = SpecA is a smooth affine variety
of dimensiom over an algebraically closed filddandc,, is a codimension
n cycle in the Chow group oK then there is a projectivd-module@ of
rankn so that the total Chern class@fis 1+ ¢,,. We give a stronger version
(8.7) of this theorem of Murthy [Mu?2]. This version (8.7) of the theorem
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applies to all smooth affine varietiéé of dimensionn, over any field, so
thatC H™(X) is divisible by(n — 1)!.

Murthy [Mu2] also proved : suppose thdt = SpecA is a smooth affine
variety of dimensiom over an algebraically closed fietdFori = 1 tonlet
¢; be acodimensioicycle inthe Chow group oX'. Thenthere is a projective
A-moduleQ) of rankn — 1 with total Chern clas$+c¢; + - - - + ¢, 1 ifand
only if there is a projectived-module( of rankn with total Chern class
14c¢ +---+4c,. We also give an alternative proof (8.8) of this theorem of
Murthy [Mu2] .

Besides these results [MM,Mu2] not much else is known in this direction.
Our results in Sect. 8 apply to any smooth affine variety over any field and
also consider codimesiotcycles where is strictly less than the dimension
of the variety. Consideration of Chern classes in the Associated graded ring
of the Grothendieck-filtration in the nonsmooth case is, possibly, the only
natural thing to do because the theory of Chern classes in the Chow group
is not available in such generality. Such consideration of Chern classes in
the Associated graded ring of the Grothendigeiftration was never done
before in this area .

In Sect. 6, we setup the notations and other formalism about the Grothen-
dieck Gamma filtration, Chow groups and Chern classes. In this section we
also give an example of a smooth affine vari&tyor which the Grothedieck
Gamma filtration ofKy(X) and the filtration by the codimension of the
support do not agree.

In Sect. 7, we set up some more preliminaries. Our main results of the
Part Two of the paper are in Sect. 8.

I would like to thank M. P. Murthy for the innumerable number of dis-
cussions | had with him over a long period of time. My sincere thanks to M.
V. Nori for many stimulating discussions. | would also like to thank Sankar
Dutta for similar reasons. | thank D. S. Nagaraj for helping me to improve
the exposition and for many discussions.

Part one : Section 1-5
Complete intersection and K-theory

In this part, we investigate the relationship between complete intersection
and K-theory.
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1. The Zero Cycle Subgroup

For a noetherian commutative ring Ky(A) will denote the Grothendieck
group of projectived-modules of finite rank. We defingy Ko A = {[A/I]
in KoA : Iis alocally complete intersection ideal of height dimA}.

In this section, we shall prove tha}) KA is a subgroup oKy A. We
call this subgrougy Ky A, thezero cycle subgroupVe shall also prove that
if A is an affine algebra over an algebraically closed figlthis notation
FyKyA is consistent with the notation used by Levine [Le] and Srinivas
[Sr] for the subgroup of<y A generated byA /"], whereft is a smooth
maximal ideal inA.

Theorem 1.1.Supposéd is a hoetherian commutative ring of dimensian
ThenFyKyA is a subgroup ofy A.

The proof of (1.1) will follow from the following Lemmas.
Lemma 1.2. Fy KgA = —FyKpA.
Proof. Supposd is a locally complete intersection ideal of height dim
Aandr = [A/I] isin FoKgA.

LetI = (f1, fo, - .-, fn) + I?. By induction, we shall find;, 5, ..., f"
in I such that

(1)( 7£>"'7f7{af7'+17'-'afn)+12:Ia

() (f1,--., f]) is aregular sequence.
Suppose we have pickgd, f5, ..., flasaboveand < n.Letpy,...,ps
be the associated primes 0f;, f5,..., f/). If I is contained inp;, then

heightp; = n and sincel}, is complete intersection of height A, is
Cohen-Macaulay ring of height. This contradicts thap, is associated
prime of (f{,..., fl). So, I is not contained irp; for i = 1 to s. Let
{P1,..., P} be maximal amongpi,...,ps} and assume that..; is in
Py,...,P,and notinP, 1,...,P. LetabeinI>N Py N--- NP\
PiUP,U---UP,.Letfl .y = f,41+a. Thenf/ , does not belong t&
fori = 1 tot and hence also does not belongto. . ., ps. Hence we have
that

(1) (f{7 : '7f7,~7 ;+17f7’+27-~7fn) +I2 = I and

2 fi..--, fr, fl41 is aregular sequence.

Therefore, we can find a regular sequerftefs, . .., f,, such thatl =
(fl,..., fL) + I So, (f], f5, ..., f)) = I N J for some idealJ with
I+ J = A.Sincefi,..., f; is a regular sequencd, is locally complete
intersection ideal an@d/I] + [A/J] = [A/(f1, f5,..., f})] = 0. Hence
[A/J] = —zisin FyKyA. So, the proof of (1.2) is complete.

Lemma 1.3.Suppose is a noetherian commutative ring of heightand
I is a locally complete intersection ideal of heightLetOt, ..., M be
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maximal ideals that does not containThere aref, fo, ..., f, such that
Q) f1,--., fn is aregular sequence,
(Z)I: (fb'"?fn) +IQ’
(3) for a maximal ideadnt, if (f1, ..., f,) is contained ird)t, thendt +
I, fori = 1tok.

Proof. As in the proof of (1.2), we can find a regular sequefice. ., f.
such thatl = (fy,..., fn) + I%. We readjustf,, to avoid9ty, ..., as
follows. Letpy,...,ps be the associated primes ofy,..., fn,—1). Then
I is not contained irp; for i = 1to s. Let{Py, P,..., P,} be maximal
among{pi,...,ps, M, ..., M }. Assumethaf, isin P, ..., P, and not
in Pyyt1,..., P Letabein>?NPyin---NP\PLUP,U---U P,
andf! = f, + a. Thenf] isnotinMy,..., M. So,

(1) f1, fo,- -, fa—1, f}, is aregular sequence

1= (f1,f2- -+ fn1,f}) + I?and

) if (f1,.-.y fuo1, f) C 9 for a maximal ideadt thendt + 9; for
i =11tok.

This completes the proof of (1.3)

Lemma 1.4.Let A be as in(1.1). ThenFy Ky A is closed under addition.

Proof. Let x andy be in Fy KoA. Thenz = [A/I] and by (1.2),y =
—[A/J], whereI and.J are locally complete intersection ideals of height
n. Let{My,..., M} = V(I)\ V(J), the maximal ideals that contain
and do not contairy. By (1.3), there is a regular sequenge fs, ..., fa
such that/ = (f1,..., f,) + J? and for maximal ideal§n that contains
(fl,...,fn),f)ﬁ# M, fori =1tok.

Let(f1,...,fn) = JNJ',whereJ+J" = AandJ’isalocally complete
intersection ideal of height. Theny = —[A/J] = [4/.J’]. Also note that
I+J = A.Hencer+y = [A/I]+[A/J] =[A/1J'],andl.]J" is alocally
complete intersection ideal of height So the proof of (1.4) is complete.

Clearly, the proof of Theorem (1.1) is complete by (1.2) and (1.4). Now
we proceed to prove that for reduced affine algelraser afieldk, Fy Ko A
is generated by regular points.

Theorem 1.5.Supposéed is a reduced affine algebra over a fietdof di-
mensiom. ThenFy KA is generated by the classe$/9t], wheredt runs
through all the regular maximal ideals of heigft

Proof. Since the regular locus of is open (see [K]), there is an idedlof
A suchthal/(J) is the set of all prime idealB such thatd p is not regular.
SinceA is reduced, heighf > 1.

Let G be the subgroup oK A4, generated by all classéd /9], where
M is a regular maximal ideal oA of heightn. Clearly G is contained
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in FyKpA. Now letz = [A/I] be in FyKyA, with I a locally complete
intersection ideal of height. LetI = (f1, fa, ..., fa) + I?. By induction

we shall findf{, f4,..., f. for r < n, such that
(1)I: (f{)"'?f7£7f7"+1a"'afn)+12’
@) (f'1, fb, ..., f})is aregular sequence and

(3) for a prime idealP of A, if J+ (f{,..., f.)is contained inP then
either heightP? > r or I is contained inP.

We only need to show the inductive step. Suppose we have pfg¢ked ,
/] as above. Lepy,...p; be the associated primes ©f;, ... f/) and let
Q1, Q2, ..., Qs be the minimal primes ovelf;, f5,..., fI) + J so that!
is not contained if); for i = 1to s. So, we have heigh®; > r. As before,
we see thaf is not contained ip; for i = 1to k.

Let{P), P,..., P} be the maximal elements §p1,...,px, Q1,-- -,
Qs} and letf,4q beinPy, ..., P, and not inP, 41,...,P. Leta be in
IPNPypn--- NP\ PLUP,U---UP,. Write f/; = fr41+ a. Then

11 Will satisfy the requirement.

Hence we have a sequenfe f5, . . ., f), such that
WI=(f],....f)+ I
(2) f1, f5, ..., [}, is aregular sequence and

(3) if a maximal ideaft containg(f1, . .. f}) + J thenI is contained in
M (ff,....fL)=1INnTI thenl +I' = Aandl’is alocally complete
intersection ideal of height. Also, if a maximal ideaf)t containsl’, then
9 is a regular maximal ideal of height So,[A/I’] is in G and hence
x =[A/I] = —[A/I']is also inG. The proof of (1.5) is complete.

Remark 1.6From the proof of (1.5), it follows that (1.5) is valid for any
noetherian commutative ring such that the singular locus of spéds con-
tained in a closed séf(.J) of codimension at least one. Similar arguments
work for smooth ideals.

2. The Universal Constructions

For k' = Z or afield, we let

N K[S.T,U,V]
K:Kk’): sy Ly Yy
k= tso+1v -1
/
A AL = HISTUV Xy X Vi Yol
(SU+TV —1, XY + - + XY, — ST)
KT, X1,.... X, Y1,....Y,
Bn:Bn(k/>: [ 5y <A1y ) 1 ]

(X111 +XoYo+ -+ XY, —T(1+1T))
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By the natural mapi,, — B,,, we mean the map that senfis— 7', S —
1+T,U = 1,V — —1. (We will continue to denote the images of upper
case letter variables in,, or B,,, by the same symbol).

The ring B,,, was considered by Jouanlou [J]. Latgf was further used
by Mohan Kumar and Nori [Mk2] and Murthy [Mu2]. The purpose of this
section is to establish that,, behaves much likés,,.

The Grothendieck Group and the Chow Group of A4,

For a ringA and X = SpecA, Ky(A) or Ko(X) (respectivelyGy(A) or
Go(X)) will denote the Grothendieck Group of finitely generated projec-
tive modules (espectivelyfinitely generated modules) over. C H*(A) or
CH*(X) will denote the Chow Group of cycles of codimensibrmod-

ulo rational equivalence andH (X) = @ CH*(X) will denote the total
Chow group ofX.

Proposition 2.1.Let A\, = [A,/(X1,X2,..., Xy, T)] in Go(Ay). Then
Go(A,) is freely generated by, = [A,] and \,,. In fact, the natural map
Go(Arn) — Go(By,) is an isomorphism.

Proof. We proceed by induction on. If n = 0, then Ay ~ Ay/(S) x
Ao/(T). SinceAy/(S) ~ Ay/(T) ~ K'[S*!, V], the proposition holds in
this case.

Now assume: > 0. We haved,,, ~ K[X1,...,Xn—1, X\ Y1, .,
Y,—1]andA4, /(X,) = A,_1[Ys]. SinceGy(K) ~ Z (see [Sw1], Sect. 10),
Go(Any, ) =~ Z and also by inductiotizo(A, /(X)) = Go(An-1[Ya]) ~
Go(A,—1) is generated byA,,_,] and \,,_;. Now we have the exact se-
quenceGo(An/(Xn)) — s Go(4,) —L 5 Go(Any,) — 0. Since
thei,(A\,—1) = Ap, andi([4,—1]) = 0,Go(A,,) is generated by, and
[An).

It is also easy to see that the natural ndag A,,) — Go(B,) sends\,,
to 8, = [Bn/(X1,...,X,,T)] and[A,] to [B,]. Sinceg, and[A4,] are
free generators of/o(B,,) (see [Sw1510)/[Mu2]), A\, and[A,] are free
generators ofiy(A,,). This completes the proof of (2.1).

Proposition 2.2. Let A/, be the cycle defined by, /(X1,... X,,T) in
CH(A,) and lete,, = [Spec A,,] be the cycle of codimension zero. Then
CH(A,) is freely generated by, and \/,. That mean€&'H’(A,,) = 0 for
j#0,n,CHY(A,) = Zé, ~ ZandCH"™(A,) = Z¢, ~ .

Before we prove (2.2), we prove the following easy lemma.
Lemma 2.3.CH(K) = Z[Spec K].

Proof. Note thatK /UK ~ k'[T*!, S] andKy ~ k'[T,U*!, V]. Now the
lemma follows from the exact sequen€dd;(K/UK) — CH;(K) —
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CH;(Ky) — 0forall j. (Here we use the notatighH; (S) = CH%™ ==J
(X))

Proof of (2.2) Forn = 0,4y = A, =~ K/(ST) =~ K/(S) x K/(T) =
K'[T*, U] x K'[STY,V]. CHY(Ag) =~ Z[V(S)] @ Z[V(T)] ~ Zeyy & ZN,
andCHJ(Ap) = 0 for all i > 0. So, the Proposition 2.2 holds far= 0.
Let

2n + 2 if ¥'is a field

d, = dim A, = .
2n + 3if k' = Z.

%

Letn > 0and assume that the proposition holdsfer1. SinceA,,
K[X1,..., X0 1, XLV, ..., Y, 4] and A,/(X,) =~ A,
CH(Ayy, ) =~ Z[Spec Any, ] andCH (A, /(Xy) ~ CH(Ap-1[Yn
CH(A,_1).Byinductionitfollows that H’ (A,,/(X,,) = 0forj # 0,n—
landCH" (A, /(X,) is freely generated bjA,,/ (X1, . .., X,, T)].

Now consider the exact sequencél’~'(A,/(X,)) — CHI(A,) —
CHI(An,,) — 0. Itfollows that forj # 0,n, CH’(A,) = 0 and clearly,
CH(A,) is freely generated by}, = [Spec A,]. Also CH™(A,,) is gener-
ated by the image df4,,/ (X1, ..., Xy, T)], which is)\/,. Since the natural
mapCH"(A,) — Go(A,) maps), to )\, and ), is a free generator, it
follows that )/, is also torsion free. Henad€ H"(A,) = Z\,, ~ 7Z. This
completes the proof of (2.2).

X

Y,
)

[a—

Q

Higher K-Groups of A4,

Much of this section is inspired by the arguments of Murthy [Mu3] and
Swan [Sw1]. Again for a ringd, G;(A) will denote thei-th K-group of the
category of finitely generated-modules. For a subringy of A, C:’Z-(A, K)
will denote the cokernel of the ma@g; (X)) — G;(A). As also explained in
[Sw1], if there is an augmentatiod — K with finite tordimension, then
0 — G;(K) = Gi(A) = G;(A, K) — 0is a split exact sequence.

Following is a remark about the high&f-groups ofA,,.

Theorem 2.4.Letk be afield orZ and K = K (k) andA,, = A, (k). Then

(1) Gi(K) ~ Gi(k) & Gi_1 (k) forall i > 0

(2) fori > 0,n > 1,Gi(Ang) = Gi(A,K) and0 — Gi(K) —
Gi(An) — Gi(An, K) — 0is split exact,

(3) There is a long exact sequence — G;(k[T*]) @ G;(k[S*']) —
Gi(A) — Gi(K[XF)) & Gi1(k[T*]) ® Gi1(K[ST]) — Gi
(A1) = ...

Proof. The statement (1) is a theorem of Jouanolou [J]. To prove (2), note
that all rings we consider are regular and tRat+ A,, has an augmentation



Complete intersection K-theory 433

forn > 1. Also note that fon > 2, K[X,,] — A, is aflat extension. So, it
induces a map of the localization sequences

(2.5)
Gi(K)
3 \J 1 ss !

Gi(An-1) Gi—1(A,-1)

Also note thatd) — G;(K) — Gi(K[X*']) — G;_1(K) — 0 is a split
exact sequencg@)]). This will induce an exact sequenee G;(K) —
Gi(An_1) = Gi(An, K) — Gi_1(K) — ... SinceG;(K) — Gi(An_1)

is splits, it follows thatd — G;(K) — Gi(An_1) — Gi(An, K) — 0

is split exact. Henc&;(A,_1, K) ~ Gi(A,, K). This establishes state-
ment (2). The statement (3) is the is immediate consequence of the lo-
calization sequencg@]) — Gi(41/(X1) — Gi(A1) = Gi(A1,) —
Gi—1(A1/(X1)) — ... . This completes the proof of (2.4).

Construction of the Universal Projective Module

Under this subheading we construct a projective moduledyewhich will
be useful in the later sections. This construction is similar to the construction
of Mohan Kumar and M. V. Nori [Mk2] ovei3,,.

Proposition 2.6.Let J,, be the ideal X, X2, ..., X,,T)in A,. Then

(1) forn > 3, there is no projectivel,,-module of rank: that maps onto
Jn.
(2) There is a projectivel,,-moduleP of rankn that maps onto the ideal
JD = (X1, Xno1)Ap + J D such that[P]) — n) = [A/Jn] = =\
in Go(An)

Proof. The proof of the statement (1) is similar to the argument in [Mk2] or
this can also be seen by tensoring with and using the result in [Mk2].
To prove statement (2), note thdf, = (Xi,...,X,) and J7/15 =

(X1, ... ,Xn,l,XT(L"_l)!). Also, since(X1, ... ,Xn,l,X,(L”_l)!) is an uni-

modular row in4,,,., by Suslin’s Theorem ([S]), there is anx n-matrix
v in M, (Ay) such thatdet(y) = (ST)" for somew > 0 and the first
column of v is the transpose ofX;, Xo,... ,Xn_l,X,(L"_l)!). Let f; :
An . — J),, be the map that sends the standard basis. . , e, of A} to

Xl,Xg,...,Xn_l,Xfl”_l)! and letfy : A7 — Jn, = Ay, be the map
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that sends the standard basjs. .., e, t01,0,0,...,0. As in the paper of
Boratynski[B], by patching; andfs> by~y, we geta surjective map — J;,
whereP is a projectived,,-module of ranka.

Now we wish to establish th&{P] — [A])]) = —\,,. By tensoring with
Q, in casek = Z, we can assume thatis a field.

The rest of the argument is as in Murthy’s paper [Mu2]. [i&t—[A]] =
mAn. S0,Cr([P]—[A7]) = (=1)"[V(J))] = (=1)"(n—1)!\,. Also, by the
Riemann-Roch theorent;,, ([P] — [A7]) = mCp(\,) = m(—1)""(n —
1)I\],. Hence it follows from (2.2) thatr = —1. HenceP — [A]] = —\,.

3. The main results in part one

Our main results follow from the following central theorem.

Theorem 3.1.Let A be a commutative noetherian ring of dimensioand
let I and Jy be two ideals that contain nonzero divisors ahd- J, = A.
Assume that/j is a locally complete intersection ideal of heightwith
Jo=(f1,.-., fr)+J3andlet] = (f1,.. .,fr_1)+Jé’"*1)!. Suppose) is
a projectiveA-module of rank- andy : Q — I.J is a surjective map. Then

(i) there is a projectived-module P of rank r that maps ontaJ with
[P] —[A"] = —[A/Jo] in Ko(A);

(ii) further, there is a surjective map fro@ @ A” ontol & P;

(iii) in particular, there is a projectived-moduleQ’ of rankr that maps
ontol and[Q'] = [Q] + [A/Jo] in Ko(A).

In the rest of this section we shall use this theorem (3.1) to derive its
main consequences and the proof of (3.1) will be given in the next section.

Theorem 3.2.Let A be a noetherian commutative ring of dimensiop: 1.
Also assume that for locally complete intersection idefalsf heightn,
whenevefA/I] = 01in Ky(A), I is an image of a projectivaéspectively
with stably free)A-module( of rankn.

Then for locally complete intersection idedlof heightn, if [A/I] is
divisible by(n — 1)!'in Fy Ky A thenI is image of a projectivel-moduleQ’
(respectivelywith (n — 1)!([Q'] — n) = —[A/I]) of rankn.

Remark 3.3If A is a reduced affine algebra over an algebraically closed
field, Murthy [Mu2] proved that for any idedl of A, if I/I? is generated
byn = dim A elements ther is an image of a projectivd-module of rank

mn.

Proof of(3.2). Let I be a locally complete intersection ideal of heighso

that[A/I] is divisible by (n — 1)!in FoKoA. Let[A/I] = (n — 1)![A/J]
in FyKpA.
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Let My, ..., M. be maximal ideals that contaidsand that does not
contain./. By Lemma (1.3), we can find a locally complete intersection
ideal /" of heightn such thafA/.J] = —[A/.J'] and! + J' = A. Now let
J' = (fi,e o)+ T2 and ] = (f1,..., fuor) +J 7L S0,[A/1] =
(n—1A)J] = —(n—1)[A/J"] = —[A/J ] andI + J" = A. Hence
[A/IJ'] = 0. By hypothesis, there is a projectivegpectivelystably free)
A-module@ of rankn that maps ontd.J". By (3.1) there is a projective
module@’ of rankr that maps ontd and[Q'] = [Q] + [A/J']. Hence also
(n—DIQ] - [Q)]) = (n—1)I[A/J| = —[A/I]. So,the proof of (3.2) is
complete.

Our next two applications (3.4, 3.5) of (3.1) are about splitting projective
modules.

Theorem 3.4.Let A be noetherian commutative ring and gt fo, ... , f
be a regular sequence. Létbe projectived — module of rankr that maps
onto (f1,..., fr-1, f,gr_l)!). Then[Q] = [Qo ® A] for some projective
A — module Qg of rankr — 1.

The proof of (3.4) isimmediate from (3.1) by takidig = (f1, f2,--- , fr)
andl = A.
Following is a more general version of (3.4).

Theorem 3.5.Let A be a noetherian commutative ring of dimensioand
let J be a locally complete intersection ideal of height> 1, such that
J/.J? has free generators of the tyge, fo, . .., f,_1, £ ' in J. Suppose
[A/J] = 0in Ky(A) and assumé,(A) has no(r — 1)! torsion. Then, for
a projectiveA-module@ of rankr, if @ maps onto/, then[Q] = [Qo] + 1
in Ky(A) for some projectivel-module), of rankr — 1.

Proof. First note that we can assumetliatfs, . .. , fr-isaregular sequence.
We can find an elementin J such thats(1 + s) = fig1 + faga + - +
frorgra+ £y Vg, forsomeyy, go, ... gr.Letdo = (f1, for. ., foo1, fr.5).
Then J, is a locally complete intersection ideal of heightand J =
(fi,o oy fro1) + Jé”_l)!. Let I = A. Then by (3.1), there is a projective
A-module@’ of rankr that maps ontod and[Q'] = [Q] + [A/Jo] = [Q].
Since@’ = Qo ® A for someQy, the theorem (3.5) is established.

Remark 3.6For reduced affine algebrasover algebraically closed fields
k, Murthy [Mu2] proved a similar theorem far=n = dim A > 2. In that
case, if chark= 0 or chark= p > n or A is regular in codimensioh, then
FyKopA has no(n — 1)!-torsion. (See [Le], [Sr], [Mu2])

Before we close this section we give some examples.
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Example 3.7 Let A = R[Xy, X1, Xo, X3]/(X3 + X7 + X2 + X3 - 1)
be the coordinate ring of the rezaisphereS3. ThenK(A) = Z (see [Hu]
and [Sw2]) andC H3(A) = 7/27 generated by a point [CF]. Since, in
this case for any projectivd-module @ of rank 3, the top Chern Class
C3(Q) = 0in CH?(A), no projectiveA-module will map onto the ideal
I =(Xo—1,X1, X2, X3)A. Thisis a situation, whepd /1] = 0in Ky(A),
but I is not an image of a projective module of rahk

4. Proof of theorem 3.1

In this section we give the proof of Theorem 3.1. First we state the following
easy lemma.

Lemma 4.1.Supposé is a noetherian commutative ring addand J are
two ideals that contain nonzero divisors. Uet- J = A. Then we can find
a nonzero divisos in I such that(s, J) = a.

Now we are ready to prove (3.1).

Proof of (3.1). The first part of the proof is to find a nonzero divisoin 1
such that

(1) (s, Jo) = 4,

(2) after possibly modifying, . .., f., we havesJy C (fi1,..., f,) and

(3) Qs is free with basig;, . . ., e, suchthatps(e1) = f1,...,vs(er—1)

(r—1)!
= fr—1 and@s(@') =Jr .

First note that there is a nonzero divisgrin I such thatds; + J = A.
Now let B, Po, ..., P, be the associated primes df, such thatP; +
Js1 = As, . We pick maximal ideal§)t, ..., 9 in spec(As, ) such that
PB; € M; fori = 1tok and lety = My N--- N M. Thendy, + My =
Ag,. Leta+b = 1forain J% andbin M. Let f, = bf, + a. It follows
thatJ051 = (fl, cos frot, f,/n) + JgSI M.

Hencethereis; = 1+tyin1+Jo, Mo, suchthatl, ,, = (f1,..., f}).
Clearly, s is not in31,Bo, . .., B... If P is any other associated prime of
As, andsy = 1+ tois in ‘3, '[henJoS1 + P = As,, which is impossible.
So, we have found a nonzero divisorin 1 + Jo,, Mo such that]gsls2 =
(flaf?v v 7f7/")

Now let K be the kernel ofps,s, @ Qsys, — Js1s,- SiNCE T 5, =
(f1s foy vy fro1, fT(T_l)!), there are’, e}, ..., el in Qs, s, such thatp(e))

"(r—1)!
= fi,evolehy) = frorp(el) = £

By tensoring) — K — Qs,5, = Jsys, — 0 DY A5, /Mos,, We getan
exact sequence — K/MoK — Qusr/M0Qs1sr = Jsi0/sy5,M0 &
Agys/Mosz — 0andp(e,) = fr—HHisaunitindy, ., /My, . (Bar means
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module9ﬁ052). So there ard?y, Fs, ..., E._1 in K, such that images of
Ey,Es, ..., E,._1,¢€) isabasis 0f)s, s, /MoQs, s, -

Writee; = bel+aFE1, ex = beb+aFs,. .., e,y =bel_+aE,_1,e, =
el.. It is easy to see that,...,e, is a basis ofQ;,s,w, whereW =
1+ Js 5,9Mp. So, there i3 = 1+ t3in 1 + Jg, 5, M such thaey, ..., e,
is a basis of);, 5,s,. As before s is a nonzero divisor i, 5,. Of course,
Ps1s253 (81) =bf1,..., Ps1s283 (67‘*1) = bfr—1, Ps15283 (67‘) = (f;)(r_l)!'
By further inverting a nonzero divisor itH- Jys, s,, We can also assume that
bfi,...,bfr—1, fl generateos, s,s;-

So, we are able to find a nonzero divisan A and afree basis,, es, . . .,

e of Qs such that, after replacing by bfi,..., fr—1 by bf.—1 andf, by
11, we have

(1) sisin I andsu + t = 1 for somet in Jy andw in A.

(2)sdo € (f1,---5 [fr)

@) p(er) = fir--pler) = frorspler) = 7"

We had to go through all these technicalities because we wanted to have
a nonzero divisos. Now letst = g1 f1 + g2f2 + - - + g f» and lets*Q C

@Aei ~ A" for somek > 0.
i=1

By replacingQ by s*Q andI by s*I, we can assume that

(4) s*tlisinI,

(5)t8 = glfl + - +grf7‘-

(6) There is an inclusion : Q — A" = Ae; + --- + Ae, such that
Qs = A} and

(7) ps(e;) = fifori =1tor — 1 andys(e,) = ,5’”‘1)’.

Let A, = A,(Z) be as in Sect. 2 and let us consider the Map— A
that sendsX; to f;, Y; tog; fori = 1tor andT to¢, Sto s, U touw andV
to 1. By the theorem of Suslin ([S]) there is anx r matrix~y in M,.(A,)
with its first column equal to the transpose(af;, Xo, ..., X, 1, Xﬁ“l)!)
and with dety) = (ST')* in A,, for some integex > 1. Now let«a be the
image ofy in M,.(A4).

We shall considetr as a magpy : A” — A" and letag : Q — A" be the
restriction ofa to Q).

Define theA-linear mapyp, : A" — A such thatpy(e;) = f; fori = 1to
r — 1 andyg(e,) = fﬁr_l)!. Also lety; = (1,0,...,0) : A} — A; be
the map defined by (e1) = 1 andp;(e;) = 0 for i = 2 to r. Also let
w2 = (po)s- Note thaty : @ — I.J is the restriction ofyy to @ and hence
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the diagram
Qi —2— 1J
o
Ay 2y A,

is commutative.
Now consider the following fibre product diagram:

'Q —————————— - O,

| n o)

|

! Pe— - - - — = L 4]

|

| N" \0‘1=(1,0,...,O)
|

Y JRSRRRS JER .

Qs’ le

Hereps = (po)s is a surjective and the mapsand« on the upper left
hand corner are given by the properties of fibre product diagram.

Clearly, the map) : P — J is surjective. Further, since is the image
of it follows from (2.6) that P] — [A"] = image of—\, = —[A/Jy].

Now it remains to show thap & A™ maps ontd @ P.

Note that the diagram

O —21J

P

is commutative because it is so éN¢) and D(s). Also note that the map

ns : Qs — Ps is an isomorphism and hene@P is contained im(Q) for
somep > 1.
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Write K = kernelv). So, the sequende— K — P % T 0is
exact.

SinceTor;(J, A/sPA) = 0, the sequenceé — K/sPK — P/sPP —
J/sPJ =~ A/sPA — 0 is exact. In the following commutative diagram of
exact sequences

P/sPP —Y s J/sPT ~ AJsPA — 0

| l

ArJsPAT 2 )sP T — 0,

the vertical maps are isomorphism. But sigge= (1,0, ...,0), K/sPK =
kernely = ker ¢, is a freeA/s? A-module of rank- — 1.

Now write M = kernel¢. Then we have the following commutative
diagram

O—>K—>P£>—>J—>O

T Ttn 7

0->M-—-Q—1J—0

of exact sequences.

Definethemap : P& — J+1 = A — 0suchthab(p, z) = ¢(p)—=
forpin Pandxin I andletL =kerneld).S0,0 - L — P®I — J+1 =
A — 0 is an exact sequence afdd A is isomorphic toP @ I. So, it is
enough to show thad ® A™~! maps ontal..

But L isisomorphic ta)~1(1.J) and we have the following commutative
diagram of exact sequences:

05K L5750

Tt

0-M—-Q—1J—0

Note thats? K is contained im(M). So K/sP K maps ontak /n(M).
ThereforeK /n(M) is generated by — 1 elements.

As Q@ K /n(M) maps ontd., Q & A”~! maps ontd.. This completes
the proof of Theorem 3.1.
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5. The theorem of Murthy

In this section we give some applications of (3.1), which was inspired by the
fact that the Picard group of smooth curves over algebraically closed fields
are divisible.

Theorem 5.1.Let A be a commutative ring of dimensiarand! be a locally
complete intersectionideal of heighin A. Suppose thatcontains alocally
complete intersection ideal’ of heightn — 1 and there is a projectivel-
module@) of rankn — 1 that maps onto/’. If the image off in A/J" is
invertible and is divisible byn —1)!in Pic(A/.J"), then there is a projective
A-module@ of rankn that maps ontd and(n — 1)!([Q] — [Qo] — [4]) =
—[A/I]in Ko(A).

Proof. Let bar “~” denote images id/J’. Sincel is divisible by (n — 1)!
in Pic(A/J"), its inverse is also divisible b — 1)!. Let J be an ideal of
Asuchthat)’ C J,I+J = AandJ" D" = I-1in Pic(4/.J"). Hence
77"V = (77, £) /7" for somef in I.

Write G = J' + J™ ', We can also find g in J such that/ =
(J', g)+J2.SinceJ'/J' Jislocally generated by — 1) elements)’ /J' ] is
(n—1)-generated. Le}y, . . ., g,—1 generate/’ /J' J. We canfind an element
sin J, such that/i , = (g1,...,9n—1) @ndJiys = (91,---,9n—1,9).

Hence it also follows thaf, , = (g1,. .., gn_1, 9™ "). ThereforeG =

(91, gn-1) T D andT = (g1,...,gu-1,9)+ 72 Sincel 7"V =

(J', f)/J, it follows thatIG = (f,J'). As Qo & A maps onto/G, by
Theorem 3.1, there is a surjective map Qoe A" — I¢ P,wherePisa
projectiveA-module of ranka with [P]—[A"] = —[A/J].LetQ = ¢~ 1(I).
Then@ maps ontal andQ @& P ~ Qy @ A", So,[Q] — [Qo] — [4] =
—([P]-[A"]) = [A/J]. Hencegn—1)!([Q]-[Qo] - [A]) = (n—1)![A/J] =
[A/G] = —[A/I]. This completes the proof of (5.1)

Corollary 5.2. Let A be a smooth affine domain over an infinite fiéld
and letX = SpecA. Assume that for all smooth curvésin X, Pic C
is divisible by(n — 1)!. If I is a smooth ideal ofieightn = dim X, then
there is a projective modul® of rank n, such thatQQ maps onto/ and

(n = DU[Q] - [A"]) = —[A/1].
Proof. We canfindelement§, ... f,—1inI suchthatC =Spec¢A/(f1,...,

fn—1)) is smooth [Mu2, Corollary 2.4]. Now we can apply (5.1) with
Qo= A",

Remark Unlessk is an algebraically closed field, there is no known exam-
ple of affine smooth variety that satisfy the hypothesis of (5.2) about the
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divisibility of the Picard groups. Wheh is an algebraically closed field,
(5.2) is a theorem of Murthy [Mu2, Theorem 3.3] .

Part Two: Sections 6—-8

Projective modules and Chern classes

This part of the paper is devoted to construct Projective modules with certain
cycles as the total Chern class and to consider related questions. Our main
results in this Part are in Sect. 8.

6. Grothendieck~-filtration and Chern class formalism

As mentioned in the introduction, for a noetherian scheme,(X) will

denote the Grothendieck group of locally free sheaves of finite rankXover

All schemes we consider are connected and has an ample line bundle on it.
In this section we shall recall some of the formalisms about the Gorthen-

dieck~y — filtrations of the Grothendieck groups and about Chern classes.

The main sources of this material are [SGA6], [Mn] and [FL].

Definitions and Notations 6.1 Let X be noetherian scheme of dimension
n and letKy(X)[[t]] be the power series ring ovéf,(X ). Then

a)\; = 1+ tA' + t2X2 4+ ... will denote the additive to multiplicative
group homomorphism frok((X) to 1 4 ¢ Ko (X )[[¢t]] induced by the exte-
rior powers, that is\‘([E]) = [A%(E)] for any locally free sheak of finite
rank overX, andi =0,1,2,...,

b) v = 1+ ty' +24* + - - - will denote the map\, ;_;, which is also
an additive to multiplicative group homomorphism.

c) We let FOKy(X) = Ko(X),F'Ko(X) = Kernel(e) wheree :
Ko(X) — Zis the rank map.

For positive integek, F* Ky(X) will denote the subgroup ok (X)
generated by the element¥ (z1)v*2(z2) . .. v* () such thad~"_ k; >
k andz; in F'Ky(X). We shall often writeF"* (X ) for ' Ky(X).

Recall that

FOX)D FY(X)DF*(X)D---

is the Grothendieck-filtration of K(X). Also note thatF"*1(X) = 0
(see [FL,Mn)).

d) I'(X) = @I, I"'(X) will denote the graded ring associated to the
Grothendiecky-filtration.
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If zisin F*(X), then the image of in I"*(X) will be called thecycle of x
and be denoted b§'ycle(z).

e) For alocally free shedf of rankr over X and for nonnegative interger
i, theith Chern class oF is defined as

ci(E) =~([E] = r) modulo F'™(X).

This will induce a Chern class homomorphism
n
a: Ko(X) = 1+ @Prix)t
=1
which is also an additive to multiplicative group homomorphism. We write
n
c(x) =1+ Zci(x)ti
=1

with ¢;(z) in I'(X).

f) We recall some of the properties of this Chern class homomorphism:
(1) if z is in F*(X), then

ci(z) =0 for 1<i<r
cr(z) = (=1)" "1 (r — 1)!Cycle(z),
(2) if Eisalocally free sheaf of rankand if E maps onto a locally complete

intersection sheaf of ideals of height then[O x /1] = >"1_ (—1)"\'[E]
isin F"(X) and

cr([E]) = (=1)"Cycle([Ox /1))

Now we shall set up some notations about the formalism of Chern classes
in Chow groups.

Notations and Facts 6.2Let X be a noetherian scheme of dimension
and let . '
_ (3
CH(X) = @i:OCH (X)

be the Chow group of cycles of modulo rational equivalence. Assume
that X is nonsingular over a field. Then

a) There is a Chern class homomorphism

Cy: Ko(X) = 1+ P CH (X)E
=1
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which is an additive to multiplicative group homomorphism. We w(itér)
=1+ ", Ci(z)t" with C;(z) in CH'(X).

b) For nonnegative integét §* Ko (X) or simplyg* (X) will denote the
subgroup ofKy(X) generated byM], whereM runs through all coherent
sheaves oX with codimension(support M) atleast. For such a coherent
sheafM, Cycle M will denote the codimention— cycle in the Chow group
of X. (There will be no scope of confussion with notatiGhycle = we
introduced in (6.1 c).)

¢) We recall some of the properties of this Chern Class homomorphism
(see [F]):
Q) if zisinF Ko (X) then

Ci(x)=0 1<i<r and
Cr(z) = (1) }(r — 1)!Cycle(x)

(2) If E is alocally free sheaf of finite rank ovéf and there is a surjective
map fromE onto a locally complete intersection ideal shéaff heightr
then

Cr(E) = (=1)"Cycle(Dx/I).

It is known that for a nonsingular variet¥ over a field, they —
filtration F" (X)) of Ko(X) is finer than the filtratiog” (X ) i.e. F"(X) C
§"(X). Following is an example of a nonsingular affine ring over a field
for which these two filtrations indeed disagree.

Example 6.3 Following the notations in Sect. 2, for a fixed positive integer
n and a fieldk, let

E[S, T, UV, X1,...,XnY1,...,Y,]
(SU+TV —1,XY1 + -+ XpYp, — ST)

Ap = Ap(k) =

ET, X1,...,Xn,Y1,...,Y,]
(XiV14- + XY, -T(1+1))
Then forX = SpecA,, or SpecB,,,

F(X)=Z for 1<r<n and
F(X)=0 for n<r.

B, = Bo(k) =

Further,
F'(X)=(n-1D1F"(X) and F"(X)=0 for n<r.
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Proof. The computation of” (X) is done exactly as in [Sw1],(see (2.1) in
case ofA,,). SinceF" (X) is contained ir§" (X), F"(X) = 0 forr > n.

For definiteness, leX be SpecA,,. So,\, = [4,/(X1,... ,Xn,T)]
is the generator of"(X) for 1 < r < n. Also \, is the generator of
F1(X) =%(X).By(2.6)in, there is a projectivé — module P of rankn
with [P] —n = —\,, so thatP maps onto the ideal = (X1,... , X,—1)+
1= "whereT is the ideal(X, ..., X,,T)A,. Hence(n — 1)I\, =
—[A,/J] (see (7.3)), is inf™(X). Also sinceg"1(X) = 0, \2 = 0.
Hence forl < k,y* acts as agroup homomorphismBh(X).SoF"(X) =
Zy"(A). As FPH(X) = 0, by (6.1),7((n — 1)!\n) = cu((n—1)I\,) =
(—=1)"~Y(n — 1)12\,. HenceF"™(X) = Z(n — 1)!\,. So the proof of (6.3)
is complete.

7. Some more preliminaries
Following theorem (7.1) gives the Chern classes of the projective module
P that we constructed in theorem (3.1).

Theorem 7.1.Under the set up and notations of theorem (3.1), we further
have

¢i(P)=0 for 1<i<r in F%X)@Q,
cr(P) = (=1)"Cycle(A/J) in I'"(X).

If X'is nonsingular over a field then
Ci(P)=0 for 1<i<r in CH'(X) and
Cr(P) = (=1)"Cycle(A/J) in CH"(X).

Proof. Comments about Chern classedi0X) follow from (6.1), because
(r—=D)([P]—r) = —[A/J]isinF"(X). Similarly, sincg A/ .Jy] isin§" (X),
the comments about Chern classes in Chow group follow from (6.2).

Remark 7.2For historical reasons we go back to the statement of theorem
3.1. LetJp be an ideal in a noetherian commutative ridgand letJ, =
(fi,---, fr) + J3.The part(i) of theorem (3.1) evolved in two stages.First,
Boratynski [B] defined/ = (f1,..., fr—1) + JO(T_U! and proved that there

is a projectived —module P of rankr that maps ontd.Then, Murthy[Mu?2]
added that if/y is a locally complete intersection ideal of heighhen there
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is one such projectivel — module P of rankr, with [P] —r = —[A/Jy],
that maps ontd'.

We shall be much concerned with such idealsonstructed, as above,
from ideals.Jy. Following are some comments about such ideals.

Natations and Facts 7.3For an idealJ in a Cohen-Macaulay ring! with
J=(f1,...,fr) + J?.We use the notation

B(‘]) = B(Jvfh"- af’r) = (fl,... 7f7“—1) + J(T_l)!'

Then, we have

(1) VT = \/B(J),

(2) J is locally complete intersection ideal of heighif and only if so
is B(J).

(3) If Jislocally complete intersectionideal of heigtthen[A/B(J)] =
(r—DA/J]in Ko(X).

Proof. The proof of (1) is obvious.To see (2), note that locallyis generated

by fi,..., f. and B(Jy) is generated by, ... ,fr,l,fﬁ”*l)!. To prove
), letJy = (f1,---, fr—1)) + J(’f for positive integerg:. Note that) —
Ji/Jgs1 — A) Ik — AJJ, — 0lis exactandd/Jy ~ Ji/Jk+1. Now
(3) follows by induction and hence the proof of (7.3) is complete .

The following lemma describes such ideél§.J,) very precisely.
Lemma 7.4.Let A be a Cohen-Macaulay ring andélbe an ideal inA. Then
J = B(Jy) = B(Jo, f1,- .. , f») for some ideally = (fi, ..., f) + J& if
andonly itJ = (fi,..., fre1, £V + 2.

Proof. To see the direct implication, let= (fi, ... ,fr_1)+J[§’“_1)! where
Jo= (f1,..., fr) + J3. Then, itis easy to check that= (f1,... , fr_1,
Fr=UY 4 g2 Conversely, letl = (f1, ..., fr_1, £ V') + J2. By Naka-
yama's lemma, there is anin J such that

(L+8) C (fryeee foon, 7Y and T = (1, frors f70),
Now we letJy = (f1,..., fr,s). It follows thatJ = B(.Jy) and the proof
of (7.4) is complete.

The following lemma will be useful in the next section.

Lemma7.5.LetA be a Cohen-Macaulay ring of dimensiomand letl and.J
be two locally complete intersection ideals of heighiith 7 +.J = A.Then,
if I.J = B(J) for some locally complete intersection idgadf height- then
I = B(Iy) for some locally complete intersection iddglof heightr. Also
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if I = B(1y) and J = B(Jy) for locally complete intersection ideals, Jy
thenlJ = B(J) for some locally complete intersection idgabf heightr.

The proof is straightforward.

Remark With careful formulation of the statements, the Cohen-Macaulay
condition in (7.3), (7.4), (7.5) can be dropped.

8. Results on Chern classes

Our approach here is that § is a projective module of rank over a
noetherian commutative ring then we try to construct a projectivé —
module Qg of rankr — 1, so that the first — 1 Chern classes @ are same as
that ofQg.Conversely, given a projectivé — module Qg of rankr — 1 and
a locally complete intersection idealof heightr, we attempt to construct
a projectiveA — module @) of rankr such that the first — 1 Chern classes
of @) and@y are same and the top Chern clasg)ab (—1)"Cycle([A/I]).
Ouir first theorem (8.1) suggests thatri= n = dim X, then for such a
possibility to work, it is important thgtd /] is divisible by(n — 1)!.

Theorem 8.1.Let A be noetherian commutative ring of dimensiomand
X = SpecA. Assume thai(,(X) has no(n — 1)! torsion. Suppose tha}
is a projectived — module of rankn and Q) is a projectived — module of
rankn — 1. Assume that the first— 1 Chern classes,ii'( X ) (respectively,
in CH(X), if X is nonsingular over a field), ap and @) are same. Then
S o(=1)[AQ] is divisible by(n — 1)!'in K¢(X). That means that if)
maps onto a locally complete intersection idéalf heightrn, then[A/I] is
divisible by(n — 1)!'in Ko(X).

Proof. We can find a projectivd —module P of rankn suchthat) @ A™ ~
Qo P AP P.Itfollows thate;(P) = 0for1 < i < nandc,(P) = ¢, (Q)
in I'(X). Write p = [P] — n.

We claim that forr = 0ton — 1, B.p is in F"*1(X), wheres, =
117~ (i"). By Induction, assume tha._1p is in F7(X). Sincec,(3,p) =
Brer(p) = 0, also sincer, (3.p) = (—1)""1(r — 1)!3,.p the claim follows.

S0,83,_1pisin F*(X). Hencec, (B,_1p) = (1) D (n—1)18,_1p.
Since Ko(X) has nogB,_ torsion, it follows thate,(p) = (=1)""!(n —
D)!p.Sincec,(p) = cn(Q) = (=1)" >0 (—1)[A'Q)], the theorem fol-
lows.

We argue similarly wherX is nonsingular over afield and Chern classes
take values in the Chow gorup. In this case, we use (6.2c). This completes
the proof of (8.1).

Our next theorem (8.2) is a converse of (8.1).
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Theorem 8.2.Let A be a noetherian commutative ring of dimensioand
X = SpecA. LetJ be alocally complete intersection ideal of height 0
with J = (f1, ..., fr_1, £~V + J2 (hence] = B(J,) for some locally
complete intersection idedl of height-). Let( be a projectived —module
of rankr that maps onta/. Then there is a projectivd — module Qo of
rankr — 1 such that,

El; Qo Al = [Q] + [A/ )] in Ko(X),

2

¢i(Qo) = ¢i(Q) in F(X)®Q for 1<i<r and

if X is nonsingular over a field then

Ci(Qo) =Ci(Q) in CH(X) for 1<i<r.

(3) If Ko(X) has no torsion (respectively, @ — 1)! torsion,in case
X is nonsingular over a field) then such{@] satisfying (2) is unique in
Ko(X).

Proof. By (3.1) withI = A, there is a surjective map

v:QEP A AP

whereP is a projectived —module of rankr that maps ontd and[P] —r =
—[A/Jo]. We letQo = kernel (). ThenQo P AP P ~ Q&P A”. This
settles (1). By (7.1), firstt — 1 Chern classes oP, in I'(X) ® Q, are
zero. Hence it follows that;(Q) = ¢;(Qo) for 1 < i < r. In caseX is
nonsingular, the argument runs similarly. So, the proof of (2) of (8.2) is
complete.

To prove (3), letQ’ be another projectivel — module of rankr — 1
satisfying (2) and lep = ([Qo] — [@’]). Since the total Chern classes(@f
and@’ in I'(X) @ Q (respectively, ilC H(X), in caseX is nonsingular),
are same,the total Chern clagp) = 1 in the respective groups.

For a positive integer let 8, = H{Z‘f(z‘!). By induction, as in (8.1), it
follows thatg3,,p is in F"*1(X) ® Q = 0 (respectively, ir§,1(X) = 0).
Hence the proof of (8.2) is complete.

Following theorem (8.3) gives a construction of projective modules with
certain given cycles as its total Chern class.

Theorem 8.3.Let A be a Cohen- Macaulay ring of dimensiorand X =
SpecA. Letrg be an integer witlrg > n.
LetQ be a projectived —module of rankrg —1, such that for all locally
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complete intersection subschemésf X with codimension Y > rg, the
restriction Qo|Y of Qp to Y is trivial. Also letr be another integer with
ro < r < nandfork = ro tor, let; be locally complete intersection ideals
of heightk, with I, = (f1,- .., fi_1, £ V") + I2 (hencel, = B(Ix),
for some locally complete intersection iddg} of heightk).

Then there is a projectivd — module Q.. of rankr such that

(1) Q- maps ontd,.,

()
Q] =7 = ([Qo] = (ro = 1)) + [A/Jry] +--- +[A/ 1],

whereJ, is a locally complete intersection ideal of heighsuch that

(k — DI[A/Jx] = —[A/I] and further,[P;] — k = —[A/J;] for some
projectiveA — module Py of rankk, forrg < k < r.
3)

ck(Qr) = cx(Qo) in Fk(X) ®Q for 1<k<r,
cr(Qr) = (—1)FCycle([A/T)]) in T*(X)QRQ for ro<k<r.

If X is nonsingular over a field,then
Cr(Qr) = Cr(Qo) in CH¥(X) for 1<k< ry and

Cr(Qy) = (=1 Cycle(A/Iy) in CHN(X) for ro<k<r

Caution. In the statement of (8.3) the generatgis. . . ,fk_l,f,gkfl)! of
I,/ I} depend ork.

Remark 8.4A free A —module Qg of rankry — 1 will satisfy the hypothesis
of (8.3). If rg = n — 1, then any projectivel — module Qg of rankrg — 1
with trivial determinant will also satisfy the hypothesis of (8.3).

The proof of (8.3) follows, by induction, from the following proposition
(8.5).

Proposition 8.5.Let A be a Cohen-Macaulay ring of dimensienand
X = SpecA and letr be a positive integer withr > n andr < n. LetQq
be a projectived — module of rankr — 1 such that for any locally complete
intersection closed subschermeof codimension atleast, the restriction
QolY of Qy to Y is trivial. Also let] be a locally complete intersection
ideal of heightr with T = (f1,... , fr_1, f""") + I? (hencel = B(I)
for some locally complete intersection iddglof heightr).

Then there is a projectivd — module Q of rankr such that
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(1) @ maps ontd,
2
[Q] = r = ([Qo] — (r — 1)) + [A/Jo],

where Jy is a locally complete intersection ideal of heighsuch that(r —

A/ o] = —[A/I] and further there is a projectivel — module P of
rankr such thafP] — r = —[A/.Jy].
3)

Q) = cr(Qo) in I'M(X) ®Q for 1<k<r, and
cr(Q) = (=1)"Cycle([A/I]) in T*X)Q)Q for k=r.
If X is nonsingular over a field, then

Cr(Q) = CL(Qo) in CHF(X) for 1<k<r

and

Cre(Q) = (=1)"Cycle(A/I) in CH*(X) for k=r.

(4) For any locally complete intersection closed subsch&mmad X of
codimension atleast+ 1, the restriction@|Y is trivial.

Before we prove (8.5), we state the following proposition from [CM].

Proposition 8.6.Let A be a noetherian commutative ring adde a locally
complete intersection ideal of heighwith .7/.J? free. Suppose | is an ideal
with dimA/I < r. If 7 : Ko(A) — Ko(A/I) is the natural map then
m([A4/J]) = 0.

The proof is done by finding a locally complete intersection idBaif
heightr suchthat/’+ 1 = A = J'+ J andJ N J'is complete intersection.
Now it follows thatr([A/J]) = —=([A/J']) =0

Proof of (8.5) We have

I=(fi,eo St S+ P = Blo) = (frsoo s o) + I

where I, is a locally complete intersection ideal of heighwith I, =
(f1,--., fr)+13.We canalsoassumethft ... , f, is aregular sequence.
By hypothesig€)y/1Qy is free of rank- — 1. Letey, ... ,e,_; be elementsin
Qo whose images forms a basis@§/1Qo.So, thereisamagy : Qo — [
such thatpg(e;) — f;isin I fori = 1tor — 1.
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S0, (p0(Qo), fﬁr_l)!) + I? = I. By Nakayama’s lemma there is afin
I such that

(14 8)I € (¢o(Qo), [V and T = (¢o(Qo), £, s).

Let Q; be the dual ofQ,. Then (¢, s?) is basic iINQ; & A on the
setP = {pin SpecA : f,isin p and height (p) < r — 1}. Thereis a
generalised dimension functidn: 8 — {0, 1,2, ...} sothaid(p) < r—2
for all p in P (see [P]). Since ran@§ = r — 1 > d(p) for all p in P, there
is anh in QF such that = ¢ + s2h is basic inQ}, on ‘L.

Write 7 = (¢(Qo), f,gr_l)!). It follows that (1)J is a locally complete
intersection ideal of height, (2) [A/3] = 0, () I+ 1?2 =1 (47 =
(g1, gro1, £V + 32 for somegy, ..., gr—1 in 3.

To see (1), note thdl is locally » generated and also singeis basic
in Q5 on‘P, J has height.Now sinceA is Cohen-Macaulayj is a locally
complete intersection ideal of heightSince

(r—1)!
0= 4/6(Q0) T 4/6(Qo) — A/T 0
is exact, (2) follows. Sincé = ¢o+s2h,(3) follows. By hypothesi§)o /I Qo
is free of rank- — 1 and hence (4) follows.

Because of (4)J = B(Jy) for some locally complete intersection ideal
Jo of heightr. From (3) it follows tha = J N I for some locally complete
intersection ideal of heightr and/ + J = A. SinceJ = B(Jy), by (7.5),
J = B(Jp) for some locally complete intersection ide&l of heightr.

Leto : Qo A — T be the surjective mafp, fT(’“*l)!). We can apply
theorem (3.1) and (7.1). There is a surjective map Qo P A" —
P & I, whereP is a projectived — module of rankr that maps ontd and
[P] —r = —[A/Jp]. Also

c(P)=0 for 1<k<r in I'(X)(X)Q,

e (P) = (—1)"Cycle(A)J) in I'(X).

If X is nonsingular over a field then
Ce(P)=0 for 1<k<r in CHYX) and
Cr(P)=(=1)"Cycle(A/J) in CH"(X).

Now @ = +~1(I) will satisfy the assertions of the theorem.Cleaflynaps
ontol and (1) is satisfied. Note th& @@ P ~ Qo @ A" ! and hence

[Q =7 = ([Qo] = (r = 1)) = ([P] =) = ([Qo] = (r = 1)) + [A/Jo].
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Also (r — )I[A/Jo] = [A/J] = —[A/I], since[A/T] = 0.This establishes
2).

Again sinceQ @ P ~ Qo @ A™*! and since the Chern classesdére
given as above, (3) follows.

To see (4), let” be alocally complete intersection subschem# afith
codimension atleast+ 1.Letr : Ko(X) — Ko(Y') be the restriction map.
Thenn([Q] —r) = 7([Qo] — (r—1)) +m([A/Jo]) = 0 by (8.6). Hence the
restrictionQ|Y is stably free.Since > dimY’, by cancellation theorem of
Bass(see [EE])R|Y is free. This completes the proof of (8.5).

Before we go into some of the applications let us recall(1.5, 1.6) that for
a smooth affine varietX’ = SpecA of dimension: over a field§"(X) =
FoKo(X) ={[A/I]in Ko(X) : I is a locally complete intersection ideal
of heightn}.

Following is an important corollary to theorem (8.3).

Corollary 8.7. SupposeX = SpecA is a smooth affine variety of dimension
n over a field. Assume that H"(X) is divisible by(n — 1)!. Let Qo be
projectiveA — module of rankn — 1 andx,, is a cycle inCH"(X). Then
there is a projectived — module (Q of rankn such that

Ci(Q) =Ci(Qo) for 1<i<n and Cn(Q)==x, in CH"(X).

Conversely, ifQ) is a projective A — module of rank n, then there is a
projectiveA — module Q' of rankn such that

Ci(Q)=Cy(Q") for 1<i<n and Cn(Q)=0 in CH"(X).

Proof. Since the Chern class map, : §"(X) — CH"(X) sendgA/I] to
(1) (n—1)1Cycle(A/I) (see [F]), this map is surjective. Singe(X)
= FyKo(X), there is a locally complete intersection idéglof heightn
such thatC,,(A/Iy) = —xz,. By theorem (8.3) withl = B(1j), there is
a projectiveA — module @ of rankn such thaf@] — n = ([Qo] — (n —
1)) + [A/J] whereJ is a locally complete intersection ideal of height
with (n — )![A/J] = —[A/I] = —(n — 1)![A/Iy]. Hence

Ci(Q) =Ci(Qo) for 1<i<n and
CalQ) = CullALT) = (~1)"(n — )ICycle([A/.]) =
(=) tCycle((n—1)1[A/J]) = (=1)" " Cycle(—(n—1)[A/Iy)) = zp.

This establishes the direct implication.
To see the converse, note that, as above, there is a projectivedule
P such thatC;(P) = 0 for 1 < i < nandC,(P) = —C,(Q). Now
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QPP ~ Q' A™ for some projectived — module Q' of rankn. It is
obvious that)’ satisfies the assertions. This completes the proof of (8.7).

Following theorem of Murthy ([Mu2]) follows from (8.7).

Theorem 8.8 (Murthy). Let X = SpecA be a smooth affine variety of
dimensiom over an algebraically closed field Letz; be cycles 0 H(X)
for 1 < i < n. Then there is a projectivd — module Qg of rankn — 1
with the total Chern clas€’(Qo) =14+ 21+ -+ 2,1 INCH(X) ifand
only if there is a projectived — module @ of rankn with the toal Chern
classC(Q) =1+4+x1+ -+ Tp_1 + Tn.

Proof. In this caseC’ H™(X) is divisible (see [Le,Sr,Mu2]). So the direct
implication is immediate from (8.7).

To see the converse, I€X be as in (8.7). Sinc€',(Q’) = 0,it follows
from the theorem of Murthy([Mu2]) tha®’ ~ Qo € A for some projective
A—module Qo of rankn—1. Itis obviousthaC'(Qo) = 1+xz1+- - - +xp_1.
So the proof of (8.8) is complete.

Following is an alternative proof of the theorem of Mohan Kumar and
Murthy ([MM]).

Theorem 8.9 (MM] ). Let X = SpecA be a smooth affine three fold over
an algebraically closed field and let be cycles ilC H(X) for 1 < i < 3.
Then

(1) There is a projectivel — module )3 of rank3 with total Chern class
C(Q3) =1+ z1 + z2 + 23,

(2)there is a projectivel — module Q5 of rank2 with total Chern class
C(Qg) =1=x1 4+ x9.

Proof. Because of (8.8), we need to prove (1) only.Lelbe a line bundle
on X with Cy (L) = x;.We claim that there is a projectivé — module P
of rank3 so thatC; (P) = 0 andCy(P) = xo.Letzs = (y1 + - + yr) —
(yr+1 + - - - +ys) Wherey; is the cycle ofA /I, for prime idealdl; of height
2forl <7 <s.

For1 < i < sthere is an exact sequence

O—>PZ-@G,»—>FZ»—>A—>A/IZ-—>O

where F; and G; are free modules an®; are projectiveA — modules
of rank 3.Since the total Chern class€§P,) = C(A/I,), it follows that
Cl<Pz> = Cl(A/IJ =0 andCQ(PZ-) = CQ(A/IZ) = —C’ycle(A/Ii) =
—y;. There are free modules R and S and a projectivenodule P of rank3
suchthatP, - -P.LPRP P~ P11 P---P PP S. It follows that
Ci(P)=0andC2(P) = (y1 + -+ yr) — (Yrg1 + -+ + ys) = x2. This
establishes the claim.
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LetP@L ~ P EBA ThenCl(P’) = Cl(L) =1 anng(P’) = Z9
and letC3(P') = z for somez in CH?(X). Again,by (8.7) there is a
projectiveA — module @' of rank3 such that the total Chern cla€%Q’) =
1+ (x3 — z). There is a projectivel — module Q3 of rank 3 such that
Q' PP ~ Q3P A3.We have,C(Q")C(P') = C(Qs3). So the proof of
(8.9) is complete.

The same proof of (8.9) yeilds the following stronger theorem (8.10).

Theorem 8.10Let X = SpecA be a smooth affine three fold over any field
k such thatC H3(X) is divisible by two. Givem; in CH*(X ) for1 < i < 3,
there is a Projectived — module @ of rank 3 such that the total chern class
CQ)=1+uz1 + z2+ x3.

Remark For examples of smooth three folds that satisfy the hypothesis of
(8.10) see [Mk2].
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